Tartalomjegyzék

Computer controlled systems (2019)

Official website of the course

Lecture notes of the seminar

Homeworks
hw_1_2019.pdf2207 days40.3 KB
hw_2_2019.pdf2198 days36.77 KB
hw_3_2019.pdf2183 days189.57 KB
Lecture slides
lec_01_2019.pdf2223 days4.92 MB
lec_02_2019.pdf2217 days461.3 KB
lec_03_2019.pdf2204 days905.26 KB
lec_04_2019.pdf2202 days401.72 KB
lec_05_2019.pdf2196 days1009.69 KB
lec_06_2019.pdf2188 days1.3 MB
lec_07_2019.pdf2182 days1.63 MB
lec_08_2019.pdf2167 days1.09 MB
lec_09_2019.pdf2161 days1.03 MB
Seminars (1st midterm)
sem_01_2019.pdf2210 days114.78 KB
sem_02_2019.pdf2223 days107.51 KB
sem_03_2019.pdf2209 days141.71 KB
sem_04_2019.pdf2209 days340.58 KB
sem_05_2019.pdf2198 days252.81 KB
Seminars (2nd midterm)
sem_06_2019.pdf2166 days347.98 KB
sem_06_2019_TP_matlab.zip1800 days28.71 KB
sem_08_2019_matlab1.pdf2160 days311.2 KB
sem_08_2019_matlab1.zip1800 days4.26 KB
sem_08_2019_matlab1_sol.zip1800 days4.44 KB
sem_09_2019.pdf2183 days209.94 KB
sem_10_2019_matlab2.pdf2160 days493.63 KB
sem_10_2019_matlab2.zip1800 days3.14 KB
Extra homeworks (not compulsary)
xtra_hw_dynamical_system_simulations.pdf2159 days173.68 KB
xtra_hw_linear_algebra.pdf2159 days337.11 KB
Extra material and tutorial
xtra_material_Convex_optimization.pdf2508 days370.89 KB
xtra_material_DC_motor_model.pdf2508 days302.86 KB
xtra_material_Dissipativity_L2gain_LTI_LPV.pdf2508 days316.85 KB
xtra_material_Dissipativity_L2gain_LTI_LPV_dark.pdf2508 days3.02 MB
xtra_material_Laplace_table.pdf2508 days98.74 KB
xtra_material_lqservo.pdf2508 days30.01 KB
Model descriptions
xtra_model_crane.pdf2159 days217.07 KB
xtra_model_double_crane.pdf2508 days318.02 KB
xtra_model_gantry_crane_Ospina_Henao.pdf2508 days686.56 KB
midterm seating
zh1_seating.pdf2188 days28.51 KB
zh2_seating.pdf2188 days26.85 KB

Important built-in linear algebra functions:

Important functions of Matlab's Symbolic Math Toolbox (SMT):

Important function of the Control System Toolbox:

Important built-in linear algebra functions:

  • r = rank(A) - Compute the rank of matrix A
  • Ker = null(A) - Compute an orthonormal basis for the kernel space of matrix A
  • Im = orth(A) - Compute an orthonormal basis for the image space of matrix A using Gram-Schmidt orthogonalization
  • A_GJ = orth(A) - Compute the reduced row echelon form of matrix A (Gauss-Jordan elimination)

Seminar 1. - Laplace transformation, non-dimensional ODEs

Matlab examples

  1. Compute a polynomial division (see lecture notes nr. 3).
  2. Compute the partial fractional decomposition of $H(s) = \frac{5s^2+3s+1}{s^3+6s^2+11s+6}$.

    syms s
    H = (5*s^2 + 3*s + 1)/(s^3 + 6*s^2 + 11*s + 6);
    partfrac(H)

    Output:
    ans = 3/(2*(s + 1)) - 15/(s + 2) + 37/(2*(s + 3))
    $H(s) = \frac{3}{2(s+1)}-\frac{15}{s+2}+\frac{37}{2(s+3)}$

  3. Compute the Laplace transformation of $h(t) = \cos(at)+\sin(at)+e^{-ct}\cos(bt)+e^{-ft}\sin(et)$.

    syms t a b c e f
    h = cos(a*t) + sin(a*t) + exp(-c*t)*cos(b*t) + exp(-f*t)*sin(e*t)
    laplace(h,t)

