A PHP Error was encountered

Severity: Warning

Message: fopen(/home/polpe/.phpsession/ci_session3fcd7242d3756d317a787d23fc15407ccefe136c): failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 159

Backtrace:

File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library

File: /home/polpe/public_html/index.php
Line: 315
Function: require_once

Polcz Péter honlapja

Tartalomjegyzék

Computer controlled systems (2020)

Control Tutorials for Matlab & Simulink (University of Michigan)

Lecture notes of the seminar

CCS_requirements_2020_eng.pdf1535 days52.04 KB
CCS_schedule_2020 _eng.pdf1533 days36.97 KB
Seminars
sem_01_2020-09-11_online.pdf1531 days106.44 KB
sem_01_2020.pdf1164 days499.69 KB
sem_02_2020.pdf1531 days457.08 KB
sem_03_2020.pdf1527 days493.23 KB
sem_04_2020.pdf1468 days599.05 KB
sem_05_2020.pdf1504 days474.71 KB
sem_05_2020_handwritten.pdf1503 days224.53 KB
sem_06_2020.pdf1469 days401.46 KB
sem_08_2020_matlab1.pdf1833 days311.2 KB
sem_09_2020.pdf1467 days320.24 KB
Illustrative Matlab simulations
sim_04_waterfall.zip1473 days3.08 KB
Extra material and tutorial
xtra_material_convopt_MIT.pdf1511 days464.7 KB
xtra_material_convopt_Stanford.pdf1511 days5 MB
xtra_material_convopt_damtp.pdf1511 days180.81 KB
xtra_material_convopt_handwritten_notes_2018.pdf2181 days370.89 KB
xtra_material_lqservo.pdf2181 days30.01 KB

Seminar 1. - Laplace transformation, non-dimensional ODEs

Important functions of Matlab's Symbolic Math Toolbox (SMT):

Matlab examples

  1. Compute a polynomial division (see lecture notes nr. 3).
  2. Compute the partial fractional decomposition of $H(s) = \frac{5s^2+3s+1}{s^3+6s^2+11s+6}$.

    syms s
    H = (5*s^2 + 3*s + 1)/(s^3 + 6*s^2 + 11*s + 6);
    partfrac(H)

    Output:
    ans = 3/(2*(s + 1)) - 15/(s + 2) + 37/(2*(s + 3))
    $H(s) = \frac{3}{2(s+1)}-\frac{15}{s+2}+\frac{37}{2(s+3)}$

  3. Compute the Laplace transformation of $h(t) = \cos(at)+\sin(at)+e^{-ct}\cos(bt)+e^{-ft}\sin(et)$.

    syms t a b c e f
    h = cos(a*t) + sin(a*t) + exp(-c*t)*cos(b*t) + exp(-f*t)*sin(e*t)
    laplace(h,t)

    Output:
    ans = a/(a^2 + t^2) + (c + t)/((c + t)^2 + b^2) + e/((f + t)^2 + e^2)
    $H(s) = \frac{a}{a^2+t^2}+\frac{t}{a^2+t^2}+\frac{c+t}{{(c+t)}^2+b^2}+\frac{e}{{(f+t)}^2+e^2}$

  4. Compute the inverse Laplave transformation of $H(s) = \frac{1}{s^2 + s + 1}$.

    syms s
    ilaplace(1/(s^2+s+1))

    Output:
    
    
            $h(t) = \frac{2\sqrt{3}{e}^{-\frac{t}{2}}\sin(\frac{\sqrt{3}t}{2})}{3}$
            

vanderpol_simulation vanderpol_DOA