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1 Magnetic considerations on rotating coils

1.1 Magnetic field and conductors

A magnetic field is generated by a flowing current: it is in particular experienced in
the neighborhood of a moving charge. The effect of a magnetic field may be experimented,
for instance, by positioning a magnet close to a wire where a current is flowing; what can be
observed is that the magnet experiences a force, which is due to the magnetic field generated
by the current flowing in the wire. If the magnet is moved around the wire, the force changes
depending on the positions assumed by the magnet. In particular, it can be observed that
the magnetic field decreases as the distance from the wire increases and increases as the
current increases.

The above experiment aims to verify that a flowing current indeed generates a vector
field ~B. This field may be thought of as the sum of infinite contributions d ~B due to all
the infinitesimal segments of wire d~l, where the current i flows. Each segment induces a
magnetic field at any point in the surrounding space. In particular, the Biot and Savart

law states that, if ~r is the vector connecting the wire segment d~l to a generic point p in the
space, the contribution d ~B of the magnetic field in the point p due to the segment d~l is given
by

d ~B = i
d~l × ~r

|r|3
, (1)

where the symbol ~ denotes that the considered quantity is a vector of
�

3 and the symbol
× denotes the vector product operation.

Equation (1) provides a tool for computing the magnetic field associated to any conductor
where a current is flowing. In particular, by suitably integrating it for the case of a solenoid,
it turns out that, if the corner effects are neglected (namely, the solenoid is long enough),
the field inside the windings is constant and parallel to the axis of the solenoid, and its
magnitude is given by [6, p. 136]

| ~B| =
µ

l
N i, (2)

where l is the length of the solenoid, µ is the magnetic permeability of the dielectric inside
the solenoid, N is the number of turns of the wire (see Figure 1).

Consider now a surface S located in a magnetic field ~B; the magnetic flux, or flux

Φ flowing through the surface is defined as the integral along the surface of the normal
component of the magnetic field:

Φ :=

∫

S

~B · ~n dS,

where ~n is the perpendicular to the surface.
In particular, if a uniform magnetic field ~B approaches a flat surface with an angle of

incidence β and the area of the surface is A, then

Φ = | ~B|A cos β. (3)

1



Figure 1: The magnetic field in the neighborhood of a solenoid where a current i flows.

Consider now equation (2). Since the cross section of the solenoid has constant area,
the flux flowing through a generic surface normal to the solenoid axis is constant along the
whole solenoid. Denoting by A the constant area of the cross section of the solenoid, since
the magnetic field is parallel to the solenoid axis (i.e., β = 0), the flux may be computed
substituting equation (2) in equation (3):

Φ = K0 N i, (4)

where K0 :=
µ

l
A.

1.2 The magneto-motive force in a rotating coil

Once understood that a moving charge generates a magnetic field, what about if a moving
charge passes through an exogenous magnetic field? The Lorentz force equation is a good
starting point to understand the mechanical aspects of this electromagnetic phenomenon.

The Lorentz force is the force experienced by a moving charge in an electromagnetic field.
If ~E denotes the electric field, ~B denotes the magnetic field, q is a charge moving with a
speed ~v in the space, then the charge experiences a force given by

~F = q ( ~E + ~v × ~B). (5)

Now, consider a wire where a uniform current i is flowing. Assuming the electric field to
be zero (this is the case of a DC motor), with reference to the quantity of charge dq found

in an infinitesimal section d~̀ of the wire, the force in equation (5) may be computed as a
function of i:

d~F = dq ~v × ~B

= dq
d~̀

dt
× ~B

=
dq

dt
d~̀× ~B

= i d~̀× ~B.
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Figure 2: Force experienced by a current-carrying conductor located in a uniform magnetic
field.

It turns out that, if α denotes the angle of incidence between the magnetic field and a
straight wire of length l, then the magnitude of the force ~F is given by

|~F | = i l | ~B| sin α, (6)

and ~F is oriented on the perpendicular to the plane spanned by the magnetic field and the
wire following the right-hand-screw rule (see Figure 2).