    Output:
    ans = a/(a^2 + t^2) + (c + t)/((c + t)^2 + b^2) + e/((f + t)^2 + e^2)
    $H(s) = \frac{a}{a^2+t^2}+\frac{t}{a^2+t^2}+\frac{c+t}{{(c+t)}^2+b^2}+\frac{e}{{(f+t)}^2+e^2}$

  4. Compute the inverse Laplave transformation of $H(s) = \frac{1}{s^2 + s + 1}$.

    syms s
    ilaplace(1/(s^2+s+1))

    Output:
    
    
            $h(t) = \frac{2\sqrt{3}{e}^{-\frac{t}{2}}\sin(\frac{\sqrt{3}t}{2})}{3}$
            

Seminar 3. - System representations

Matlab examples

  1. Give a possible stat-space realization for LTI system $H(s) = \frac{b(s)}{a(s)}$.

    b = [1 0 1]; a = [1 0 2 3 2];
    H = tf(b,a)
    Output:
    H =
    
             s^2 + 1
      ---------------------
      s^4 + 2 s^2 + 3 s + 2
    
    Continuous-time transfer function.
    sys = ss(H)
    Output:
    sys =
    
      A =
             x1    x2    x3    x4
       x1     0    -1  -1.5    -1
       x2     2     0     0     0
       x3     0     1     0     0
       x4     0     0     1     0
    
      B =
           u1
       x1   1
       x2   0
       x3   0
       x4   0
    
      C =
            x1   x2   x3   x4
       y1    0  0.5    0  0.5
    
      D =
           u1
       y1   0
    
    Continuous-time state-space model.
    [A,B,C,D] = ssdata(sys)
    Output:
    A =
    
             0   -1.0000   -1.5000   -1.0000
        2.0000         0         0         0
             0    1.0000         0         0
             0         0    1.0000         0
    
    
    B =
    
         1
         0
         0
         0
    
    
    C =
    
             0    0.5000         0    0.5000
    
    
    D =
    
         0

  2. Compute the transfer function representation of an LTI system given by a state-space realization $(A,B,C,D)$.

    A = randn(6); B = randn(6,2); C = randn(3,6); D = zeros(3,2);
    sys = ss(A,B,C,D)
    Output:
    sys =
    
      A =
                 x1        x2        x3        x4        x5        x6
       x1   -0.1241    0.7172    0.2939    -2.944   -0.1022   -0.1649
       x2      1.49      1.63   -0.7873     1.438   -0.2414    0.6277
       x3     1.409    0.4889    0.8884    0.3252    0.3192     1.093
       x4     1.417     1.035    -1.147   -0.7549    0.3129     1.109
       x5    0.6715    0.7269    -1.069      1.37   -0.8649   -0.8637
       x6    -1.207   -0.3034   -0.8095    -1.712  -0.03005   0.07736
    
      B =
                  u1         u2
       x1     -1.214    -0.2256
       x2     -1.114      1.117
       x3  -0.006849     -1.089
       x4      1.533    0.03256
       x5    -0.7697     0.5525
       x6     0.3714      1.101
    
      C =
                x1       x2       x3       x4       x5       x6
       y1    1.544  -0.7423  -0.6156   0.8886   -1.422  -0.1961
       y2  0.08593   -1.062   0.7481  -0.7648   0.4882    1.419
       y3   -1.492     2.35  -0.1924   -1.402  -0.1774   0.2916
    
      D =
           u1  u2
       y1   0   0
       y2   0   0
       y3   0   0
    
    Continuous-time state-space model.
    H = tf(sys)
    Output:
    H =
    
      From input 1 to output...
              1.34 s^5 - 11.81 s^4 + 51.54 s^3 - 67.91 s^2 + 15.52 s + 8.946
       1:  ---------------------------------------------------------------------
           s^6 - 0.852 s^5 + 2.835 s^4 - 11.81 s^3 + 8.768 s^2 + 5.545 s - 5.529
    
             0.05174 s^5 + 1.64 s^4 + 26.25 s^3 - 30.64 s^2 - 15.04 s + 10.24
       2:  ---------------------------------------------------------------------
           s^6 - 0.852 s^5 + 2.835 s^4 - 11.81 s^3 + 8.768 s^2 + 5.545 s - 5.529
    
