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Pole-placement controller: problem statement

We aim to find a state feedback u = −Kx (+v) such that the closed loop system is stable. Signal v is a
possible disturbance, reference, or other extraneous signal.

ẋ = Ax+Bu

K

v u x

- ≡ ẋ = (A−BK)x+Bv

The state transition matrix of the closed loop system is directly affected by the static state feedback gain
K. Therefore, K has to be selected such that A−BK has stable poles. This is an algebraic problem.{

ẋ = Ax+Bu

u = −Kx+ v
⇔ ẋ = (A−BK)x+Bv (1)

A linear matrix inequality (LMI) solution for MIMO systems

The closed loop is stable if there exists a positive Lyapunov function V : Rn → R, V (x) = x>P x,
P = P> � 0 such that

∂V
∂x (A−BK)x = x>

(
(A−BK)>P + P (A−BK)

)
x < 0 for all x 6= 0, (2)

namely

(A> −K>B>)P + P (A−BK) ≺ 0, (3)

A>P −K>B>P + PA− PBK ≺ 0. (4)

The red color of K and P indicate that these matrices are unknown. Therefore, (4) is a bilinear matrix
inequality (hard to solve). Let Q = P−1, then:

Q
(
A>P −K>B>P + PA− PBK

)
Q ≺ 0 (5)

QA> −QK>B> +AQ−BKQ ≺ 0. (6)

Let N = KQ. Then,

QA> −N>B> +AQ−BN ≺ 0. (7)

The matrix inequality in (7) is linear in the (red) unknown matrix variables, therefore, it can be solved
with a semidefinite solver (like SeDuMi, Mosek, SDPT3, or PENLAB).

When we do a substitution like N = KQ, we should be very careful. The shadowing equation (N = KQ)
should not be overdetermined with respect to the shadowed variable (K). Namely, for any possible pair
(Q,N) should exists K = NQ−1 = NP . In this case, we are fortunate, as K ∈ Rm×n and N ∈ Rm×n,
where (m = dim(u), n = dim(x)).

This technique is an optimization based approach. In this formulation we only have to find one possible
solution for (7), then, K = NQ−1 = NP . This computational approach to find K does not involve
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any sophisticated design objective like select the resulting poles (pole placement controller design), or
minimize a cost function (LQR design). However, this technique can be easily extended to a more general
class of dynamical systems.

Pole-placement controller (SISO)

It is given ẋ = Ax + Bu. A feedback law is searched in the form u = −Kx such that the closed loop
ẋ = (A−BK)x has a given set of poles.

Design objective:

1. det(sI −A) = a(s) = (s− p1) · · · (s− pn) = sn + a1s
n−1 + · · ·+ an → unstable poles

2. Design K such that det
(
sI − (A−BK)

)
= α(s) = (s− p̃1) · · · (s− p̃n) = sn + α1s

n−1 + · · ·+ αn.

Solution 1 (based on the Bass-Gura formula).

K = (α− a)T−1l C−1n

where

α =
(
α1 . . . αn

)
, a =

(
a1 . . . an

)
, (8)

Cn =
(
B AB . . . An−1B

)
is the controllability matrix, finally, Tl is the following Toeplitz matrix:

Tl =


1 a1 a2 · · · an−2 an−1
0 1 a1 · · · an−3 an−2
0 0 1 · · · an−4 an−3
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 a1
0 0 0 · · · 0 1

 .

Solution 2 (the Ackermann formula).