Now, on the basis of equation (6), consider a rigid rectangular coil constituted by a single
wire where a current i flows, suitably located in an uniform exogenous magnetic field. As it
can be seen from Figure 3; 1 if l is the length of the wire perpendicular to the magnetic field,

then two forces are applied to the coil. Since the angle α of equation (6) is ±
π

2
(depending

on which side of the coil is considered), then it turns out that the magnitudes of the two
forces are the same:

|~F | = | ~B| i l. (7)

Since the coil is square, the current i flows in opposite directions on the two sides of
the coil; thus, the two forces F generate a torque T exerted at the center of the coil that
is dependent on the angular position θ of the coil with respect to the magnetic field. In
particular, if the length of an edge of the square is d, then

T = 2 |~F |
d

2
sin θ = |~F | d sin θ; (8)

whence, taking into account equation (7), equation (8) yields

T = |~F | d sin θ = | ~B| i l d sin θ. (9)

1As usual, a dot · means that the flowing current is exiting the page, while a cross × means that the

current is entering the page.
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Figure 3: Torque experienced by a coil in a uniform magnetic field.
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Figure 4: Profile of the torque T experienced by the coil in a magnetic field, as the rotation
angle θ varies.

Consider now equation (9) and notice that the torque highly depends on the rotor coil
angular position θ. Imagine that the coil is in the rotor of a motor; then the resulting torque
is highly dependent on the motor position; moreover, if no load torque is present, the motor
keeps turning clockwise and counter-clockwise; as a matter of fact, if the coil turns of an
angle π, the torque exerted has the same amplitude but opposite sign (see Figure 4).

Since the goal is to have the motor to exert a constant torque for any position θ, the
solution adopted is to insert on the rotor shaft a commutator constituted by two segments
connected to the rotor windings and brushes that slide between the segments as the rotor
turns(see Figure 5). In such a configuration, the sign of the current flowing in the coil
changes at each half revolution of the motor; thus, if the segments are properly positioned
with respect to the coil position, the torque profile of Figure 4 will be suitably inverted
during half revolution (see Figure 5).

Now, once this solution is adopted, although the torque has always the same sign, still it
is highly dependent on the rotor position; the obvious solution to this problem is to increase
the number of coils in the rotor and the segments of the commutator, connecting each pair of
opposite segments to a coil in such a way that when the brushes activate that coil, the rotor

angle is θ = ±
π

2
(i.e., the maximum torque position). It turns out that, if N independent
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Figure 5: Torque exerted by the motor, when a two segments commutator is used.

windings are located on the rotor, the commutator will have 2 N segments and the torque
profile will be constituted by 2 N half sinusoids (related to the torques Ti experienced by each
coil) overlapped in one single period (see Figure 6, where θc denotes a generic commutation
angle). In such a way the torque ripple may be decreased as much as needed by increasing
N and the residual ripple may be assumed to be filtered by the mechanical system, so that
the resulting torque may be approximated as

T = i l d | ~B|. (10)

Finally, considering that, by equation (3), the flux Φ flowing through the rotor is pro-

portional to | ~B| (note that the angle β in equation (3) is equal to π/2; as a matter of fact
the flux is assumed to be flowing straight inside the motor), it turns out

T = KΦ Φ i, (11)

where KΦ := l d/A.

1.3 The back EMF effect

In Figure 4, the rotor conductors carry current supplied from an external source and are
located in an exogenous magnetic field; whence, forces are experienced by the coil and a
torque is exerted on the rotor shaft. However, due to the rotation of the coil, the conductors
themselves cut the magnetic flux, thus generating an electro-motive force (i.e., an induced
voltage in the rotor windings) whose magnitude may be computed by means of the Faraday’s

law of induction. This law states that if there is a variation of the flux Φc flowing in the
internal surface of a closed wire, then an electro-motive force e is induced in the wire,
according to:

e = −
dΦc

dt
. (12)
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Figure 6: Torque exerted by the motor, when a multiple segments commutator is used.

In this particular case, notice that the flux flowing in the coil is given by equation (3)
substituting β with the angle θ(t) of the motor and A with the area of the internal surface
of the coil. Whence, computing the derivative in equation (12), the back electro-motive

force or, more easily, the back EMF may be computed as

e = −
d

dt
(| ~B|A cos θ(t))

= | ~B|A θ̇(t) sin θ(t)

= | ~B|A ω(t) sin θ(t),

where ω :=
dθ(t)

dt
denotes the angular speed of the motor.