             -2.709 s^5 + 12.98 s^4 - 52.9 s^3 + 73.51 s^2 - 0.02814 s - 32.15
       3:  ---------------------------------------------------------------------
           s^6 - 0.852 s^5 + 2.835 s^4 - 11.81 s^3 + 8.768 s^2 + 5.545 s - 5.529
    
      From input 2 to output...
              -1.48 s^5 + 1.224 s^4 - 31.77 s^3 + 47.39 s^2 - 4.437 s - 12.79
       1:  ---------------------------------------------------------------------
           s^6 - 0.852 s^5 + 2.835 s^4 - 11.81 s^3 + 8.768 s^2 + 5.545 s - 5.529
    
             -0.2133 s^5 - 3.697 s^4 - 14.09 s^3 + 15.6 s^2 + 4.706 s - 7.059
       2:  ---------------------------------------------------------------------
           s^6 - 0.852 s^5 + 2.835 s^4 - 11.81 s^3 + 8.768 s^2 + 5.545 s - 5.529
    
              3.35 s^5 - 0.9953 s^4 + 37.94 s^3 - 58.62 s^2 - 7.658 s + 25.87
       3:  ---------------------------------------------------------------------
           s^6 - 0.852 s^5 + 2.835 s^4 - 11.81 s^3 + 8.768 s^2 + 5.545 s - 5.529
    
    Continuous-time transfer function.
    [b,a] = tfdata(H)
    Output:
    b =
    
      3×2 cell array
    
        {1×7 double}    {1×7 double}
        {1×7 double}    {1×7 double}
        {1×7 double}    {1×7 double}
    
    
    a =
    
      3×2 cell array
    
        {1×7 double}    {1×7 double}
        {1×7 double}    {1×7 double}
        {1×7 double}    {1×7 double}

Seminar 4. - Controllability, observability

Matlab examples

  1. Compute the controllable and unobservable subspace of LTI state-space model $(A,B,C,D)$.

    A = [1 2 -2 ; 0 1 0 ; 1 0 1]; B = [0 0 2]'; C = [1 0 0]; D = 0;
    Cn = ctrb(A,B), rank(Cn)
    Output:
    Cn =
         0    -4    -8
         0     0     0
         2     2    -2
    
    ans = 2
    Ctrb_Subsp = orth(Cn)
    Output:
    Ctrb_Subsp =
        0.9933   -0.1153
             0         0
        0.1153    0.9933
    Ctrb_Subsp = orth(sym(Cn))
    Output:
    Ctrb_Subsp =
    [ 0, -1]
    [ 0,  0]
    [ 1,  0]
    On = obsv(A,C), rank(On)
    Output:
    On =
         1     0     0
         1     2    -2
        -1     4    -4
    
    ans = 2
    Unobsv_Subsp = null(On)
    Output:
    Unobsv_Subsp =
             0
        0.7071
        0.7071
    Unobsv_Subsp = null(sym(On))
    Output:
    Unobsv_Subsp =
     0
     1
     1

Published Matlab scripts

  1. Manipulations with Matlab's Symbolic Math Toolbox: d2017_09_14_gyak1. Basic symbolic routines, Laplace transformation, inverse Laplace transformation, partial fractional decomposition.
  2. State-space transformations: d2017_09_19_gyak2.
    Dynamic systems simulations:
  3. Analysis in frequency/operator domain
  4. Controllability, observability, subspaces: d2017_10_02_gyak4_subspaces.
    Geometrical meaning, staircase forms: d2017_10_04_gyak4_ctrb_obsb_geometrical_meaning.
    Fundamental theorem of the linear argebra, demonstration: d2017_10_05_gyak4_basicthm_LA.
  5. Lyapunov function demonstration for a non-proper Lyapunov function (Hamiltonian system): d2017_10_11_gyak5_Lyapunov_improper.
    Lyapunov function demonstration for the pendulum system: d2017_10_11_gyak5_Lyapunov_pendulum_plain_vid
  6. Matlab solutions of former homeworks (2017 fall)

