Computer Controlled Systems

Homework 1
Submission deadline: October 5. 2017. 10:00/12:00 (end of the seminar)
All solutions are expected to be calculated by hand, also all figures have to be drawn by hand. Computer programs can be used for self-verification, but all problems have to contain the detailed steps of solutions!

Problem 1. Given a linear mapping $\mathcal{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 0 \tag{1}\\
0 & -2 & 0 \\
2 & 1 & -3
\end{array}\right)
$$

1. Apply this linear mapping to the vector $w=\left(\begin{array}{c}w_{1} \\ w_{2} \\ w_{3}\end{array}\right) \in \mathbb{R}^{3}$.

Solution: $\bar{w}=A w=\left(\begin{array}{c}w_{2}-w_{1} \\ -2 w_{2} \\ 2 w_{1}+w_{2}-3 w_{3}\end{array}\right)$
2. Calculate the eigenvalues and the corresponding eigenvectors of matrix A.
(The eigenvalues may be complex as well.)
Solution:
The eigenvalues are: $\lambda_{1}=1, \lambda_{2}=, \lambda_{3}=-1$
Corresponding eigenvectors:

$$
s_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad s_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad s_{3}=\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
$$

3. Determine the diagonal matrix D of the mapping \mathcal{A} and give an appropriate transformation matrix S such that $D=S^{-1} \cdot A \cdot S$.

Solution:

D is a diagonal matrix containing the eigenvalues calculated. The columns of S are the corresponding eigenvectors with $p_{1}=p_{2}=p_{3}=1$, while S^{-1} is the inverse of S :

$$
D=\left(\begin{array}{ccc}
-3 & & \tag{2}\\
& -1 & \\
& & -2
\end{array}\right), \quad S=\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right), \quad S^{-1}=\left(\begin{array}{ccc}
-1 & -0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Note that in the construction of S, arbitrary values for p_{1}, p_{2}, p_{3} can be chosen. For the sake of simplicity we used $p_{1}=p_{2}=p_{3}=1$.
4. Give the exponential matrix e^{D}.

Solution:

Since D is a diagonal matrix, $D^{n}=\left(\begin{array}{ccc}(-3)^{n} & & \\ & (-1)^{n} & \\ & & (-2)^{n}\end{array}\right)$, and its exponential matrix can be written as

$$
e^{D}=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}=\left(\begin{array}{ccc}
\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!} & 0 & 0 \\
0 & \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} & 0 \\
0 & 0 & \sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!}
\end{array}\right)=\left(\begin{array}{ccc}
e^{-3} & 0 & 0 \\
0 & e^{-1} & 0 \\
0 & 0 & e^{-2}
\end{array}\right)
$$

5. Determine the exponential matrix e^{A}.

Solution:

$$
e^{A}=S e^{D} S^{-1}=\left(\begin{array}{ccc}
e^{-1} & e^{-1}-e^{-2} & 0 \tag{3}\\
0 & e^{-2} & 0 \\
e^{-1}-e^{-3} & e^{-1}-e^{-2} & e^{-3}
\end{array}\right)
$$

Problem 2. Consider a simple electric circuit with a resistor and a capacitor!
The capacitor and the resistor are ideal elements with constant resistance and capacitance: $R=1 k \Omega$, $C=1 m F . U_{i n}$ is an external voltage, i is the current of the circuit. Note that $U_{C}=0$ at $t=0$.
Using Kirchoff's second law (the sum of voltages is equal to zero, i.e. $U_{i n}-R \cdot i-U_{C}=0$), and the differential equation for the capacitor $i=C \cdot \dot{U}_{C}$, a first order differential equation with constant coefficients can be derived as:

$$
\dot{U}_{C}+\frac{1}{R C} U_{C}=\frac{1}{R C} U_{i n}, \quad U_{C}(0)=0
$$

By choosing the input as $u(t)=U_{i n}(t)$ and the output as $y(t)=U_{C}(t)$ and substituting the values of R and C, we get the input-output model of the circuit:

$$
\dot{y}(t)+y(t)=u(t), \quad y(0)=0
$$

1. Determine the transfer function $H(s)=\frac{Y(s)}{U(s)}$ of the system with Laplace-transform!

Solution:

Applying Laplace-transform:

$$
\mathcal{L}\{\dot{y}(t)\}+\mathcal{L}\{y(t)\}=\mathcal{L}\{u(t)\}
$$

and using that $\mathcal{L}\{\dot{y}(t)\}=s \mathcal{L}\{y(t)\}-y(0)=s Y(s)$, the L-transformed equation is:

$$
s \cdot Y(s)+Y(s)=U(s)
$$

From this, $\mathrm{H}(\mathrm{s})$ can be determined:

$$
(s+1) \cdot Y(s)=U(s) \quad \Rightarrow \quad H(s)=\frac{Y(s)}{U(s)}=\frac{1}{s+1}
$$

2. Determine the impulse-response function $h(t)$!

Solution:

By inverse Laplace-transform:

$$
h(t)=\mathcal{L}^{-1}\{H(s)\}=e^{-t}
$$

3. Give the time-response $y(t)$ for the unit step function as input: $u(t)=1(t)$ by convolution!

In order to check your solution, the impulse and step response of a system given by its transfer function can be easily computed using Matlab. Eg. $H(s)=\frac{12 s^{2}+1}{s^{3}+1}$

```
s = tf('s');
H=(12 * s^2 + 1 ) / ( s^3 + 1 );
impulse(H) % plot the impulse response of H
step(H) % plot the step response of H
```


Solution:

$$
y(t)=\int_{0}^{t} h(\tau) \mathrm{d} \tau=\int_{0}^{t} e^{-\tau} \mathrm{d} \tau=\left[-e^{-\tau}\right]_{\tau=0}^{\tau=t}=1-e^{-t}
$$

Problem 3. Consider a simple spring-mass system with damping and an external force $F(t)$. The time-dependent position of the mass is $y(t)$, where the zero position $y=0$ belongs to the relaxed state of the spring. The damping is of viscous type: it is proportional to \dot{y} which is the velocity of the mass.

The system constants are the spring constant $k=4 \frac{\mathrm{~N}}{\mathrm{~m}}$, the damping coefficient $d=5 \frac{\mathrm{~kg}}{\mathrm{~s}}$, and $m=1 \mathrm{~kg}$. When $t=0$, the mass is at position 0 , in other words, the initial condition constitutes $y(0)=0$.

The differential equation describing the dynamics of the spring-mass system is

$$
\begin{equation*}
\ddot{y}(t)+\frac{d}{m} \dot{y}(t)+\frac{k}{m} y(t)=\frac{1}{m} F(t), \quad \text { with initial conditions: } y(0), \dot{y}(0) . \tag{4}
\end{equation*}
$$

Using the values of system constants, and applying an external $F(t)=-2 e^{-3 t}-4 e^{-5 t} N$, the differential equation of the spring-mass system is as follows:

$$
\begin{equation*}
\ddot{y}(t)+5 \dot{y}(t)+4 y(t)=-2 e^{-3 t}-4 e^{-5 t}, \quad y(0)=0, \quad \dot{y}(0)=5 \tag{5}
\end{equation*}
$$

1. Using Laplace-transform, determine $y(t)$, the time function of the position of the mass.

Solution. Applying Laplace-transform:

$$
\begin{equation*}
4 Y(s)+5 s Y(s)+s^{2} Y(s)-5=-\frac{2}{s+3}-\frac{4}{s+5} \Rightarrow\left(s^{2}+5 s+4\right) Y(s)=\frac{5 s^{2}+34 s+53}{(s+3)(s+5)} \tag{6}
\end{equation*}
$$

Partial fractional decomposition:

$$
\begin{equation*}
Y(s)=\frac{5 s^{2}+34 s+53}{(s+1)(s+3)(s+4)(s+5)}=\frac{C_{1}}{s+1}+\frac{C_{2}}{s+3}+\frac{C_{3}}{s+4}+\frac{C_{4}}{s+5} \tag{7}
\end{equation*}
$$

