Computer controlled systems

Lecture 7, March 31, 2017
version: 2020.11.12. - 23:48:50 [β version]

Pole-placement controller: problem statement

We aim to find a state feedback $u=-K x(+v)$ such that the closed loop system is stable. Signal v is a possible disturbance, reference, or other extraneous signal.

The state transition matrix of the closed loop system is directly affected by the static state feedback gain K. Therefore, K has to be selected such that $A-B K$ has stable poles. This is an algebraic problem.

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \tag{1}\\
u=-K x+v
\end{array} \Leftrightarrow \dot{x}=(A-B K) x+B v\right.
$$

A linear matrix inequality (LMI) solution for MIMO systems

The closed loop is stable if there exists a positive Lyapunov function $V: \mathbb{R}^{n} \rightarrow R, V(x)=x^{\top} P x$, $P=P^{\top} \succ 0$ such that

$$
\begin{equation*}
\frac{\partial V}{\partial x}(A-B K) x=x^{\top}\left((A-B K)^{\top} P+P(A-B K)\right) x<0 \text { for all } x \neq 0 \tag{2}
\end{equation*}
$$

namely

$$
\begin{align*}
& \left(A^{\top}-K^{\top} B^{\top}\right) P+P(A-B K) \prec 0, \tag{3}\\
& A^{\top} P-K^{\top} B^{\top} P+P A-P B K \prec 0 . \tag{4}
\end{align*}
$$

The red color of K and P indicate that these matrices are unknown. Therefore, (4) is a bilinear matrix inequality (hard to solve). Let $Q=P^{-1}$, then:

$$
\begin{align*}
& Q\left(A^{\top} P-K^{\top} B^{\top} P+P A-P B K\right) Q \prec 0 \tag{5}\\
& Q A^{\top}-Q K^{\top} B^{\top}+A Q-B K Q \prec 0 . \tag{6}
\end{align*}
$$

Let $N=K Q$. Then,

$$
\begin{equation*}
Q A^{\top}-N^{\top} B^{\top}+A Q-B N \prec 0 \tag{7}
\end{equation*}
$$

The matrix inequality in (7) is linear in the (red) unknown matrix variables, therefore, it can be solved with a semidefinite solver (like SeDuMi, Mosek, SDPT3, or PENLAB).
When we do a substitution like $N=K Q$, we should be very careful. The shadowing equation ($N=K Q$) should not be overdetermined with respect to the shadowed variable (K). Namely, for any possible pair (Q, N) should exists $K=N Q^{-1}=N P$. In this case, we are fortunate, as $K \in \mathbb{R}^{m \times n}$ and $N \in \mathbb{R}^{m \times n}$, where ($m=\operatorname{dim}(u), n=\operatorname{dim}(x)$).
This technique is an optimization based approach. In this formulation we only have to find one possible solution for (7), then, $K=N Q^{-1}=N P$. This computational approach to find K does not involve
any sophisticated design objective like select the resulting poles (pole placement controller design), or minimize a cost function (LQR design). However, this technique can be easily extended to a more general class of dynamical systems.

Pole-placement controller (SISO)

It is given $\dot{x}=A x+B u$. A feedback law is searched in the form $u=-K x$ such that the closed loop $\dot{x}=(A-B K) x$ has a given set of poles.

Design objective:

1. $\operatorname{det}(s I-A)=a(s)=\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n} \quad \rightarrow \quad$ unstable poles
2. Design K such that $\operatorname{det}(s I-(A-B K))=\alpha(s)=\left(s-\tilde{p}_{1}\right) \cdots\left(s-\tilde{p}_{n}\right)=s^{n}+\alpha_{1} s^{n-1}+\cdots+\alpha_{n}$.