Noticing that, due to the presence of the commutator, the coil always operates in a
neighborhood the position θ = π/2, then sin θ(t) ≈ 1 and the back EMF may be written as

e = | ~B|A ω(t).
Finally, similarly to the case studied in equations (10) and (11), the back EMF may be

expressed as a function of the flux Φ, and it can be verified easily that

e = KΦ Φ ω, (13)

where KΦ is the same constant as the one in equation (11).

2 The basic equations of the DC motor

The set of equations here reported, constitutes a model of the DC motor, which may
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be represented as a nonlinear dynamic system. The main restrictions of this model, with
respect to a real motor are

1. the assumption that the magnetic circuit is linear (such an assumption is approximate,
since the metal parts are not perfectly smooth and there is some flux dispersion inside
the motor, moreover, due to saturation of the metal, equation (4) does not hold for
high values of i);

2. the assumption that the mechanical friction is only linear in the motor speed; namely,
only viscous friction is assumed to be present in the motor (such an assumption is
approximate since Coulomb friction is usually experienced in motors).

2.1 The electric equations

Following the process described in Section 1.1, in a DC motor, the magnetic flux is
generated by windings located on the stator.

Although the physical reason why electrical power is transformed in mechanical power is
the one explained in Section 1.2, the actual implementations of this result are various, as a
matter of fact, since the magnetic field B arises from the stator coils, not only the rotor coils
may rotate with respect to the stator, but also the stator supply may rotate (in an electrical
sense) by increasing the number of coils and by a more sophisticated supply.

In this handout, a simple model, which applies to the above cases (provided proper
transformations are performed on the system variables) will be introduced.

The stator of the motor will be assumed to have a single coil characterized by an induc-
tance Le due to the windings and a resistance Re due to dispersions in the conductor (see
Figure 7). The equation associated with such an electric circuit is given by

ve(t) = Le

d ie
dt

+ Re ie. (14)

Since relation (14) is linear, by transforming in the Laplace domain the signals, it can be
written

ie(s)

ve(s)
=

Ke

1 + τe s
, (15)

where Ke :=
1

Re

is the stator gain and τe :=
Le

Re

is the stator time constant.

The rotor is assumed to be a single coil characterized by inductance La and resistance Ra

(see Figure 7), but it has to be taken into account the back EMF of the motor in equation
(13). The equation associated with such an electric circuit is given by

va(t) = La

d ia
dt

+ Ra ia + e. (16)

Again, since relation (16) is linear, by transforming in the Laplace domain the signals, it
can be written

ia(s)

va(s) − e(s)
=

Ka

1 + τa s
, (17)

7



where Ka :=
1

Ra

is the rotor gain and τa :=
La

Ra

is the rotor time constant.

Figure 7: Electrical equivalent scheme of a DC motor.

Taking into account the results of Section 1.2 (in particular, equations (11) and (13)),
the following two equations hold for the back EMF e and the torque exerted by the motor
TM :

TM = KΦ Φ ia, (18)

e = KΦ Φ ω. (19)

As regards to the flux flowing in the motor, the flux Φ is generated by the coils located
on the stator. Since, as remarked in Section 1.1, the flux is proportional to the current ie,
by equation (4), it can be written

TM = K ie ia, (20)

e = K ie ω, (21)

where K := KΦ K0 N .

2.2 The mechanical equations

Let us now deal with the mechanical representation of the motor. It has been shown in
Section 1.2 that the motor exerts a torque, while supplied by voltages on the stator and on
the rotor. This torque acts on the mechanical structure, which is characterized by the rotor
inertia J and the viscous friction coefficient F . It has also to be taken into account that
in any operating environment a load torque is exerted on the motor; then, if TL is the load
torque, the following equation may be written:

TM − TL = J
d ω

dt
+ F ω. (22)

As for the electrical case, also for the mechanical equations, a linear transfer function
may be associated to equation (22):

ω(s)

TM(s) − TL(s)
=

Km

1 + τm s
, (23)

where Km :=
1

F
is the mechanical gain and τm :=

J

F
is the mechanical time constant.

8
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2.3 Geared motors and direct drive motors

Often (e.g., in robotic applications), the speed required by the load is too low as compared
to the nominal speed of the motor. 2 In this cases, gears are introduced between the motor
and the load, thus reducing by a factor n the angular velocity of the load itself.

