Computer controlled systems

Basic linear algebra operations in Matlab

version: 2019.11.15. - 08:43:31

1 Problems

1. Given an orthonormal basis of the image space of matrix

$$
A=\left(\begin{array}{ccc}
-2 & -1 & 7 \\
-3 & -5 & 14 \\
1 & 2 & -5
\end{array}\right) .
$$

2. Give on orthonormal basis of the kernel (or null) space of matrix A.
3. Give on orthonormal basis of $\operatorname{Im}(A)^{\perp}$, the orthogonal complement of the image space of matrix A.
4. Give on orthonormal basis of the kernel space of matrix A^{T}.
5. Given on orthonormal basis of the image space of matrix A^{T}.
6. Compute the singular value decomposition of matrix A.
7. Compute the rank of diagonal matrix S and matrix A.
8. Compute the intersection of $V=\operatorname{Im}(A)$ and $W=\operatorname{Im}\left(A^{T}\right)$. Note that $V \cap W=\left(V^{\perp} \cup W^{\perp}\right)^{\perp}$
9. Give a matrix for which $\operatorname{Im}(A)=\operatorname{Ker}(A)$.
10. Compute the partial fraction decomposition of $H_{1}(s)=\frac{s}{s^{2}+3 s+2}$ with residue and partfrac.
11. Compute the partial fraction decomposition of $H_{2}(s)=\frac{s^{3}+3 s+1}{\left(s^{2}+4\right)(s-2)(s+3)\left(s^{2}+2 s+2\right)}$ with ...

2 Fundamental theorem of linear algebra

Theorem 1.

The fundamental theorem of linear algebra
Let $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathcal{A}(x)=A x$, where $A \in \mathbb{R}^{m \times n}$. Then the followings are true

$$
\begin{align*}
& \operatorname{Im}(A)=\operatorname{Ker}\left(A^{T}\right)^{\perp} \subset \mathbb{R}^{m} \tag{1a}\\
& \operatorname{Im}\left(A^{T}\right)=\operatorname{Ker}(A)^{\perp} \subset \mathbb{R}^{n} \tag{1b}
\end{align*}
$$

Furthermore

$$
\begin{align*}
& \operatorname{Im}(A) \otimes \operatorname{Ker}\left(A^{T}\right)=\mathbb{R}^{m} \tag{2a}\\
& \operatorname{Im}\left(A^{T}\right) \otimes \operatorname{Ker}(A)=\mathbb{R}^{n} \tag{2b}
\end{align*}
$$

Remark. If $r=\operatorname{rank}(A)$, than

$$
\begin{array}{ll}
\operatorname{dim} \operatorname{Im}(A)=r, & \operatorname{dim} \operatorname{Ker}\left(A^{T}\right)=m-r \\
\operatorname{dim} \operatorname{Im}\left(A^{T}\right)=r, & \operatorname{dim} \operatorname{Ker}(A)=n-r \tag{3b}
\end{array}
$$

Proof. Proof of (1a) as presented in [1]. Let

$$
\begin{align*}
& A=\left(\begin{array}{llll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \ldots & \boldsymbol{a}_{n}
\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
\boldsymbol{a}_{2}^{T} \\
\dddot{\boldsymbol{a}_{n}^{T}}
\end{array}\right) \tag{4a}\\
& \boldsymbol{x} \in \operatorname{Ker}\left(A^{T}\right) \Rightarrow A^{T} \boldsymbol{x}=\left(\begin{array}{c}
\boldsymbol{a}_{1}^{T} \boldsymbol{x} \\
\boldsymbol{a}_{2}^{T} \boldsymbol{x} \\
\boldsymbol{a}_{n}^{T} \boldsymbol{x}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\dddot{\dddot{1}}
\end{array}\right) \tag{4b}\\
& \boldsymbol{y} \in \operatorname{Im}(A) \Rightarrow \exists \alpha_{i} \in \mathbb{R} \text { such that } \boldsymbol{y}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{a}_{i} \tag{4c}
\end{align*}
$$

Note that \boldsymbol{x} and \boldsymbol{y} are arbitrary vector elements of $\operatorname{Ker}\left(A^{T}\right)$ and $\operatorname{Im}(A)$, respectively. Then we compute the dot product of \boldsymbol{x} and \boldsymbol{y} :

$$
\begin{equation*}
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{y}^{T} \boldsymbol{x}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{a}_{i}^{T} \boldsymbol{x}=0 \tag{5}
\end{equation*}
$$

since $\boldsymbol{a}_{i}^{T} \boldsymbol{x}=0, \forall i=\overline{1, n}$. Consequently, $\boldsymbol{x} \perp \boldsymbol{y}$ for all possible $x \in \operatorname{Ker}\left(A^{T}\right)$ and $y \in \operatorname{Im}(A)$, which means that the two subspaces are the orthogonal complement for each other:

$$
\begin{align*}
& \operatorname{Im}(A)=\operatorname{Ker}\left(A^{T}\right)^{\perp} \\
& \operatorname{Im}(A) \cap \operatorname{Ker}\left(A^{T}\right)=\{0\} \tag{6}
\end{align*}
$$

Following this idea, we can conclude that the subspaces are linearly independent, therefore,

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Im}(A) \otimes \operatorname{Ker}\left(A^{T}\right)\right)=r+(m-r)=m \tag{7}
\end{equation*}
$$

This can only happend if direct product of the two spaces is \mathbb{R}^{m}, which completes the proof for (2a).

Proposition 2. (Self-adjoint operator) Let $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{A}(x)=A x$, where $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix: $A=A^{T}$. Than, as a consequence of Theorem 1 , we have that

$$
\operatorname{Im}(A)=\operatorname{Ker}(A)^{\perp} \text { and } \operatorname{Im}(A) \otimes \operatorname{Ker}(A)=\mathbb{R}^{n}
$$

For more, see [2, Eq. (10.3)].

Proposition 3.

Singular value decomposition (SVD)
If we make the SVD for matrix $A \in \mathbb{R}^{m \times n}$

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& U \in \mathbb{R}^{m \times m} \text { is unitary: } U^{*} U=I_{m} \tag{9a}\\
& V \in \mathbb{R}^{n \times n} \text { is unitary: } V^{*} V=I_{n} \tag{9b}\\
& \Sigma \in \mathbb{R}^{m \times n} \text { eigenvalues in the diagonal. } \tag{9c}
\end{align*}
$$

After this decomposition, the basis of the four subspaces (2) can be obtained as presented below.

$$
\begin{array}{ll}
\operatorname{Im}(A): & \text { the first } r \text { colums of } U \\
\operatorname{Ker}\left(A^{T}\right): & \text { the last } m-r \text { columns of } U \\
\operatorname{Im}\left(A^{T}\right): & \text { the first } r \text { columns of } V \\
\operatorname{Ker}(A): & \text { the last } n-r \text { columns of } V
\end{array}
$$

In short

$$
\text { "A } A=\left[\begin{array}{ll}
\operatorname{Im}(A) & \left.\operatorname{Ker}\left(A^{T}\right)\right] \Sigma\left[\begin{array}{ll}
\operatorname{Im}\left(A^{T}\right) & \operatorname{Ker}(A)
\end{array}\right]^{T} \text { " } \tag{10}
\end{array}\right.
$$

References

[1] Alexey Grigorev. The Fundamental Theorem of Linear Algebra. Technische Universität Berlin.
[2] Lantos Béla. Irányítási rendszerek elmélete és tervezése I. Akadémiai Kiadó Budapest, 2001.

