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Introductory example

Consider the following SISO CT-LTI system withe realization (A,B,C)

A =

 −1 1 0
2 −1 0
1 0 0

 , B =

 1
0
1

 , C =
[
1 0 1

]
The model is observable but it is not controllable.
Question: Can the model be written in a new coordinates system, such
that the new model is both observable and controllable? (and what are the
conditions / consequences?)
Transfer function:

H(s) =
2s2 + 4s

s3 + 2s2 − s
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Introduction – 1

For a given (SISO) transfer function H(s) = b(s)
a(s) , the state space

model (A,B,C ,D) is called an n-th order realization (or
n-dimensional realization ) if H(s) = C (sI − A)−1B + D,
where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R.
(The state space repr. for a given transfer function is not unique).
An n-th order state space realization (A,B,C ,D) of a given transfer
function H(s) is called minimal , if there exist no other realization
with a smaller state space dimension (i.e., with a smaller A matrix)
An n-th order state space model (A,B,C ,D) is called jointly
controllable and observable if both On and Cn are full-rank matrices.
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Introduction – 2

The transfer function is invariant for state transformations
The roots of the transfer function’s denominator are the eigenvalues of
matrix A (a(s) is the characteristic polynomial of A)
For a given transfer function H(s), any two arbitrary jointly
controllable and observable realizations (A1,B1,C1) and (A2,B2,C2)
are connected to each other by the following coordinates
transformation

T = O−1(C1,A1)O(C2,A2) = C(A1,B1)C−1(A2,B2)

(without proof)
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Introduction – 3

Matrix polynomials:

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x + c0, x ∈ R
p(A) = cnA

n + cn−1A
n−1 + · · ·+ c1A + c0I

important properties:
a matrix polynomial commutes with any power of the argument
matrix, namely: AiP(A) = P(A)Ai

eigenvalues: λi [P(A)] = P(λi [A])

Cayley-Hamilton theorem: every n × n matrix is a root of its own
characteristic polynomial (p(x) = det(A− xI ))
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Overview – 1

equivalent state space and I/O model properties
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Overview – 2

Consider SISO CT-LTI systems with realization (A,B,C )

Joint controllability and observability is a system property
Equivalent necessary and sufficient conditions
Minimality of SSRs
Irreducibility of the transfer function
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Assumptions

We consider SISO systems (scalar input/output)
We assume that the transfer function is strictly proper, i.e.

H(s) =
b(s)

a(s)
,

where a(s) = sn + a1s
n−1 + ...+ an−1s + an, and

b(s) = b1s
n−1 + ...+ bn−1s + bn

Remark: proper transfer functions (where the degree of a(s) and b(s)

are equal) can be written in the form H(s) = b(s)
a(s) + D, where b(s)

a(s) is
strictly proper, and we can define a transformed output ŷ = y − Du
for which

Ŷ (s) =
b(s)

a(s)
U(s)
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Hankel matrices

A Hankel matrix is a block matrix of the following form

H[1, n − 1] =



CB CAB . . . CAn−1B
CAB CA2B . . . CAnB
. . . . . .
. . . . . .
. . . . . .

CAn−1B CAnB . . . CA2n−2B



It contains Markov parameters CAiB that are invariant under state
transformations.
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Lemma 1

Lemma (1)

If we have a system with transfer function H(s) = b(s)
a(s) and there is an n-th

order realization (A,B,C ) which is jointly controllable and observable, then
all other n-th order realizations are jointly controllable and observable.

Proof

O(C ,A) =



C
CA
.
.
.

CAn−1

 , C(A,B) =
[
B AB A2B . . . An−1B

]

H[1, n − 1] = O(C ,A)C(A,B)
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Controller form realization

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

with

Ac =



−a1 −a2 . . . −an
1 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . 1 0

 , Bc =



1
0
.
.
.
0


Cc =

[
b1 b2 . . . bn

]
with the coefficients of the polynomials
a(s) = sn + a1s

n−1 + ...+ an−1s + an and b(s) = b1s
n−1 + ...+ bn−1s + bn

that appear in the transfer function H(s) = b(s)
a(s)
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Observer form realization

ẋ(t) = Aox(t) + Bou(t)
y(t) = Cox(t)

where

Ao =


−a1 1 0 . . . 0
−a2 0 1 . . . 0
...