K = [0 0 · · · 0 1] C−1n α(A)

where α(s) is . Observe that the prescribed characteristic polynomial α(s) of the closed-loop (controlled) system
is now evaluated in the state transition matrix, namely:

α(A) = An + α1A
n−1 + · · ·+ αn−1A+ αnIn. (9)

Example 1. Design a pole-placement controller for the following CT LTI SISO system:

A =

(
2 −2
0 1

)
B =

(
1
2

)
C =

(
1 1

)
Solution.

a(s) = s2 − 3s+ 2

a1 = −3
a2 = 2

The prescribed characteristic polynomial (α(s)):

α(s) = s2 + 3s+ 2

α1 = 3

α2 = 2
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A Toeplitz matrix and the controllability matrix in this case are

Tl =

(
1 a1
0 1

)
=

(
1 −3
0 1

)
T−1l =

(
1 3
0 1

) C =
(
1 −2
2 2

)
C−1 =

1

6

(
2 2
−2 1

)
Than the static state feedback will be the following:

K =
(
3− (−3) 2− 2

)(1 3
0 1

)
1

6

(
2 2
−2 1

)
=
(
−4 5

)
Example 2. Design a pole-placement controller for the following CT LTI SISO system:

A =

(
2 −2
0 1

)
B =

(
1
2

)
C =

(
1 1

)
Solution.

C2 =
(
B AB

)
=

(
1 −2
2 2

)
→ C−12 =

(
1
3

1
3

− 1
3

1
6

)
Legyen λ1 = −1 és λ2 = −2.

α(s) = (s− λ1)(s− λ2) = s2 + 3s+ 2

α(A) = A2 + 3A+ 2I =

(
12 −12
0 6

)
K =

(
0 1

)( 1
3

1
3

− 1
3

1
6

)(
12 −12
0 6

)
=
(
−4 5

)
Check

A−BK =

(
2 −2
0 1

)
−
(
1
2

)(
−4 5

)
=

(
6 −7
8 −9

)
det(λI − (A−BK)) = λ2 + 3λ+ 2

Namely, the poles of the obtained closed-loop system are indeed the prescribed values.

Example 3. Design a pole-placement controller for the following CT LTI SISO system:

A =

(
2 −1
3 −2

)
B =

(
1
0

)
C =

(
1 1

)
Solution.

C2 =
(
B AB

)
=

(
1 2
0 3

)
→ C−12 =

(
1 − 2

3
0 1

3

)
Let λ1 = −1 and λ2 = −2.

α = (s+ λ1)(s+ λ2) = s2 + 3s+ 2

α(A) = A2 + 3A+ 2I =

(
9 −3
9 −3

)
K =

(
0 1

)(1 − 2
3

0 1
3

)(
9 −3
9 −3

)
=
(
3 −1

)
Check:

A−BK =

(
2 −1
3 −2

)
−
(
1
0

)(
3 −1

)
=

(
−1 0
3 −2

)
det(λI − (A−BK)) = λ2 + 3λ+ 2

Indeed, the poles of the closed loop system are the prescribed values.
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Example 4. Given the following CT LTI SISO systems

1.

 ẋ =

(
2 0
9 −3

)
x+

(
0
3

)
u

y =
(
1 1

)
x

2.

 ẋ =

(
2 0
9 −3

)
x+

(
2
3

)
u

y =
(
1 1

)
x

Design a state feedback controller (if it is possible), that stabilizes the system!

Example 5. Given the following CT LTI SISO system H(s) = 2s−4
s2+s−6 .

1. Is the system asymptotically stable?

2. If it is possible, design a controller, that shifts the system’s poles to p1 = −3 and p2 = −5! Hint:
controllability normal form.

Linear state observer design

The control approach of the previous sections has a sever problem:

ẋ = Ax+Bu

K

v u x
- ≡ ẋ = (A−BK)x+Bv

It is generally very expensive (or completely impossible)
to measure the whole state vector.

Goal: computation of the values of the non-measured state variables of the system
using the observed output.

ẋ = Ax+Bu

y = Cx+Du
Observer

K

(x is hidden)
v u

y

u
x̂-

The dynamical system
˙̂x = Fx̂+ Ly +Hu

is called a full order state observer, if the error dynamics e = x− x̂ tends to zero, i.e. lim
t→∞

e = 0

In case of an LTI system:

ẋ = Ax+Bu

y = Cx

ė = ẋ− ˙̂x = Ax+Bu− Fx̂− Ly −Hu+ Fx− Fx =

= Ax+Bu− Fx̂− LCx−Hu+ Fx− Fx =

= (A− LC − F )x+ (B −H)u+ F (x− x̂) = (A− LC − F )x+ (B −H)u+ F (e)

Let F = A− LC and H = B
Than ė = Fe
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We require that the system be asymptotically stable, namely the real part of the roots of the characteristic
polynomial det(sI − (A− LC)) be negative.

det(sI − (A− LC)) = det
(
sI − (AT − CTLT )

)
We can observe that the state observer design can be traced back to a pole placement problem of (A′, B′),
where A′ = AT , B′ = CT , and the result (K) of the pole placement should be interpreted as L = KT .