Besides the increase of damping and inertia due to the presence of the additional rotating
cogwheels of the gear, the mechanical coupling between the load and the motor is altered
by the gear itself. To correctly understand the effects of the gear, the fist thing to remark is
that damping and inertia are not the same if measured at the input or at the output of the
gear. Since we are interested in the complete characterization of the motor block, let’s refer
to the output quantities, and denote by FG the internal damping of the gear and by JG the
internal inertia of the gear.

Then, notice that, since the power exerted by the motor is the same at the input and at
the output of the gear, denoting by T ′

M
and ω′ the torque and the speed at the output of

the gear, it can be written
TM ω = T ′

M
ω′,

and, since ω′ = ω/n, then T ′

M
= n TM .

Substituting the above equations in equation (22), and taking into account the increase
of damping and inertia due to the cogwheels of the gear, it turns out 3

T ′

M − TL = (JG + n2 J)
d ω′

dt
+ (FG + n2 F ) ω′. (24)

By a comparison between equations (22) and (24), it is stressed that the presence of the
gear highly increases the inertia and the damping of the motor from the point of view of the
load.

In addition, when a gear is inserted in an actuator system, backlash is experienced on its
output due to the coupling between the cogwheels of the gear. This gives rise to nonlinearities
that may lead to instability effects. For this reason, especially in high precision systems,
direct-drive motors are used. Such motors may exert reasonable torques at low speeds,
whence they do not need gears to drive the load. However, these motors may not be adopted
for high power tasks, since the maximum torque exerted has physical limitations.

2.4 Block diagram of the DC motor

By implementing equations (14), (16), (20), (21), and (22) in a nonlinear block diagram,
the result shown in Figure 8 is obtained. In the block diagram, the variable θ represents the
rotor angular position (whence, ω = θ̇).

The nonlinear model results in a two-input, one-output map, having a disturbance input
TL and with four state variables, related to

• the energy stored in the inductance Le;

• the energy stored in the inductance La;

2The nominal speed of the motor is the speed corresponding to the efficiency maximum.
3Note that TL is exerted by the load, whence it should not be scaled.
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ve = Le

die
dt

+ Reie

K

Kva = La

dia
dt

+ Raia
ω

TL

+

TM

+
-

va

ieve

ia θ∫

T = J
dω

dt
+ Fω

-

Figure 8: Nonlinear block diagram of a DC motor.

• the kinetic energy of the rotor (related to J);

• the position θ of the rotor.

Remark 2.1 Note that the nonlinear model of the motor is indeed constituted by three
linear relationships between physical quantities, constituted by the transfer functions (15),
(17) and (23), and two multipliers, which represent the system nonlinearities. Various control
techniques performed on the motor, aim to linearize such a block diagram, by suitably
controlling the system by means of the two inputs va and ve. ◦

Remark 2.2 When a geared motor is considered, a constant gain block equal to 1/n should
be added in the block diagram of Figure 8 right before the integrator of ω (so that ω ′ will
be integrated instead) and divides by a factor n the disturbance input TL. Note that the
feedback branch is related to ω and not to ω′, since the gear does not change the electrical
properties of the motor. ◦

To simplify the nonlinear block diagram in Figure 8, three main control techniques are
introduced in the following sections, showing the performance of the system in each case and
giving the simplified block diagram related to each technique.

3 Stator voltage control with constant armature cur-

rent

Assume that a constant current supply is available, regardless of the voltage absorbed by
the load; then, supplying the armature circuit with such a device, a stator voltage control
configuration is obtained. It should be noticed that, since the armature current is constant,
the nonlinear block diagram in Figure 8 becomes linear; as a matter of fact, the whole
feedback branch is erased because the rotor current is imposed by the current supply.

The main problem associated with this control is that a current generator is quite expen-
sive, as far as it works for high power applications. The drawbacks of this control technique,
on the other hand, are several.
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• Since the rotor current is constant, a main danger of DC motors is overcame: if the
back EMF in the rotor drops down to zero, 4 the rotor current raises to very high
values, thus damaging the armature coils. This control technique directly controls the
current, possibly decreasing the armature voltage supply if the back EMF is very low.