Control systems demonstrations

Inverted pendulum model (inverz inga modell)
  1. Model description and task sheet for the first Matlab practice: sem_08_2019_matlab1.pdf
  2. Framework for the first Matlab practice
  3. Model description and task sheet for the first Matlab practice: sem_10_2019_matlab2.pdf
  4. Framework for the second Matlab practice
  5. Model linearization around stable and unstable equilibrium point, simulation and analysis.
  6. Inverted pendulum control and integral reference tracking.
  7. Inverted pendulum control and integral reference tracking (augmented, corrected).
  8. Inverted pendulum nonlinear control - 2018.07.30. (július 30, hétfő), 11:02
  9. Advanced Nonlinear Control Methods (PhD course): Inverted pendulum linearization (Symbolic Math Toolbox) and pole placement
  10. Advanced Nonlinear Control Methods (PhD course): Inverted pendulum linearization (with uncertain frictional coefficient) - feedback design for LPV with LMIs
Crane model (rakodó daru modellje)
  1. Model description and derivation using calculus of variations (ccs_model_crane.pdf)
  2. State space model derivation using symbolic computations
  3. Simulink model and simulation (without control): sim_nonlinear_model_demo

Recommended literature

Additionally:
Andrew_Lewis_A_Mathematical_Approach_to_Classical_Control.pdf2508 days9.32 MB
Scherer.Weiland_2000_Linear_Matrix_Inequalities_in_Control.pdf2508 days1.25 MB
The_Fundamental_Theorem_of_Linear_Algebra.pdf2508 days330.57 KB

Extra material for the midterm tests

Former midterm examples
2014_ccs_1zh_A_feladatsor.pdf2508 days213.5 KB
2014_ccs_1zh_B_feladatsor.pdf2508 days201.93 KB
2015_ccs_1zh_elm.pdf2508 days111.9 KB
2015_ccs_1zh_gyak_MO.pdf2508 days124.17 KB
2015_ccs_2zh_elm.pdf2508 days104.75 KB
2015_ccs_2zh_gyak_MO.pdf2508 days114.2 KB
2015_ccs_gyakorlo_zh.pdf2508 days104.09 KB
2016_ccs_1zh_elm.pdf2508 days97.13 KB
2016_ccs_1zh_gyak.pdf2508 days84.4 KB
2016_ccs_2zh_elm.pdf2508 days83.64 KB
2016_ccs_2zh_gyak.pdf2508 days103.98 KB
2017a_ccs_1zh_computational.pdf2508 days87.01 KB
2017a_ccs_1zh_theoretical.pdf2508 days111.83 KB
2017a_ccs_2zh_elm.pdf2508 days104.28 KB
2017a_ccs_2zh_gyak.pdf2508 days131.4 KB
2017b_ccs_1zh_elm.pdf2508 days76.62 KB
2017b_ccs_1zh_elm_SOL.pdf2508 days136.01 KB
2017b_ccs_1zh_gyak.pdf2508 days90.72 KB
2017b_ccs_2zh.pdf2508 days162.78 KB
2017b_ccs_2zh_elm.pdf2508 days62.41 KB
2017b_ccs_2zh_gyak.pdf2508 days87.26 KB
2018_ccs_zh1_elm.pdf2546 days104.3 KB
2018_ccs_zh1_gyak.pdf2546 days107.2 KB
2018_ccs_zh2_elm.pdf2504 days90.57 KB
2018_ccs_zh2_gyak.pdf2504 days163.59 KB
2019_ccs_zh1_elm.pdf2181 days108.05 KB
2019_ccs_zh1_gyak.pdf2184 days112.16 KB
2019_ccs_zh1_gyak_MO.pdf2182 days175.28 KB
2019_ccs_zh1_gyak_TG.pdf2180 days122.07 KB
2019_ccs_zh1_gyak_TG_MO.pdf2184 days124.27 KB
Additional material
kawski_Lyapunov1.pdf2508 days481.87 KB
kawski_Lyapunov2.pdf2508 days262.33 KB

Extra material for the supplementary midterm

2015_ccs_potzh_elm.pdf2508 days101.32 KB
2015_ccs_potzh_gyak_MO.pdf2508 days117.14 KB
2016_ccs_potzh_elm.pdf2508 days96.75 KB
2016_ccs_potzh_elm_en.pdf2135 days100.7 KB
2016_ccs_potzh_gyak.pdf2508 days82.16 KB
2016_ccs_potzh_gyak_en.pdf2135 days84.95 KB
2017a_ccs_potzh.pdf2508 days139.12 KB
2017b_ccs_potpotzh .pdf2508 days117.83 KB
2017b_ccs_potzh.pdf2508 days85.86 KB
2018_ccs_potzh_elm.pdf2490 days91.27 KB
2018_ccs_potzh_gyak.pdf2490 days109.1 KB