ẋ = Ax+Bu

y = Cx+Du
˙̂x = (A− LC)x̂+ Ly +Bu

K

(x is hidden)
v u

y

u
x̂-

The observer dynamics can be considered as follows:
˙̂x = Ax̂+Bu︸ ︷︷ ︸

system dynamics

+ L(y − ŷ)︸ ︷︷ ︸
error term

(10)

Corresponding block diagram:

d
ẋ = Ax+Bu

y = Cx+Du

B 1
s

L

A

C

K

v u y

e

˙̂x

-
-

Observer x, x̂ ∈ Rn

state vectors
v, u ∈ Rm

y, ŷ, e ∈ Rp

But also:
˙̂x = (A− LC)︸ ︷︷ ︸

observer’s internal dynamics (should be stable)

x̂ + Bu + Ly (11)

Corresponding block diagram:

d
ẋ = Ax+Bu

y = Cx+Du

B 1
s

L

A− LC

K

w u y

˙̂x x̂

-
Observer

x, x̂ ∈ Rn

state vectors
v, u ∈ Rm

y ∈ Rp
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Example 6. Design a state observer for the following CT LTI SISO system

A =

(
−3 1
2 −1

)
B =

(
1
−1

)
C =

(
0 1

)
Solution.
Let the characteristic polynomial of the closed-loop system: φo(s) = (s+ 3)(s+ 3)
In order to use the Ackermann, formula we should substitute A′ = AT into φo(s):

φo(A
′) =

(
2 4
2 6

)
If B′ = CT , the obtained controllability matrix for (A′, B′) (which is actually the transpose of the observability
matrix of (A,C)) is:

C′2 =

(
0 2
1 −1

)
Its inverse will be:

(C′2)
−1

=

(
1/2 1
1/2 0

)
Finally, we compute the feedback gain K:

K =
(
0 1

)(1/2 1
1/2 0

)(
2 4
2 6

)
=
(
1 2

)
From this:

L = KT =

(
1
2

)
F = A− LC =

(
−3 0
2 −3

)
H =

(
1
−1

)

Example 7. Design a state observer for the following CT LTI SISO system

A =

(
2 1
1 −2

)
B =

(
1
1

)
C =

(
1 0

)
Example 8. Design a state observer AND a stabilizer state feedback controller for the following CT LTI SISO
system.

A =

(
2 −1
3 −2

)
B =

(
1
0

)
C =

(
1 0

)
Separation principle: the observer gain L and the feedback gain K can be designed separately.
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Optimal state feedback controller - LQR controller design

We want to minimize the following functional:

J(x, u) =
1

2

∫ T

0
xTQx+ uTRu dt

where Q and R are positive definite symmetric matrices. In case of LTI systems this problem can be
traced back to a CARE (continuous-time algebraic Riccati equation):

KA+ATK −KBR−1BTK +Q = 0

The system can be stabilized with the u = −Gx state feedback, where

G = R−1BTK

Example 9. Design an optimal LQR controller for the following system: ẋ = 2x+ u, i.e A = 2, B = 1.
Solution. We minimize the following functional:

J =
1

2

∫
5x2 + u2dt

meaning that in our case Q = 5 and R = 1. In this case (first order system – only one single state variable) the
CARE will have the following form:

−K2 + 4K + 5 = 0

The solutions for K are 5 and −1. By definition, we should choose the positive one, otherwise, we obtain a
positive feedback.

G = 1 · 1 · 5 = 5

Finally, the computed state feedback: u = −5x.
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