−an−1 0 0 . . . 1
−an 0 0 . . . 0

 , Bo =


b1
b2
...

bn−1
bn


Co =

[
1 0 0 . . . 0

]
,

with the coefficients of the polynomials
a(s) = sn + a1s

n−1 + ...+ an−1s + an and b(s) = b1s
n−1 + ...+ bn−1s + bn

that appear in the transfer function H(s) = b(s)
a(s)
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Definitions

Definition (Relative prime polynomials)

Two polynomials a(s) and b(s) are coprimes (or relative primes) if
a(s) =

∏
(s − αi ); b(s) =

∏
(s − βj) and αi 6= βj for all i , j .

In other words: the polynomials have no common roots.

Definition (Irreducible transfer function)

A transfer function H(s) = b(s)
a(s) is called to be irreducible if the

polynomials a(s) and b(s) are relative primes.
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Lemma 2

Lemma (2)

An n-dimensional controller form realization with transfer function
H(s) = b(s)

a(s) (where a(s) is an n-th order polynomial) is jointly controllable
and observable if and only if a(s) and b(s) are relative primes (i.e., H(s) is
irreducible).

Proof
A controller form realization is controllable and

Oc = Ĩnb(Ac)

Ĩn =


0 . . 1
0 . 1 0
. . . .
1 0 . 0

 ∈ Rn×n

Non-singularity of b(Ac)
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Proof of Lemma 2. – 1

Ĩn =
[
en en−1 . . e1

]
=



eTn
eTn−1
.
.
.
eT1

 , ei =



0
.
.
0
1
0
.
.


← i .

Ac =



−a1 −a2 . . . −an
1 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . 1 0

 , eTi Ac =

{
[−a1 − a2 ... − an] i = 1

eTi−1 i ≥ 2
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Proof of Lemma 2. – 2

Computation of the observability matrix Oc = Ĩnb(Ac) ∈ Rn×n

1st row:

eTn b(Ac) = eTn b1A
n−1
c + ...+ eTn bn−1Ac + eTn bnIn

n-th term: [0 ... 0 bn]
(n − 1)-th term: bn−1e

T
n Ac = bn−1e

T
n−1 = [0 ... bn−1 0]

...
eTn b(Ac) = [b1 ... bn−1 bn] = Cc

2nd row:

eTn−1b(Ac) = eTn Acb(Ac) = eTn b(Ac)Ac ⇒ eTn−1b(Ac) = CcAc

and so on ...
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Proof of Lemma 2. – 3

Oc is nonsingular
iff b(Ac) is nonsingular because matrix Ĩn is always nonsingular
b(Ac) is nonsingular iff det(b(Ac)) 6= 0
which depends on the eigenvalues of b(Ac) matrix
the eigenvalues of the matrix b(Ac) are b(λi ), i = 1, 2, ..., n
λi is an eigenvalue of Ac , i.e a root of a(s) = det(sI − A)

det(b(Ac)) =
n∏

i=1

b(λi ) 6= 0

m

a(s) and b(s) have no common roots, i.e. they are relative primes
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Minimal realization conditions – 1

Theorem (1)

H(s) = b(s)
a(s) (where a(s) is an n-th order polynomial) is irreducible if and

only if all of its n-th order realizations are jointly controllable and
observable.

Proof: combine Lemma 1. and 2.
We assume that any nth order realization H(s) is jointly controllable
and observable =⇒ A controller form is jointly controllable and
observable =⇒ H(s) is irreducible (Lemma 2)
We assume that H(s) is irreducible =⇒ the controller form realization
is jointly controllable and observable (Lemma 2) =⇒ Any nth order
realization is jointly controllable and observable (Lemma 1)
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Minimal realization conditions – 2

Definition (Minimal realization)

An n-dimensional realization (A,B,C ) of the transfer function H(s) is minimal if
one cannot find another realization of H(s) with dimension less than n.

Theorem (2)

H(s) = b(s)
a(s) is irreducible iff any of its realization (A,B,C ) is minimal where

H(s) = C (sI − A)−1B

Proof: by contradiction
We assume that H(s) is irreducible, but there exists an nth order realization,
which is not minimal =⇒ there exists an mth (m < n) order realization
(Ā, B̄, C̄ ) of H(s) =⇒ from this realization we can obtain the transfer
function H̄(s), for which the order of its denominator m, which is a
contradiction (since H(s) is reducible).
We assume that the nth order realization (A,B,C ) is minimal, but
H(s) = C (sI − A)−1B is reducible =⇒ From the simplified transfer function
one can obtain an mth order realization, such that m < n, that is a
contradiction.
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Minimal realization conditions – 3

Theorem (3)

A realization (A,B,C ) is minimal iff the system is jointly controllable and
observable.

