	Name:		
${\bf Computer \ Controlled \ Systems} \qquad {}^{\rm Ner}$		otun code:	
1st midterm test 2017. 10. 19.	1:	2:	
<i>computational problems</i> (25 points) (The answers can be given in Hungarian)	3:	Σ:	
In case of yes-no questions, please, always justify you: The test-sheet should be submitted as well!	r answer!		
We consider a SISO LTI system given by the following state-space	model	$(\Sigma = 10pt)$	
$A = \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} , B = \begin{pmatrix} 1 \\ 1 \end{pmatrix} , C = \begin{pmatrix} -1 & 3 \end{pmatrix} , B = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $	D = 0	(i)	
(a) Compute the transfer function $H(s)$ for the system (A, B, C) .		(2p)	
(b) Is the system globally asymptotically stable?		(2p)	

- (c) Is the system BIBO stable? (2p)
- (d) Is the state-space model (A, B, C) minimal? (2p)
- (e) Compute the controllable subspace of (A, B, C). (2p)
- 2. It is given the following second order linear differential equation: $(\Sigma = 10pt)$

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = u(t),$$
 (ii)

where u(t) is the input signal, y(t) is the output signal.

1.

- (a) Determine the transfer function H(s) for this system, i.e. Y(s) = H(s)U(s). (2pt) (All initial conditions are zero: $y(0) = 0, \dot{y}(0) = 0.$)
- (b) Solve the differential equation (ii), if the input is $u(t) = -2e^{-3t}$ (y(t) =?). (4pt) Initial conditions: y(0) = 0, $\dot{y}(0) = 2$.
- (c) Give a minimal state-space representation for system (ii). (2pt)
- (d) Compute the DC-gain of system (ii). (2pt) *Hint.* DC-gain = $\lim_{t\to\infty} y(t)$ if the input u(t) = 1(t) is the unit step function. Furthermore, $\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s)$, where Y(s) is the Laplace transform of y(t).
- 3. It is given the following nonlinear state-space model $(\Sigma = 5pt)$

$$\dot{x}_1 = -x_1 - 2x_2,
\dot{x}_2 = 4x_1^3 - x_2,$$
(iii)

and a Lyapunov function candidate:

$$V(x) = ax_1^4 + x_2^2.$$
 (iv)

Give a possible value for the parameter a, such that V(x) satisfies the Lyapunov conditions (i.e. with V(x) we can prove global stability for system (iii)).