Computer controlled systems (2018)

Lecture notes of the seminar

ccs_gyak02.pdf2456 days396.26 KB
ccs_hf3.pdf2160 days271.82 KB
Homeworks
hw_1_2018.pdf2508 days184.01 KB
hw_1_2018_sol_VM.pdf2508 days151 KB
hw_2_2018.pdf2508 days203.32 KB
hw_2_2018_sol_VM.pdf2508 days143.9 KB
hw_3_2018.pdf2508 days200.6 KB
hw_4_2018.pdf2507 days192.44 KB
hw_x_2018.pdf2508 days232.88 KB
hw_x_2018_extended_deadline.pdf2508 days232.88 KB
Matlab packages for TP students
lab_02_2018_TP_2018_09_18.zip1800 days323.69 KB
lab_02_2018_TP_exercises_for_Matlab_practice.pdf2508 days347.61 KB
lab_08_2018_TP_2018_11_06.zip1800 days1.75 MB
Lecture slides
lec_01_2018.pdf2508 days4.53 MB
lec_02_2018.pdf2508 days463.09 KB
lec_03_2018.pdf2508 days906.03 KB
lec_04_2018.pdf2508 days405.57 KB
lec_05_2018.pdf2508 days1017.58 KB
lec_06_2018.pdf2508 days991.21 KB
lec_07_2018.pdf2508 days1.63 MB
lec_08_2018.pdf2508 days1.09 MB
lec_09_2018.pdf2508 days1.03 MB
Seminars
sem_01_2018.pdf2508 days444.77 KB
sem_02_2018.pdf2508 days386.85 KB
sem_03_2018.pdf2508 days441.7 KB
sem_04_2018.pdf2508 days540.02 KB
sem_05_2018.pdf2508 days459.25 KB
sem_06_2018.pdf2508 days399.38 KB
sem_08_2018_matlab1.pdf2508 days311.63 KB
sem_09_2018.pdf2508 days210.95 KB
sem_10_2018_matlab2.pdf2508 days493.54 KB
sem_11_2018.pdf2502 days234.97 KB
Extra material and tutorial
xtra_material_Convex_optimization.pdf2508 days370.89 KB
xtra_material_DC_motor_model.pdf2508 days302.86 KB
xtra_material_Dissipativity_L2gain_LTI_LPV.pdf2508 days316.85 KB
xtra_material_Dissipativity_L2gain_LTI_LPV_dark.pdf2508 days3.02 MB
xtra_material_Laplace_table.pdf2508 days98.74 KB
xtra_material_lqservo.pdf2508 days30.01 KB
Model descriptions
xtra_model_crane.pdf2508 days217.4 KB
xtra_model_double_crane.pdf2508 days318.02 KB
xtra_model_gantry_crane_Ospina_Henao.pdf2508 days686.56 KB

Extra material

Former midterm examples
2014_ccs_1zh_A_feladatsor.pdf2508 days213.5 KB
2014_ccs_1zh_B_feladatsor.pdf2508 days201.93 KB
2015_ccs_1zh_elm.pdf2508 days111.9 KB
2015_ccs_1zh_gyak_MO.pdf2508 days124.17 KB
2015_ccs_2zh_elm.pdf2508 days104.75 KB
2015_ccs_2zh_gyak_MO.pdf2508 days114.2 KB
2015_ccs_gyakorlo_zh.pdf2508 days104.09 KB
2016_ccs_1zh_elm.pdf2508 days97.13 KB
2016_ccs_1zh_gyak.pdf2508 days84.4 KB
2016_ccs_2zh_elm.pdf2508 days83.64 KB
2016_ccs_2zh_gyak.pdf2508 days103.98 KB
2017a_ccs_1zh_computational.pdf2508 days87.01 KB
2017a_ccs_1zh_theoretical.pdf2508 days111.83 KB
2017a_ccs_2zh_elm.pdf2508 days104.28 KB
2017a_ccs_2zh_gyak.pdf2508 days131.4 KB
2017b_ccs_1zh_elm.pdf2508 days76.62 KB
2017b_ccs_1zh_elm_SOL.pdf2508 days136.01 KB
2017b_ccs_1zh_gyak.pdf2508 days90.72 KB
2017b_ccs_2zh.pdf2508 days162.78 KB
2017b_ccs_2zh_elm.pdf2508 days62.41 KB
2017b_ccs_2zh_gyak.pdf2508 days87.26 KB
2018_ccs_zh1_elm.pdf2546 days104.3 KB
2018_ccs_zh1_gyak.pdf2546 days107.2 KB
2018_ccs_zh2_elm.pdf2504 days90.57 KB
2018_ccs_zh2_gyak.pdf2504 days163.59 KB
2019_ccs_zh1_elm.pdf2181 days108.05 KB
2019_ccs_zh1_gyak.pdf2184 days112.16 KB
2019_ccs_zh1_gyak_MO.pdf2182 days175.28 KB
2019_ccs_zh1_gyak_TG.pdf2180 days122.07 KB
2019_ccs_zh1_gyak_TG_MO.pdf2184 days124.27 KB
Additional material
kawski_Lyapunov1.pdf2508 days481.87 KB
kawski_Lyapunov2.pdf2508 days262.33 KB