Solution 1 (based on the Bass-Gura formula).

$$
K=(\underline{\alpha}-\underline{a}) T_{l}^{-1} \mathcal{C}_{n}^{-1}
$$

where

$$
\underline{\alpha}=\left(\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{n}
\end{array}\right), \underline{a}=\left(\begin{array}{lll}
a_{1} & \ldots & a_{n} \tag{8}
\end{array}\right),
$$

$\mathcal{C}_{n}=\left(\begin{array}{llll}B & A B & \ldots & A^{n-1} B\end{array}\right)$ is the controllability matrix, finally, T_{l} is the following Toeplitz matrix:

$$
T_{l}=\left(\begin{array}{cccccc}
1 & a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} \\
0 & 1 & a_{1} & \cdots & a_{n-3} & a_{n-2} \\
0 & 0 & 1 & \cdots & a_{n-4} & a_{n-3} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 & a_{1} \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

Solution 2 (the Ackermann formula).

$$
K=\left[\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right] \mathcal{C}_{n}^{-1} \alpha(A)
$$

where $\alpha(s)$ is . Observe that the prescribed characteristic polynomial $\alpha(s)$ of the closed-loop (controlled) system is now evaluated in the state transition matrix, namely:

$$
\begin{equation*}
\alpha(A)=A^{n}+\alpha_{1} A^{n-1}+\cdots+\alpha_{n-1} A+\alpha_{n} I_{n} . \tag{9}
\end{equation*}
$$

Example 1. Design a pole-placement controller for the following CT LTI SISO system:

$$
A=\left(\begin{array}{cc}
2 & -2 \\
0 & 1
\end{array}\right) \quad B=\binom{1}{2} \quad C=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

Solution.

$$
\begin{array}{r}
a(s)=s^{2}-3 s+2 \\
a_{1}=-3 \\
a_{2}=2
\end{array}
$$

The prescribed characteristic polynomial $(\alpha(s))$:

$$
\begin{aligned}
\alpha(s)=s^{2}+3 s & +2 \\
\alpha_{1} & =3 \\
\alpha_{2} & =2
\end{aligned}
$$

A Toeplitz matrix and the controllability matrix in this case are

$$
\begin{array}{ll}
T_{l}=\left(\begin{array}{cc}
1 & a_{1} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -3 \\
0 & 1
\end{array}\right) & \mathcal{C}=\left(\begin{array}{cc}
1 & -2 \\
2 & 2
\end{array}\right) \\
T_{l}^{-1}=\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right) & \mathcal{C}^{-1}=\frac{1}{6}\left(\begin{array}{cc}
2 & 2 \\
-2 & 1
\end{array}\right)
\end{array}
$$

Than the static state feedback will be the following:

$$
K=\left(\begin{array}{ll}
3-(-3) & 2-2
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right) \frac{1}{6}\left(\begin{array}{cc}
2 & 2 \\
-2 & 1
\end{array}\right)=\left(\begin{array}{ll}
-4 & 5
\end{array}\right)
$$

Example 2. Design a pole-placement controller for the following CT LTI SISO system:

$$
A=\left(\begin{array}{cc}
2 & -2 \\
0 & 1
\end{array}\right) \quad B=\binom{1}{2} \quad C=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

Solution.

$$
\mathcal{C}_{2}=\left(\begin{array}{ll}
B & A B
\end{array}\right)=\left(\begin{array}{cc}
1 & -2 \\
2 & 2
\end{array}\right) \rightarrow \mathcal{C}_{2}^{-1}=\left(\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{1}{6}
\end{array}\right)
$$

Legyen $\lambda_{1}=-1$ és $\lambda_{2}=-2$.

$$
\begin{gathered}
\alpha(s)=\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)=s^{2}+3 s+2 \\
\alpha(A)=A^{2}+3 A+2 I=\left(\begin{array}{cc}
12 & -12 \\
0 & 6
\end{array}\right) \\
K=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{1}{6}
\end{array}\right)\left(\begin{array}{cc}
12 & -12 \\
0 & 6
\end{array}\right)=\left(\begin{array}{ll}
-4 & 5
\end{array}\right)
\end{gathered}
$$

Check

$$
\begin{gathered}
A-B K=\left(\begin{array}{cc}
2 & -2 \\
0 & 1
\end{array}\right)-\binom{1}{2}\left(\begin{array}{ll}
-4 & 5
\end{array}\right)=\left(\begin{array}{ll}
6 & -7 \\
8 & -9
\end{array}\right) \\
\operatorname{det}(\lambda I-(A-B K))=\lambda^{2}+3 \lambda+2
\end{gathered}
$$

Namely, the poles of the obtained closed-loop system are indeed the prescribed values.