• The power input is constant and the control input drives a low power device (i.e., the
stator voltage ve). This is useful because a low power reference signal is required to
control the system, instead of a high precision, high gain amplifier.

• In some applications, if a high power current generator is available, many motors could
be connected in series, each one with its own low power control signal, thus reducing
the number of high power devices involved in the control scheme.

3.1 Steady state behavior

Consider equations (14), (20) and (22), and suppose the motor reaches its steady state
condition (if it exists). Then, the following relations may be written:

TM =
K

Re

ve (25a)

TM − TL = F ω. (25b)

From equation (25a), it can be seen that the dependence between the torque exerted by
the motor TM and the stator voltage ve is linear. This relationship corresponds in Figure
9 to the horizontal lines: each line corresponds to a value of ve. Equation (25b), instead,
corresponds to the dotted diagonal lines, whose slope is dependent on F and whose vertical
offset is dependent on TL. Since the load torque TL is usually an increasing function of the
speed, the solid curves may be used instead of the dotted lines, namely we may assume
TL to be an increasing function of the speed ω. The actual operating point of the system
corresponds to the intersection between the two curves determined by the values of ve, TL

and F (see Figure 9).
Note that, the more the motor friction F is low, the more the lines related to equation

(25b) become horizontal. In the ideal situation when F = 0, such lines are horizontal and the
steady-state speed approaches infinity (this corresponds to the case when the block related
to the mechanical system is an integrator, thus when a constant torque is applied at the
input, an increasing speed is experienced at the output).

3.2 Transfer function

The linear block diagram of the system can be easily computed by specializing the block
diagram in Figure 8 to the case when the armature current is constant (note that, since the
whole system has become linear, the linear relations (15) and (23) have been used). It can
be easily seen that the system shrinks to the only above branch; as a matter of fact, the
constant current ia yields a constant transfer function (see Figure 10).

4This happens when the rotor is stuck, either because the speed is at an inversion point, or because the

load torque is equal to the motor torque, or otherwise, because the flux drops down to zero.
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Figure 9: Steady state relationship between torque and speed in the stator voltage control
with constant armature current.

K ia
Km

1 + τm s

Ke

1 + τe s

1

s

TM

TL

ve θωie

+

-

Figure 10: Block diagram of the DC motor with constant armature current.

The transfer matrix of the whole system is easily computed from the block diagram as:

θ(s) = [W1(s) W2(s)]

[

ve(s)
TL(s)

]

,

where

W1(s) :=
KAC

s (1 + τe s) (1 + τm s)
, KAC := Ke K Km ia.

W2(s) :=
Km

s (1 + τm s)
.

As remarked above, the motor damping may, in many cases, be negligible. So that the
mechanical time constant approaches infinity. In such a case, it has been noticed that there
is no steady state value for the speed ω. This can be here motivated by the fact that the

transfer function related to the speed
ω(s)

ve(s)
=

KAC

s (1 + τe s)
has a pole at the origin.
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4 Stator voltage control with constant armature volt-

age

In this second control technique, the control is based on a constant voltage supply for
the armature. It can be immediately seen from the non-linear block diagram in Figure 8,
that the system thus controlled is still non-linear; however, there are several drawbacks also
with this control configuration:

• the constant voltage generator is cheap, also for high power purposes;

• similarly to the control case of Section 3, the control signal is a low power signal, while
the power is supplied to the system by means of the constant voltage generator;

• since this control scheme usually operates in the neighborhood of an operating point,
the armature voltage is always balanced by a non null back EMF, thus limiting the
armature current peaks.

4.1 Linearized equations

With reference to the general non-linear model, a linearization is here computed with
respect to all the internal variables (except for va which is assumed to be constant) around
an operating point.

First, from equations (14), (16), (20), (21) and (22), the relations between the values ve0,
ie0, va0, ia0, ω0, TM0, TL0 of the quantities ve, ie, va, ia, ω, TM and TL, respectively, at the
operating point, are written:

ve0 = Re ie0

va0 = Ra ia0 + K ie0 ω0

TM0 = K ie0 ia0

TM0 − TL0 = F ω0;

whence, the operating point must satisfy the above conditions.
The same equations may be written as the variations of the above quantities with respect

to their nominal values, neglecting the second order terms:

δve = Re δie + Le
˙δie (26a)

0 = δva = Ra δia + La
˙δia + K (ie0 δω + ω0 δie) (26b)

δTM = K (ie0 δia + ia0 δie) (26c)

δTM − δTL = F δω + J ˙δω, (26d)

where the subscript 0 denotes the value of a quantity at the operating point and the δ symbol
denotes its variation around that value.