TP Seminar 1. (2018-09-11)

Basic linear algebra, Labplace transformation, solution of ODEs with Laplace transformation.

TP Seminar 2. (2018-09-18), Matlab practice

Sources:

Solved Matlab exercises:

  1. Basic linear algebra operations
  2. Dynamic systems' simulation in Matlab
  3. Also consider: approximate solution of the heat equation with ode45 by considering the discretization along the spacial coordinate. (See also: solution using pdepe.)

Important built-in linear algebra functions:

TP Seminar 3. (2018-09-25), Convex optimization

Convex optimization, primal-dual problem, introductio to LMIs.

Recommended literature: Scherer.Weiland_2000_Linear_Matrix_Inequalities_in_Control.pdf

Handwritten lecture notes: dark, original

TP Seminar 4. (2018-10-02)

System inversion of minimum phase SISO systems

TP Seminar 5. (2018-10-09)

Observability, controllability, model transformation into/from different model representations. Controllability staircase form.

TP Seminar 6. (2018-10-16), Dissipativity, stability

Dissipativity, stability, estimating induced $\mathcal L_2$ operator gain for LTI and affine LPV systems.

Recommended literature: Scherer.Weiland_2000_Linear_Matrix_Inequalities_in_Control.pdf

Handwritten lecture notes: dark, original

TP Seminar 8. (2018-11-06), Controllability and observability with LMIs

Tasks:

  1. Compute controllability and observability staircase form for LTI systems and check their stabilisability and detectability.
  2. Check stabilisability and detectability of LTI and affine LPV systems with LMIs (and design state feedback gain K and observer gain L).
  3. Estimate the induced L2 operator norm of LTI and affine LPV systems using LMIs.
  4. Design an optimal state feedback gain for LIT and affine LPV systems that minimizes the induced L2 operator norm.

Package for Matlab practice: lab_08_2018_TP_2018_11_06.zip

Things to do:

  1. Extract the zip file.
  2. Run Matlab in the root folder (ccs_lec8_2018_11_06) of the zip file, or navigate to the given directory in Matlab and run the startup script.
  3. To test your environment run yalmiptest.

Published Matlab scripts:

  1. Check if stabilisable (Success)
  2. Check if stabilisable (Infeasible)
  3. Affine LPV system computations with LMIs

Published Matlab scripts

  1. Manipulations with Matlab's Symbolic Math Toolbox: d2017_09_14_gyak1. Basic symbolic routines, Laplace transformation, inverse Laplace transformation, partial fractional decomposition.
  2. State-space transformations: d2017_09_19_gyak2.
    Dynamic systems simulations:
  3. Analysis in frequency/operator domain
  4. Controllability, observability, subspaces: d2017_10_02_gyak4_subspaces.
    Geometrical meaning, staircase forms: d2017_10_04_gyak4_ctrb_obsb_geometrical_meaning.
    Fundamental theorem of the linear argebra, demonstration: d2017_10_05_gyak4_basicthm_LA.
  5. Lyapunov function demonstration for a non-proper Lyapunov function (Hamiltonian system): d2017_10_11_gyak5_Lyapunov_improper.
    Lyapunov function demonstration for the pendulum system: d2017_10_11_gyak5_Lyapunov_pendulum_plain_vid
  6. Matlab solutions of homeworks (2017 fall)