Proof: Combine Theorem 1 and Theorem 2 .

Lemma (3)

Any two minimal realizations can be connected by a unique similarity
transformation (which is invertible).

Proof: (Just the idea of it)

T = O−1(C1,A1)O(C2,A2) = C(A1,B1)C−1(A2,B2)

exists and it is invertible: this is used as a transformation matrix.
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Decomposition of uncontrollable systems

We assume that (A,B,C ) is not controllable. Then, there exists an
invertible transformation T such that the transformed system in the new
coordinates system (x̄ = Tx) will have the form[

˙̄x1
˙̄x2

]
=

[
Ac A12
0 Ac̄

] [
x̄1
x̄2

]
+

[
Bc

0

]
u

y =
[
Cc Cc̄

] [ x̄1
x̄2

]
and

H(s) = Cc(sI − Ac)−1Bc

x̄2 is not affected by u, and does not depend on x̄1.
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Controllability decomposition – example

Matrices of the state-space :

A =

[
1 −2
2 −3

]
, B =

[
1
1

]
, C =

[
1 1

]
, D = 0

Controllability matrix:

C2 =

[
1 −1
1 −1

]
Transformation:

T−1 =

[
1 1
1 0

]
, T =

[
0 1
1 −1

]
The transformed model:

Ā =

[
−1 2
0 −1

]
, B̄ =

[
1
0

]
, C̄ =

[
2 1

]
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Decomposition of unobservable systems

We assume that (A,B,C ) is not observable. Then there exists an invertible
matrix transformation T , such that the transformed system in the new
coordinates system (x̄ = Tx) will have the form[

˙̄x1
˙̄x2

]
=

[
Ao 0
A21 Aō

] [
x̄1
x̄2

]
+

[
Bo

Bō

]
u

y =
[
Co 0

] [ x̄1
x̄2

]
and

H(s) = Co(sI − Ao)−1Bo

x̄2 itself is not observed and it does not affect x̄1 (which is observed).
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Observability decomposition – example

Matrices of the state-space model:

A =

[
1 2
−2 −3

]
, B =

[
1
1

]
, C =

[
1 1

]
, D = 0

Observability matrix:

O2 =

[
1 1
−1 −1

]
Transformation:

T =

[
1 1
0 2

]
, T−1 =

[
1 −0.5
0 0.5

]
The transformed model:

Ā =

[
−1 0
−4 1

]
, B̄ =

[
2
2

]
, C̄ =

[
1 0

]
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General decomposition theorem

Given an (A,B,C ) SSR, it is always possible to transform it to another
realization (A,B,C ) with partitioned state vector and matrices

x =
[
xco xco xco xco

]T

A =


Aco 0 A13 0
A21 Aco A23 A24
0 0 Aco 0
0 0 A43 Aco

 B =


Bco

Bco

0
0


C =

[
C co 0 C co 0

]
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General decomposition theorem

The partitioning defines subsystems
Controllable and observable subsystem: (Aco ,Bco ,C co) is minimal, i.e.
n ≤ n and

H(s) = C co(sI − Aco)−1Bco = C (sI − A)−1B

Controllable subsystem( [
Aco 0
A21 Aco

]
,

[
Bco

Bco

]
,
[
C co 0

] )
Observable subsystem( [

Aco A13
0 Aco

]
,

[
Bco

0

]
,
[
C co C co

] )
Uncontrollable and unobservable subsystem

([Aco ] , [0] , [0])
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Introductory example – review

Consider the following SISO CT-LTI system withe realization (A,B,C)

A =

 −1 1 0
2 −1 0
1 0 0

 , B =

 1
0
1

 , C =
[
1 0 1

]
The model is observable but it is not controllable.
Its transfer function and its simplified form:

H(s) =
2s2 + 4s

s3 + 2s2 − s
=

2s + 4
s2 + 2s − 1

Its minimal state space realization (eq. controller form):

Ā =

[
−2 1
1 0

]
, B̄ =

[
1
0

]
, C̄ =

[
2 4

]
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Summary

joint controllability and observability of (A,B,C ) has important
consequences, since it is equivalent to:

a state space realization with the minimum number of state variables
(minimal realization, i.e., A cannot be smaller)
H(s) = C (sI − A)−1B = b(s)

a(s) is irreducible

non-controllable and/or non-observable state space models can be
transformed such that the non-controllable / non-observable states are
clearly visible in the new coordinates
it’s easy to determine a minimal realization from a
non-controllable/non-observable SS model (simplification of the
transfer function, canonical realization)
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