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Exercises

We consider a simple pendulum mounted an a cart that can move horizontally:

FM

ϕ

m, 2l

rO

M is the mass of the cart
m is the mass of the pendulum
2l is the length of the pendulum
l is the distance of the pivot point from the pendulum’s cen-

ter of mass
F is an external force (input) acting on the cart
b is the damping factor
r is the (horizontal) position of the cart

ṙ = v is the (horizontal) velocity of the cart
ϕ is the angle of the cart (clockwise direction)

ϕ̇ = ω is the angular velocity of the cart (clockwise direction)
ϕ = 0 unstable equilibrium point: if the pendulum’s center

of mass is exactly above its pivot point (is vertical and
pointing towards the sky)

ϕ = π stable equilibrium point: if the pendulum’s center of
mass is exactly below its pivot point

This system has a nonlinear equation, which can be linearized in a certain operating point1 (see Ap-
pendix). The state vector of the system is the following: x =

(
r v ϕ ω

)T , furthermore, the external
force F constitutes the input of the system (u). The nonlinear model of the system is: ẋ = f(x) + g(x)u,
where

f(x) =


v

1
q

(
4ml sin(ϕ)ω2 − 1.5mg sin(2ϕ)− 4bv

)
ω

3
lq

(
−ml

2 sin(2ϕ)ω2 + (M +m)g sin(ϕ) + b cos(ϕ)v
)
 , g(x) =

1

lq


0
4l
0

−3 cos(ϕ)

 (1)

where q = 4(M +m)− 3m cos(ϕ)2. For the full derivation see Appendix. For each exercise, you can use
your own parameter configuration. Some examples are listed below.

(A) no friction
M = 0.5 [kg]
m = 0.2 [kg]
l = 1 [m]

g = 9.8 [m/s2]
b = 0 [kg/s]

(B) with friction
M = 0.5 [kg]
m = 0.2 [kg]
l = 1 [m]

g = 9.8 [m/s2]
b = 10 [kg/s]

(C) with friction + heavy rod
M = 0.5 [kg]
m = 10 [kg]
l = 1 [m]

g = 9.8 [m/s2]
b = 10 [kg/s]
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1. Linearized model around the stable equilibrium point (ϕ = π)

Linearized model around the operating point x∗ =
(
0 0 π 0

)T :
A =


0 1 0 0

0 − 4b
4M+m − 3mg

4M+m 0

0 0 0 1

0 − 3b
l(4M+m) −3(M+m)g

l(4M+m) 0

 , B =
1

l(4M +m)


0
4l
0
3

 , C =

(
1 0 0 0
0 0 1 0

)
(2)

(ss,tf) 1. Determine the system’s transfer function:

H(s) =

(
Hu→r(s)
Hu→ϕ(s)

)
(3)

(impulse) 2. Determine the impulse response of the system

(step) 3. Determine the step response of the system for both Hu→r(s) and Hu→ϕ(s).
Determine the DC gain of the system.

(eig) 4. Determine the poles of the system. Is the linearized model locally/globally/asymptotically stable?
What can we say about the original nonlinear system’s stability? How does the stability properties
change if we assume friction?

(bodeplot) 5. Determine the Bode plot of the transfer function Hu→ϕ(s). Set the frequency unit to be in Hz.
Determine the own (or resonance) frequency (fr) of the system.

(nyquist) 6. Plot the Nyquist diagram of Hu→ϕ(s).

(lsim) 7. Plot the output of the system if the input is ui(t) = Ai sin(2πfit), where

(a) f2 = fr [Hz], A2 = 1 [N ] (b) f3 = 4 [Hz], A3 = 20 [N ] (c) f1 = 0.1 [Hz], A1 = 1 [N ]

Considering the Bode diagram, what is expected to happen in each cases? In certain cases, we shall
notice that the system’s motion is quite unusual, why?

(ode45) 8. Solve the linearized differential equation ẋ = Ax+ Bu with different initial conditions. The input
may be zero first, than you can use the values from the previous example.

(ctrb) 9. Is the linearized model controllable?

(obsv) 10. Is the linearized model observable? How does this change if we measure only the angle of the rod
ϕ.

(null) (a) Compute the kernel (null space) of O4.

(orth) (b) Give the bases of the image space of O4.

(c) Give the matrix T of the linear state transformation, which produces the observability staircase
representation: (

˙̄x1

˙̄x2

)
=

(
Ao 0
A21 Aō

)(
x̄1

x̄2

)
+

(
Bo
Bō

)
u

y =
(
Co 0

)(x̄1

x̄2

)

2. Nonlinear system simulation

11. Solve the nonlinear ODE (1) numerically, use the ode45 solver:

(a) x0 =
(
0 0 5π

6 0
)T , u(t) = 0

(b) x0 =
(
0 0 π

6 0
)T , u(t) = 0

(c) x0 = 0, u(t) = sin(2πfrt)

(d) You can play with x0 and u(t) as you want
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3. PID controller design

12. Consider the following SISO model given by the transfer function:

G(s) =
s2 + 3s+ 2

s3 + 2s2 − 6s+ 8
(4)

(pzmap) (a) Determine the poles and the zeros of the system. Is the system minimum-phase?

(pidTuner) (b) Design a PID controller C(s) which provides stability and reference tracking.

