Computer controlled systems

Lecture 7, March 31, 2017
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Pole-placement controller: problem statement

We aim to find a state feedback u = —Kx (+v) such that the closed loop system is stable. Signal v is a
possible disturbance, reference, or other extraneous signal.

v

1 : — 4i=(A-BK)z+Bv

The state transition matrix of the closed loop system is directly affected by the static state feedback gain

K. Therefore, K has to be selected such that A — BK has stable poles. This is an algebraic problem.
& = Ax + Bu

< t=(A-BK)x+ B 1

{UZ_K“U i = (A= BK)z+ Bv (1)

A linear matrix inequality (LMI) solution for MIMO systems

The closed loop is stable if there exists a positive Lyapunov function V : R” — R, V(x) = z' Pz,
P =PT = 0 such that

Y (A-BK)z=1"((A-—BK)'P+ P(A—BK))z <0 for all z # 0, (2)

namely
(AT = K"B")P+ P(A— BK) <0, (3)
A'"P-K'B'"P+ PA—- PBK <0. (4)

The red color of K and P indicate that these matrices are unknown. Therefore, (4) is a bilinear matrix
inequality (hard to solve). Let Q = P!, then:

QA"P-K'B'P+PA-PBEK)Q <0 (5)
QAT —QK'BT + AQ - BKQ < 0. (6)

Let N = K@Q. Then,
QAT —NTBT + AQ — BN < 0. (7)

The matrix inequality in (7) is linear in the (red) unknown matrix variables, therefore, it can be solved
with a semidefinite solver (like SeDuMi, Mosek, SDPT3, or PENLAB).

When we do a substitution like N = K@, we should be very careful. The shadowing equation (N = KQ)
should not be overdetermined with respect to the shadowed variable (K). Namely, for any possible pair
(Q, N) should exists K = NQ~! = NP. In this case, we are fortunate, as K € R™*" and N € R™*",
where (m = dim(u), n = dim(z)).

This technique is an optimization based approach. In this formulation we only have to find one possible
solution for (7), then, K = NQ~! = NP. This computational approach to find K does not involve



any sophisticated design objective like select the resulting poles (pole placement controller design), or
minimize a cost function (LQR design). However, this technique can be easily extended to a more general
class of dynamical systems.

Pole-placement controller (SISO)

It is given & = Ax + Bu. A feedback law is searched in the form u = —Kax such that the closed loop
& = (A — BK)z has a given set of poles.

Design objective:

1. det(sI —A)=a(s)=(s—p1)--- (s —pn) =8"+a1s" ' +---+a, — unstable poles

2. Design K such that det (sI — (A — BK)) =a(s) = (s —p1) - (s — Pp) = s" + ons" L + - + .

Solution 1 (based on the Bass-Gura formula).

[K — (o — a)Tllcnl]

where
a = (al . an) , 4= ((Ll . (L,,L) , (8)

Cp = (B AB ... A”le) is the controllability matrix, finally, 7; is the following Toeplitz matrix:

1 ay a3z e ap—2 Gp—1

0 1 ay e Gp—3 ap—2

n=| " 0oL
0 0 0o --- 1 as
0 0 0 0 1

Solution 2 (the Ackermann formula).

where «(s) is . Observe that the prescribed characteristic polynomial a(s) of the closed-loop (controlled) system
is now evaluated in the state transition matrix, namely:

a(A) A"+ A"+ a1 A+ apd,. 9)

7

Example 1. Design a pole-placement controller for the following CT LTI SISO system:
2 =2 1
A:(O 1) B:(2> c=( 1)

a(s) = s> —3s+2

a1:—3

Solution.

as =
The prescribed characteristic polynomial (c(s)):

afs) = s+ 35 +2
041:3

052:2
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A Toeplitz matrix and the controllability matrix in this case are
(1 a1\ (1 =3 (1 =2
n=(o 3)=06 ) =G )
-1 (1 3 172 2
= (0 1) = 6\—2 1

Than the static state feedback will be the following:
1 3\1/2 2
K=(3-(-3) 2-2) (O 1) : (_2 1) — (-4 3)

Example 2. Design a pole-placement controller for the following CT LTI SISO system:
2 -2 1
A:(O 1) B:(2> c=(1 1)

1 =2 1 1
3

\

Solution.

[
N

Legyen Ay = —1 és Ay = —2.
a(s) = (s = A\)(s — Xa) = 8 + 35 + 2

0 6

c-o (P T

a-mx= (5 )= ()1 9= (3 )

det(A\] — (A — BK)) = A2 43\ +2

a(A) = A% 4+ 34+ 2 = (12 _12)
Check

Namely, the poles of the obtained closed-loop system are indeed the prescribed values.

\.

Example 3. Design a pole-placement controller for the following CT LTI SISO system:

A—@ :;) B—(é) C=(1 1)

C= (B AB)_<(1) g)ﬁc;l_((l) _3)

a=(s+N)(s+ ) =5"+35+2

Solution.

