Computer controlled systems

Matrix algebra

version: 2018.03.03. - 17:18:54

Proposition 1. If $A \in \mathbb{R}^{n \times n}$ and $D \in \mathbb{R}^{m \times m}$ are nonsingular, than the determinant of the following block-triangle matrix can be computed as follows:

$$
\left|\begin{array}{ll}
A & 0 \tag{1}\\
C & D
\end{array}\right|=\operatorname{det}(A) \cdot \operatorname{det}(D)
$$

Proof.

$$
\left(\begin{array}{cc}
I & 0 \tag{2}\\
-C A^{-1} & I
\end{array}\right)\left(\begin{array}{ll}
A & 0 \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)
$$

Proposition 2. If $A \in \mathbb{R}^{n \times n}$ and $D \in \mathbb{R}^{m \times m}$ are nonsingular, than the determinant of the following block matrix can be computed as follows:

$$
M=\left(\begin{array}{ll}
A & B \tag{3}\\
C & D
\end{array}\right) \Rightarrow \operatorname{det}(M)=\operatorname{det}\left(A-B D^{-1} C\right) \operatorname{det}(D) .
$$

If $m=n$ and if C and D commute then $\operatorname{det}(M)=\operatorname{det}(A D-B C)$.
Proof.

$$
\left(\begin{array}{ll}
A & B \tag{4}\\
C & D
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right)=\left(\begin{array}{cc}
A-B D^{-1} C & B \\
0 & D
\end{array}\right)
$$