+ C(s) +

d

G(s)
r e u y

− C(s) = Kp +
Ki

s
+Kds =

Kds
2 +Kps+Ki

s
(5)

Appendix

I. Linearize a nonlinear model around an equilibrium point

We have a nonlinear system in the following form:

ẋ = F (x, u) = f(x) + g(x)u (6)

Let x∗ ∈ Rn be an equilibrium point of the nonlinear system, which means that F (x∗, 0) = f(x∗) = 0.
We assume that the system operates around this equilibrium point, and by default there is no input given
to the system. Therefore, we say that the system’s operating point2 is (x∗, u∗ = 0).

The Jacobian matrix of F (x, u) is

D[F (x, u)] =
(
∂F (x,u)
∂x

∂F (x,u)
∂u

)
=
(
∂f(x)
∂x + ∂g(x)

∂x u g(x)
)

(7)

The value of the Jacobian matrix in this operating point is

D[F (x∗, 0)] =
(
∂f(x∗)
∂x g(x∗)

)
(8)

Now we estimate F (x, u) by its first order Taylor polynomial around the operating point:

F (x, u) ' F (x∗, 0)︸ ︷︷ ︸
0

+D[F (x∗, 0)]

(
x− x∗
u− 0

)

F (x, u) ' ∂f(x∗)

∂x
(x− x∗) + g(x∗)u

(9)

Hence, the linear model is

ẋ = A(x− x∗) +Bu, where
A :=

∂f(x∗)

∂x
B := g(x∗)

(10)

There’s only one more thing left, we need to center the system. We introduce the centered state vector
x̄ := x− x∗. Therefore, the time derivative of the transformed state vector will be:

˙̄x = ẋ = A(x− x∗) +Bu = Ax̄+Bu (11)

Finally, we obtained the centered linearized model:

˙̄x = Ax̄+Bu, where
A :=

∂f(x∗)

∂x
B := g(x∗)

(12)
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II. Derivation of the inverted pendulum’s equation

The equation of the inverted pendulum is the following:
(M +m)ẍ+mlϕ̈ cos(ϕ)−mlϕ̇2 sin(ϕ) = F

mlẍ cos(ϕ) +
4

3
ml2ϕ̈−mgl sin(ϕ) = 0

(13)

The nonlinear state space equation of the inverted pendulum:

ẋ = v

v̇ =
1

q

(
4ml sin(ϕ)ω2 − 1.5mg sin(2ϕ)− 4bv

)
+

4

q
F

ϕ̇ = ω

ω̇ =
3

lq

(
−ml

2
sin(2ϕ)ω2 + (M +m)g sin(ϕ) + b cos(ϕ)v

)
− 3 cos(ϕ)

lq
F

(14)

where q = 4(M +m)− 3m cos(ϕ)2. Let the state vector be x =
(
x v ϕ ω

)T .
f(x) =


v

1
q

(
4ml sin(ϕ)ω2 − 1.5mg sin(2ϕ)− 4bv

)
ω

3
lq

(
−ml

2 sin(2ϕ)ω2 + (M +m)g sin(ϕ) + b cos(ϕ)v
)
 , g(x) =

1

lq


0
4l
0

−3 cos(ϕ)

 (15)

Linearized model around the stable operating point x∗ =
(
0 0 π 0

)T :
A =


0 1 0 0

0 − 4b
4M+m − 3mg

4M+m 0

0 0 0 1

0 − 3b
l(4M+m) −3(M+m)g

l(4M+m) 0

 , B =
1

l(4M +m)


0
4l
0
3

 , C =

(
1 0 0 0
0 0 1 0

)
(16)

Linearized state space model around the unstable operating point x∗ =
(
0 0 0 0

)T is:

A =


0 1 0 0

0 − 4b
4M+m − 3mg

4M+m 0

0 0 0 1

0 3b
l(4M+m)

3(M+m)g
l(4M+m) 0

 , B =
1

l(4M +m)


0
4l
0
−3

 , C =

(
1 0 0 0
0 0 1 0

)
(17)

III. A simple control loop (SISO)

+ C(s) +

d

G(s)
r e u y

−

r reference input
d input disturbance (eg. wind, noise, fault of the actuator, etc.)
u control input computed by the controller C(s)
y output of system G(s)
e error: difference between the reference input r and the output

y

We derive, how the reference input r and the input disturbance d influence the output of G(s):
y = G(s)(u+ d) = G(s)(u+ C(s)(r − y))

= G(s)d+G(s)C(s)r −G(s)C(s)y

y =
G(s)

1 +G(s)C(s)
d+

G(s)C(s)

1 +G(s)C(s)
r

(18)

In general an actuator3 has a limited power, and it cannot perform arbitrarily large control input u.
Therefore, during the controller design, we need to consider what would be the actual control input (u)
determined by the controller C(s). From the closed loop system, we can derive the transfer function

3eg. in case of the inverted pendulum the actuator could be the DC motor of cart
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describing the influence of r and d on the control input u:
u = C(s)(r − y) = C(s)(r −G(s)(d+ u))

= C(s)r − C(s)G(s)d− C(s)G(s)u

u =
C(s)

1 +G(s)C(s)
r +

−G(s)C(s)

1 +G(s)C(s)
d

(19)
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