Example 3. Design a pole-placement controller for the following CT LTI SISO system:

$$
A=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) \quad B=\binom{1}{0} \quad C=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

Solution.

$$
\mathcal{C}_{2}=\left(\begin{array}{ll}
B & A B
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right) \rightarrow \mathcal{C}_{2}^{-1}=\left(\begin{array}{cc}
1 & -\frac{2}{3} \\
0 & \frac{1}{3}^{2}
\end{array}\right)
$$

Let $\lambda_{1}=-1$ and $\lambda_{2}=-2$.

$$
\begin{gathered}
\alpha=\left(s+\lambda_{1}\right)\left(s+\lambda_{2}\right)=s^{2}+3 s+2 \\
\alpha(A)=A^{2}+3 A+2 I=\left(\begin{array}{ll}
9 & -3 \\
9 & -3
\end{array}\right) \\
K=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{2}{3} \\
0 & \frac{1}{3}
\end{array}\right)\left(\begin{array}{ll}
9 & -3 \\
9 & -3
\end{array}\right)=\left(\begin{array}{ll}
3 & -1
\end{array}\right)
\end{gathered}
$$

Check:

$$
\begin{gathered}
A-B K=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right)-\binom{1}{0}\left(\begin{array}{ll}
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
3 & -2
\end{array}\right) \\
\operatorname{det}(\lambda I-(A-B K))=\lambda^{2}+3 \lambda+2
\end{gathered}
$$

Indeed, the poles of the closed loop system are the prescribed values.

Example 4. Given the following CT LTI SISO systems

1. $\left\{\begin{array}{l}\dot{x}=\left(\begin{array}{cc}2 & 0 \\ 9 & -3\end{array}\right) x+\binom{0}{3} u \\ y=\left(\begin{array}{ll}1 & 1\end{array}\right) x\end{array}\right.$
2. $\left\{\begin{array}{l}\dot{x}=\left(\begin{array}{cc}2 & 0 \\ 9 & -3\end{array}\right) x+\binom{2}{3} u \\ y=\left(\begin{array}{ll}1 & 1\end{array}\right) x\end{array}\right.$

Design a state feedback controller (if it is possible), that stabilizes the system!

Example 5. Given the following CT LTI SISO system $H(s)=\frac{2 s-4}{s^{2}+s-6}$.

1. Is the system asymptotically stable?
2. If it is possible, design a controller, that shifts the system's poles to $p_{1}=-3$ and $p_{2}=-5$! Hint: controllability normal form.

Linear state observer design

The control approach of the previous sections has a sever problem:

It is generally very expensive (or completely impossible) to measure the whole state vector.

Goal: computation of the values of the non-measured state variables of the system using the observed output.

The dynamical system

$$
\dot{\hat{x}}=F \hat{x}+L y+H u
$$

is called a full order state observer, if the error dynamics $e=x-\hat{x}$ tends to zero, i.e. $\lim _{t \rightarrow \infty} e=0$ In case of an LTI system:

$$
\begin{gathered}
\dot{x}=A x+B u \\
y=C x
\end{gathered}
$$

$$
\begin{gathered}
\dot{e}=\dot{x}-\dot{\hat{x}}=A x+B u-F \hat{x}-L y-H u+F x-F x= \\
=A x+B u-F \hat{x}-L C x-H u+F x-F x= \\
=(A-L C-F) x+(B-H) u+F(x-\hat{x})=(A-L C-F) x+(B-H) u+F(e)
\end{gathered}
$$

Let $F=A-L C$ and $H=B$
Than $\dot{e}=F e$

We require that the system be asymptotically stable, namely the real part of the roots of the characteristic polynomial $\operatorname{det}(s I-(A-L C))$ be negative.

$$
\operatorname{det}(s I-(A-L C))=\operatorname{det}\left(s I-\left(A^{T}-C^{T} L^{T}\right)\right)
$$

We can observe that the state observer design can be traced back to a pole placement problem of $\left(A^{\prime}, B^{\prime}\right)$, where $A^{\prime}=A^{T}, B^{\prime}=C^{T}$, and the result (K) of the pole placement should be interpreted as $L=K^{T}$.