13



4.2 Steady state behavior

Consider equations (26) when the motor is at a steady state. The static relationships
between the torque variation δTM , the stator voltage variation δve and the speed variation
δω are easily computed by putting to zero all the derivatives with respect to time:

δTM = K
Ra ia0 − K ie0 ω0

Re Ra

δve −
(K ie0)

2

Ra

δω. (27)

increasing
δve

δω

δTM

δve0

δω0

δTL0

Figure 11: Steady state relationship between torque and speed in stator voltage control with
constant armature voltage.

The curves corresponding to equation (27) are depicted in Figure 11, where it is shown
how a decrease of the stator voltage variation δve leads to a torque increase. It can be also
seen that the above relationships lead to a stable behavior of the motor; as a matter of fact,
as the speed increases, the torque decreases, thus reducing the power supplied to the system
and, consequently, reducing the speed as well.

4.3 Transfer function

Referring to the linearized equations (26), a block diagram of the system may be de-
rived. It is interesting to compare such a block diagram with the nonlinear block diagram
in Figure 8. In particular, note that after linearization, the multiplying nonlinear blocks are
transformed as shown in Figure 12. Besides this transformation, the two block diagrams are
exactly the same.

With reference to Figure 13, the relationship between the torque variation δTM , the speed
variation δω and the variation of the stator voltage δve can be computed. The resulting
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Figure 12: Transformation of a multiplier after linearization.

-

Ke

1 + τe s

K ie0

K ie0

K ia0

1

s+

K ω0

+

- Ka

1 + τa s

δie

δTL

Km

1 + τm s

δθδTM δωδve
-

Figure 13: Block diagram of the linearization of the DC motor under armature voltage
control.

equation is

δTM = K Ke

(1 + τa s) ia0 − K Ka ie0 ω0

(1 + τa s)(1 + τe s)
δve − Ka

(K ie0)
2

1 + τa s
δω. (28)

Considering the relationship between the torque and the speed established by equation
(23), the two equations may be rearranged to compute the transfer function between the
inputs δve, δTL and the output δω (or, equivalently δθ if a pole in the origin is added):

δω(s)

δve(s)
=

Km Ka K ((1 + τa s) ia0 − K Ka ie0 ω0)

(1 + τe s) ((1 + τm s)(1 + τa s) + Km Ka (K ie0)2)

δω(s)

δTL(s)
= −Km

1 + τa s

((1 + τm s)(1 + τa s) + Km Ka (K ie0)2)
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5 Armature-Current control

The most common control technique for DC motors is the armature-current control. Such
control is performed by keeping the flux constant inside the motor. To this aim, either the
stator voltage is constant or the stator coils are replaced by a permanent magnet. In the
latter case, the motor is said to be a permanent magnet DC motor and is driven by
means of the only armature coils.

Permanent magnet DC motors are totally equivalent to armature-controlled DC motors;
as a matter of fact, in both of them the flux Φ is constant. Besides this, what makes the
difference between them is dependent on equation (11). It can be seen that, with standard
DC motors, the desired torque may be obtained by increasing ie (namely, the flux), ia, or
both of them. Conversely, permanent magnet motors may be controlled by means of the
only available current ia. This is bad from the heating point of view; as a matter of fact,
the rotor coils are hard to be cooled (since they are inside the motor) and, indeed, in the
permanent magnet motors, are the only power source of the motor itself.

Referring to Figure 8, note that keeping the flux constant, the block diagram becomes
linear. In addition, the motor has an intrinsic negative feedback structure, whence at the
steady state, the speed ω is proportional to the reference input va. This two facts, in addition
to the cheaper price of a permanent magnet motor with respect to a standard DC motor (as
a matter of fact only the rotor coils need to be winded), are the main reasons why armature
controlled motors are widely used.

However, several disadvantages arise from this control technique.