Let Ay = —1 and Ay = —2.

a(A) = A2 4 34 42 = (g :3)

o6 D)6 -

=3 ) -(1)6 =3 2)

det(AM — (A— BK)) = A2 43\ +2

Check:

Indeed, the poles of the closed loop system are the prescribed values.

|\
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Example 4. Given the following CT LTT SISO systems
. (2 0 n 0 . (2 0 n 2
L t={g _3]® 3 u 5 t={g9 _g)% 3 u
Y= (1 1) x Y= (1 1) x

Design a state feedback controller (if it is possible), that stabilizes the system!

\. J

Example 5. Given the following CT LTI SISO system H(s) = SQQ_T_EEG.

1. Is the system asymptotically stable?

2. If it is possible, design a controller, that shifts the system’s poles to p; = —3 and ps = —5! Hint:
controllability normal form.

Linear state observer design

The control approach of the previous sections has a sever problem:

O = Av + Bul—
&= Ax + Bu{——F—
@ = &=(A-BK)x+ Bv

¥
Eie

It is generally very expensive Sor completely impossible)
to measure the whole state vector.

Goal: computation of the values of the non-measured state variables of the system
using the observed output.

(x is hidden)
Y

U Observer

y=Cx+ Du

=

e
Eid

The dynamical system
& =Fi+ Ly+ Hu

is called a full order state observer, if the error dynamics e = z — Z tends to zero, i.e. tlirn e=0
— 00

In case of an LTI system:

T = Az + Bu

y=Cx

¢=i—1=Ax+Bu—Fi—Ly— Hu+ Fz — Fx =
=Ar+ Bu—Fi—LCx — Hu+ Fx — Fx =
=(A-LC—-F)z+(B—Hu+F(zx—2)=(A—LC—-F)x+ (B—H)u+ F(e)

Let F=A—LC and H=B
Than ¢ = Fe
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We require that the system be asymptotically stable, namely the real part of the roots of the characteristic
polynomial det(sI — (A — LC')) be negative.

det(s] — (A — LC)) = det(sI — (AT — CTL"))

We can observe that the state observer design can be traced back to a pole placement problem of (A’, B),
where A’ = AT B’ = CT | and the result (K) of the pole placement should be interpreted as L = KT

(x is hidden)

v
@ y=Cx+ Du 4 . 7
) u = (A—-LC)x+ Ly + Bu
[ 7]
Eie
The observer dynamics can be considered as follows:
= At + Bu + L(y —9) (10)
S——— ——
system dynamics error term
Corresponding block diagram:
&= Ax + Bu
v O u Observer gz ZER”
y=Czx+ Du
- O state vectors
—v,u € R™
B}—O—21]
1B T 5]
[4]
L4
K
But also:
t=(A-LC)% + Bu + Ly (11)
———
observer’s internal dynamics (should be stable)
Corresponding block diagram:
&= Az + Bu
Lo—T e —z,& €R"
. y=Ca+bu state vectors
Observer ——v,ueR™
: . y € RP
BF—O—~1|—*
= N s
A-LC
K
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Example 6. Design a state observer for the following CT LTI SISO system

-3 1 1
A:(2 J B:(]> c=( 1)
Solution.

Let the characteristic polynomial of the closed-loop system: ¢,(s) = (s+ 3)(s + 3)
In order to use the Ackermann, formula we should substitute A’ = AT into ¢,(s):

o) = (5 )

If B = C7, the obtained controllability matrix for (A’, B') (which is actually the transpose of the observability

matrix of (A4, C)) is:
, (0 2
= %)

n-1_ (1/2 1
Finally, we compute the feedback gain K:

k=0 (1 o) (3 6)=0 2

L:KT:G) F:A—LCZ(_23 _03> H=<_11)

\. J

Its inverse will be:

From this:

Example 7. Design a state observer for the following CT LTI SISO system

A:G _12) B:G) c=0 o)

\. J/

Example 8. Design a state observer AND a stabilizer state feedback controller for the following CT LTI SISO

system.
A:(g_D B:(a c=(1 0

Separation principle: the observer gain L and the feedback gain K can be designed separately.
. J
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Optimal state feedback controller - LQR controller design

We want to minimize the following functional:
1 (T
J(z,u) = 2/ 2TQz 4+ uTRu dt
0

where ) and R are positive definite symmetric matrices. In case of LTI systems this problem can be
traced back to a CARE (continuous-time algebraic Riccati equation):

[KA +ATK — KBR'BTK +Q = OJ

The system can be stabilized with the u = —Gx state feedback, where
[G = R‘lBTK]

Example 9. Design an optimal LQR controller for the following system: & = 2z + u, i.e A=2,B = 1.
Solution. We minimize the following functional:

1
J = 5/5x2+u2dt
meaning that in our case (QEISIETUBERESI 1 this case (first order system — only one single state variable) the
CARE will have the following form:

~K?+4K +5=0

The solutions for K are 5 and —1. By definition, we should choose the positive one, otherwise, we obtain a
positive feedback.
G=1-1-5=5

Finally, the computed state feedback: u = —5z.
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