Since all roots of the denominator are different, the following limits give the coefficients of the partial fractions:

$$
\begin{array}{ll}
C_{1}=\lim _{s \rightarrow-1} \frac{5 s^{2}+34 s+53}{(s+3)(s+4)(s+5)}=1, & C_{2}=\lim _{s \rightarrow-3} \frac{5 s^{2}+34 s+53}{(s+1)(s+4)(s+5)}=1 \\
C_{3}=\lim _{s \rightarrow-4} \frac{5 s^{2}+34 s+53}{(s+1)(s+3)(s+5)}=-1, & C_{3}=\lim _{s \rightarrow-5} \frac{5 s^{2}+34 s+53}{(s+1)(s+3)(s+4)}=-1 \tag{8}
\end{array}
$$

Thus

$$
\begin{equation*}
Y(s)=\frac{5 s^{2}+34 s+53}{(s+1)(s+3)(s+4)(s+5)}=\frac{1}{s+1}+\frac{1}{s+3}-\frac{1}{s+4}-\frac{1}{s+5} \tag{9}
\end{equation*}
$$

The solution is given by inverse Laplace-transform:

$$
\begin{equation*}
y(t)=e^{-t}+e^{-3 t}-e^{-4 t}-e^{-5 t} \tag{10}
\end{equation*}
$$

2. Is there any oscillation in the movement of the mass?

Solution:

Since all the terms of $y(t)$ are in the form of $e^{-a t}$, where $a \in \mathbb{R}^{+}$, there is no oscillation in $y(t)$.
3. Determine $\lim _{t \rightarrow \infty} y(t)$.

Solution:
$\lim _{t \rightarrow \infty} y(t)=0$ since $\lim _{t \rightarrow \infty} e^{-a t}=0, \forall a \in \mathbb{R}^{+}$.
4. Using Laplace transform, determine the transfer function $(H(s))$ of the system if $u(t):=F(t)$ is considered as an input signal and $y(t)$ is the output signal.
Solution. We have to determine the transfer function of (4), where $u(t)=F(t)$ is the input and $y(t)$ is the output. Substituting the parameters m, k, d, we obtain:

$$
\begin{equation*}
\ddot{y}(t)+5 \dot{y}(t)+4 y(t)=u(t) . \tag{11}
\end{equation*}
$$

Thus, the transfer function is: $H(s)=\frac{0 s+1}{s^{2}+5 s+4}$.
5. Using $H(s)$, give a controllable state-space realization of the system.

Solution.

$$
A=\left(\begin{array}{cc}
-5 & -4 \tag{12}\\
1 & 0
\end{array}\right), \quad B=\binom{1}{0}, \quad C=\left(\begin{array}{ll}
0 & 1
\end{array}\right), \quad D=0
$$

Compulsory only for the studends of the course "01TG" (csak a tehetséggondozásban résztvevő hallgatók számára kötelezõ).
Problem 4. (Basic numeric operations in system's theory)
We consider a strictly proper $(D=0) 3$-dimensional SISO state-space model

$$
\begin{align*}
& \dot{x}=A x+B u, \quad A=\left(\begin{array}{ccc}
-2 & -3 & -8 \\
0 & -3 & -6 \\
0 & 1 & -3
\end{array}\right), \quad B=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right), C x, \quad C=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) . \tag{13}
\end{align*}
$$

1. Compute the diagonal matrix D and invertible matrix S such that $A=S D S^{-1}$. Use the function eig.
2. Solve the state-space model using the numeric built-in solver ode45 if
(a) $x(0) \neq 0, u(t)=0$. Try different values for the initial conditions $x(0)$, and plot the resulting trajectories $x(t)=\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$ alongside each other using a 3D plot (plot3). See Figure 1.
(b) $x(0)=0, u(t)=\sin (\omega t)$. Try different values for ω.

Additionally, in both cases, plot the state variables $x_{i}(t)$ in the function of the time.
3. Plot the impulse response $h(t)$ of the system (impulse).
4. Determine the transfer function $H(s)$ of the system from u to y. Give the coefficients of the numerator $b(s)$ and denominator $a(s)$ of the transfer function $H(s) \frac{b(s)}{a(s)}$. You can use functions ss, tf, tfdata or ss2tf (deprecated).

Solution. published Matlab script.

Figure 1. Phase portrait of the 3-dimensional system given in Problem 4.