• Although the flux is constant (hence the back EMF never goes to zero when the motor
is running), the rotor current could take, in several cases, high values, thus bringing
the motor into dangerous operating conditions. In particular, the speed of the motor
could decrease to zero due to an equilibrium between the load and the motor torque,
or, equivalently, the current could take high values during the transient, after a step
has been applied at the input. In this latter case, the mechanical time constant will
delay the increase of speed ∆ω corresponding to the increase of armature voltage ∆va

and during this delay the rotor current will raise at high values.

• The reference input and the power input of the motor are the same. This often leads to
a trade off, between accuracy with respect to a desired reference value and maximum
power exerted. As a matter of fact, the fidelity of a linear power amplifier is inversely
proportional to the maximum power exerted by such power amplifier.

5.1 Steady state behavior

Consider equations (16), (18), (19), and (22); the steady state behavior of the armature
controlled motor may be easily determined by putting to zero the time derivatives of the
variables. The resulting equations are:

TM =
KΦ Φ

Ra

va −
(KΦ Φ)2

Ra

ω (29a)

TM − TL = F ω. (29b)
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Figure 14: Steady state relationship between torque and speed in armature-current control.

In Figure 14 the curves corresponding to equations (29) are depicted. In particular, the
negative slope lines are the lines satisfying equation (29a) for different values of va. It has

to be stressed that, since usually
(KΦ Φ)2

Ra

>> 1, the slope is close to −∞, whence, once

assigned a value for the input voltage va, the speed variation of the load torque is very low.
This is due to the fact that an intrinsic negative feedback action is present in the motor.

The mechanical curves, related to equation (29b), are traced considering a load torque
increasing with the speed ω (as it has been done in the previous sections). The intersection
of two curves gives the steady state values of torque and speed.

Since the power dissipated in the rotor is equal to Ra i2a, there is a maximum continuous
current allowed in the rotor, which determines a maximum torque TM that the motor may
exert at the steady state. This maximum power line is generally the main constraint to the
maximum power exerted by the motor; as a matter of fact, the heat generated on the rotor
coil is hard to be transferred outside the motor for mechanical reasons.

5.2 Transfer function

Since, as remarked above, the armature-current control renders linear the nonlinear block
diagram in Figure 8, it is of interest to compute the transfer function of the motor between
the input va and the output ω (or, equivalently, θ) and the transfer function between the
disturbance input TL and the same output.

The resulting diagram, obtained by imposing Φ to be constant in equations (18) and (19)
is depicted in Figure 15.

It is once more stressed that, due to the feedback action of the back EMF, the system is
a velocity control system, as a matter of fact, besides the action of the disturbance TL, the
speed ω, at the steady state, is proportional to the input signal va with a steady-state error
depending on the armature resistance Ra.
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Figure 15: Block diagram of the linearization of the DC motor under armature-current
control.

The transfer matrix of the system may be written as

ω(s) = [W1(s) W2(s)]

[

va(s)
TL(s)

]

,

where

W1(s) :=
Ka KΦ Φ Km

(1 + τa s) (1 + τm s) + Ka Km (KΦ Φ)2
,

W2(s) :=
Km (1 + τa s)

(1 + τa s) (1 + τm s) + Ka Km (KΦ Φ)2

5.3 Speed control system

As remarked in Section 5.1, the armature current current controlled DC motor is intrin-
sically a velocity control scheme. In particular, consider the steady-state equations (29) and
the dependence of the speed ω upon the values of the inputs va and TL. Considering, for the
sake of simplicity, the case F = 0 (the general case is similar), it turns out:

ω ≈
1

KΦ Φ
va −

Ra

(KΦ Φ)2
TL. (30)

It can be seen that if the load torque TL is different from zero, a steady state error will
be experienced on the system. Now, it can be seen that, the more KΦ Φ is high, the less
the steady state error is large. Whence, it seems obvious to perform a control technique in
which an additional speed feedback is performed.

By means of a tachometer (i.e., a sensor for the measurement of the speed of the motor),
an additional feedback loop is closed over the block diagram in Figure 15. Suppose the
tachometer has a constant transfer function with a gain KT , then placing a gain KA in the
direct branch, the control loop in Figure 16 is obtained.