The observer dynamics can be considered as follows:

$$
\begin{equation*}
\dot{\hat{x}}=\underbrace{A \hat{x}+B u}_{\text {system dynamics }}+\underbrace{L(y-\hat{y})}_{\text {error term }} \tag{10}
\end{equation*}
$$

Corresponding block diagram:

$-x, \hat{x} \in \mathbb{R}^{n}$ state vectors
$-v, u \in \mathbb{R}^{m}$
$-y, \hat{y}, e \in \mathbb{R}^{p}$
observer's internal dynamics (should be stable)

Corresponding block diagram:

$-x, \hat{x} \in \mathbb{R}^{n}$
state vectors
$-v, u \in \mathbb{R}^{m}$
$-y \in \mathbb{R}^{p}$

Example 6. Design a state observer for the following CT LTI SISO system

$$
A=\left(\begin{array}{cc}
-3 & 1 \\
2 & -1
\end{array}\right) \quad B=\binom{1}{-1} \quad C=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

Solution.
Let the characteristic polynomial of the closed-loop system: $\phi_{o}(s)=(s+3)(s+3)$
In order to use the Ackermann, formula we should substitute $A^{\prime}=A^{T}$ into $\phi_{o}(s)$:

$$
\phi_{o}\left(A^{\prime}\right)=\left(\begin{array}{ll}
2 & 4 \\
2 & 6
\end{array}\right)
$$

If $B^{\prime}=C^{T}$, the obtained controllability matrix for $\left(A^{\prime}, B^{\prime}\right)$ (which is actually the transpose of the observability matrix of $(A, C))$ is:

$$
\mathcal{C}_{2}^{\prime}=\left(\begin{array}{cc}
0 & 2 \\
1 & -1
\end{array}\right)
$$

Its inverse will be:

$$
\left(\mathcal{C}_{2}^{\prime}\right)^{-1}=\left(\begin{array}{ll}
1 / 2 & 1 \\
1 / 2 & 0
\end{array}\right)
$$

Finally, we compute the feedback gain K :

$$
K=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 / 2 & 1 \\
1 / 2 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 4 \\
2 & 6
\end{array}\right)=(1
$$

From this:

$$
L=K^{T}=\binom{1}{2} \quad F=A-L C=\left(\begin{array}{cc}
-3 & 0 \\
2 & -3
\end{array}\right) \quad H=\binom{1}{-1}
$$

Example 7. Design a state observer for the following CT LTI SISO system

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right) \quad B=\binom{1}{1} \quad C=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

Example 8. Design a state observer AND a stabilizer state feedback controller for the following CT LTI SISO system.

$$
A=\left(\begin{array}{rr}
2 & -1 \\
3 & -2
\end{array}\right) \quad B=\binom{1}{0} \quad C=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

Separation principle: the observer gain L and the feedback gain K can be designed separately.

Optimal state feedback controller - LQR controller design

We want to minimize the following functional:

$$
J(x, u)=\frac{1}{2} \int_{0}^{T} x^{T} Q x+u^{T} R u d t
$$

where Q and R are positive definite symmetric matrices. In case of LTI systems this problem can be traced back to a CARE (continuous-time algebraic Riccati equation):

$$
K A+A^{T} K-K B R^{-1} B^{T} K+Q=0
$$

The system can be stabilized with the $u=-G x$ state feedback, where

$$
G=R^{-1} B^{T} K
$$

Example 9. Design an optimal LQR controller for the following system: $\dot{x}=2 x+u$, i.e $A=2, B=1$.
Solution. We minimize the following functional:

$$
J=\frac{1}{2} \int 5 x^{2}+u^{2} d t
$$

meaning that in our case $Q=5$ and $R=1$. In this case (first order system - only one single state variable) the CARE will have the following form:

$$
-K^{2}+4 K+5=0
$$

The solutions for K are 5 and -1 . By definition, we should choose the positive one, otherwise, we obtain a positive feedback.

$$
G=1 \cdot 1 \cdot 5=5
$$

Finally, the computed state feedback: $u=-5 x$.