Control systems demonstrations

Inverted pendulum model (inverz inga modell)
  1. Model description and derivation using calculus of variations: coming spoon.
  2. Model linearization around stable and unstable equilibrium point, simulation and analysis.
  3. Framework for the first Matlab practice
  4. Model description and task sheet for the first Matlab practice: ccs_gyak08_matlabgyak1.pdf
  5. Framework for the second Matlab practice
  6. Model description and task sheet for the first Matlab practice: ccs_gyak08_matlabgyak2.pdf
  7. Inverted pendulum control and integral reference tracking.
  8. Inverted pendulum control and integral reference tracking (augmented, corrected).
  9. Inverted pendulum nonlinear control - 2018.07.30. (július 30, hétfő), 11:02
  10. Advanced Nonlinear Control Methods (PhD course): Inverted pendulum linearization (Symbolic Math Toolbox) and pole placement
  11. Advanced Nonlinear Control Methods (PhD course): Inverted pendulum linearization (with uncertain frictional coefficient) - feedback design for LPV with LMIs
Crane model (rakodó daru modellje)
  1. Model description and derivation using calculus of variations (ccs_model_crane.pdf)
  2. State space model derivation using symbolic computations
  3. Simulink model and simulation (without control): sim_nonlinear_model_demo

Computer controlled systems (2017 fall)

Eredmények

Events (midterms)

Lecture notes of the seminar

Midterm sample test sheets for the 2nd midterm
2015_ccs_2zh_elm.pdf2508 days104.75 KB
2015_ccs_2zh_gyak_MO.pdf2508 days114.2 KB
2015_ccs_gyakorlo_zh.pdf2508 days104.09 KB
2015_ccs_potzh_gyak_MO.pdf2508 days117.14 KB
2016_ccs_2zh_elm.pdf2508 days83.64 KB
2016_ccs_2zh_gyak.pdf2508 days103.98 KB
2017_ccs_2zh_elm.pdf2508 days104.28 KB
2017_ccs_2zh_gyak.pdf2508 days131.4 KB
Lecture notes
ccs_gyak01.pdf2508 days311.19 KB
ccs_gyak02.pdf2508 days407.6 KB
ccs_gyak02_eng.pdf2508 days261.36 KB
ccs_gyak03.pdf2508 days441.73 KB
ccs_gyak04.pdf2508 days539.06 KB
ccs_gyak05.pdf2508 days459.68 KB
ccs_gyak06.pdf2508 days399.69 KB
ccs_gyak07.pdf2508 days260.77 KB
ccs_gyak08_matlabgyak1.pdf2508 days184.64 KB
ccs_gyak09.pdf2508 days150.44 KB
ccs_gyak10_matlabgyak2.pdf2508 days390.06 KB
ccs_gyak11.pdf2508 days181.51 KB
ccs_gyakorlo.pdf2508 days114.22 KB
Homework exercises
ccs_hf1.pdf2508 days351.62 KB
ccs_hf1_mo.pdf2508 days371 KB
ccs_hf2.pdf2508 days239.88 KB
ccs_hf2_mo.pdf2508 days289.16 KB
ccs_hf3 másolata.pdf2508 days224.15 KB
ccs_hf3.pdf2508 days224.15 KB
ccs_hf3_mo.pdf2508 days231.13 KB
ccs_hf4.pdf2508 days94.95 KB
ccs_lec01.pdf2508 days445.89 KB
ccs_lec02.pdf2508 days263.84 KB
ccs_lec02_v2.pdf2508 days261.76 KB
Model descriptions
ccs_model_crane.pdf2508 days217.4 KB
ccs_model_double_crane.pdf2508 days318.02 KB
ccs_model_gantry_crane_Ospina_Henao.pdf2508 days686.56 KB
ccs_segedlet_Matrixok.pdf2508 days141.88 KB
Extra material and tutorial
segedlet_Laplace_table.pdf2508 days98.74 KB
segedlet_szorgalmi_lqservo.pdf2508 days30.01 KB
midterm seating
zh1_beosztas.pdf2508 days44.72 KB
zh2_beosztas.pdf2508 days44.71 KB

Computer controlled systems (2017 spring)

week. Preliminaries

week. Laplace transformation

week. System representations

week. Controllability, observability

week. BIBO and Lyapunov stability