Now, with reference to equation (30), noticing that for the control scheme in Figure 16,
it holds va = KA (vr − KT ω), then the following equation is obtained:

ω ≈
KA

KΦ Φ + KT KA

vr −
Ra

(KΦ Φ) (KΦ Φ + KT KA)
TL.
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Figure 16: Block diagram of the speed control system for an armature controlled DC motor.

From the above equation, for sufficiently high values of KA, it turns out:

ω ≈
1

KT

vr,

as desired.
It should be noticed that, with this control scheme, a steady state error is always found,

although this error may be decreased as much as necessary by the choice of the gain KA.
Since the two feedback loops in Figure 16 may be represented as a unique feedback loop

with suitable feedback and direct branch gains, the root locus of the system having the two
poles related to τm and τa, may be traced to analyze the behavior of the closed loop system
for different values of KA.

Re

Im

s-plane

− 1

τa
− 1

τm

Figure 17: Root locus of the system in Figure 16, as KA varies.

The resulting diagram, reported in Figure 17 shows that, as KA increases, the system
step response gets faster and overshooted.
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5.4 Position control system

With reference to the linear block diagram in Figure 15, if a feedback loop is closed
between the input and the position output θ, then a position regulation is performed on the
system.

By virtue of the fact that, as remarked above, the back EMF effect is equivalent to a
velocity feedback, denote by Kω the feedback gain from ω which refers to both the back
EMF and the tachometer action. In addition, define A as the product of the motor static
gain and the controller gain. Then, the diagram depicted in Figure 18 correctly represents
the behavior of the system having two feedback loops: one with respect to the motor speed
and one with respect to its position.

-
+

-
+

Km

1 + τm s

1

s

θTM

TL

ω

+

Kω

Kθ

1

1 + τa s
A

vr
-

Figure 18: Block diagram of the position control system for an armature controlled DC
motor.

The transfer function between the reference input va and the output θ is given by

W (s) :=
θ(s)

va(s)
=

1

s

A

(1 + τa s)

Km

(1 + τm s)

1 +
1

s

A

(1 + τa s)

Km

(1 + τm s)
(Kθ + Kω s)

.

The root locus of the feedback system may be traced with respect to the gain A. Consider
first the case when Kω = 0. The result is depicted in Figure 19. It can be seen that, since
the relative degree of the transfer function is equal to 3, then three branches reach infinity,
hence the closed loop system becomes unstable for high values of the gain Kθ.

Consider now the more general case in which the velocity feedback is non-zero. In this
case, the root locus changes, as a matter of fact a zero is added to the open loop transfer

function. The value of the zero is z = −
Kω

Kθ

; whence, the more the ratio between the

two gains is high, the more the closed loop poles move away from the abscissa s = 0 (see
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Figure 19: Root locus of the position control system when the velocity feedback is zero.
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Figure 20: Root locus of the position control system when the velocity feedback is non-null.

Figure 19). Note that, since the branch approaching infinity is vertical, in this second case,
the closed loop system is asymptotically stable for any value of the gain A.

From Figure 19, it is clear that, as the position feedback gain increases with respect to
the velocity feedback gain, the situation depicted in Figure 19 is reached; as a matter of
fact, the branch approaching infinity moves on the right direction as the zero moves in the
left direction, whence destabilizing the system. In the limit case in which z = −∞, the
exact situation of Figure 19 is reached. On the other hand, if the velocity feedback gain is
increased with respect to the position feedback gain, the zero approaches the origin and the
vertical branch moves left. The limit case coincides with the root locus of Figure 17, as a
matter of fact, the zero cancels the pole in the origin and the only two poles related to the
electrical and mechanical time constants of the motor remain.
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5.5 Torque control system

Due to the fact that, by equation (18), the torque is proportional to the armature current,
a simple hardware feedback loop is often implemented to keep the current proportional to a
reference voltage value, by means of an operational amplifier.

ia

vr

R

R

Rm

A M

Figure 21: Torque control system of an armature controlled DC motor.

This last control scheme is usually integrated with PWM power amplifiers, and is obtained
by a high power resistor with low resistance Rm, connected in series to the rotor windings
(see Figure 21). If the reference voltage is chosen as

va = −Rm id,

where id is the desired current, the steady state value of the current will be the desired one.
The time constant of the circuit is dependent on R and the high gain of A; however, a very
fast response is usually obtained due to the very high gain of the commercial operational
amplifiers.
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