Computer controlled systems

Basic linear algebra operations in Matlab

version: 2019.11.15. - 08:43:31

1 Problems

1. Given an orthonormal basis of the image space of matrix

$$A = \begin{pmatrix} -2 & -1 & 7\\ -3 & -5 & 14\\ 1 & 2 & -5 \end{pmatrix}.$$

- 2. Give on orthonormal basis of the kernel (or null) space of matrix A.
- 3. Give on orthonormal basis of $\text{Im}(A)^{\perp}$, the orthogonal complement of the image space of matrix A.
- 4. Give on orthonormal basis of the kernel space of matrix A^T .
- 5. Given on orthonormal basis of the image space of matrix A^T .
- 6. Compute the singular value decomposition of matrix A.
- 7. Compute the rank of diagonal matrix S and matrix A.
- 8. Compute the intersection of V = Im(A) and $W = \text{Im}(A^T)$. Note that $V \cap W = \left(V^{\perp} \cup W^{\perp}\right)^{\perp}$
- 9. Give a matrix for which Im(A) = Ker(A).
- 10. Compute the partial fraction decomposition of $H_1(s) = \frac{s}{s^2+3s+2}$ with residue and partfrac.
- 11. Compute the partial fraction decomposition of $H_2(s) = \frac{s^3+3s+1}{(s^2+4)(s-2)(s+3)(s^2+2s+2)}$ with ...

2 Fundamental theorem of linear algebra

Theorem 1.	The fundamental theorem of lin	ear algebra	
Let $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathcal{A}(x) = Ax$, where $A \in \mathbb{R}^{m \times n}$. Then the followings are true			
	$\operatorname{Im}(A) = \operatorname{Ker}(A^T)^{\perp} \subset \mathbb{R}^m$	(1a)	
	$\operatorname{Im}(A^T) = \operatorname{Ker}(A)^{\perp} \subset \mathbb{R}^n$	(1b)	
Furthermore			
	$\operatorname{Im}(A)\otimes\operatorname{Ker}(A^T)=\mathbb{R}^m$	(2a)	
$\operatorname{Im}\!\left(A^T ight)\otimes\operatorname{Ker}(A)=\mathbb{R}^n$		(2b)	
<i>Remark.</i> If $r = \operatorname{rank}(A)$, than			
$\dim \operatorname{Im}(A) = r,$	$\dim \operatorname{Ker}(A^T) = m - r$	(3a)	
$\dim \operatorname{Im}(A^T) = r,$	$\dim \operatorname{Ker}(A) = n - r$	(3b)	

Proof. Proof of (1a) as presented in [1]. Let

$$A = \begin{pmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \dots & \boldsymbol{a}_n \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} \boldsymbol{a}_1^T \\ \boldsymbol{a}_2^T \\ \vdots \\ \boldsymbol{a}_n^T \end{pmatrix}$$
(4a)

$$\boldsymbol{x} \in \operatorname{Ker}(A^{T}) \; \Rightarrow \; A^{T}\boldsymbol{x} = \begin{pmatrix} \boldsymbol{a}_{1}^{T}\boldsymbol{x} \\ \boldsymbol{a}_{2}^{T}\boldsymbol{x} \\ \boldsymbol{a}_{n}^{T}\boldsymbol{x} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \cdots \\ \boldsymbol{0} \end{pmatrix}$$
(4b)

$$\boldsymbol{y} \in \operatorname{Im}(A) \Rightarrow \exists \alpha_i \in \mathbb{R} \text{ such that } \boldsymbol{y} = \sum_{i=1}^n \alpha_i \boldsymbol{a}_i$$
 (4c)

Note that \boldsymbol{x} and \boldsymbol{y} are arbitrary vector elements of $\operatorname{Ker}(A^T)$ and $\operatorname{Im}(A)$, respectively. Then we compute the dot product of \boldsymbol{x} and \boldsymbol{y} :

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{y}^T \boldsymbol{x} = \sum_{i=1}^n \alpha_i \boldsymbol{a}_i^T \boldsymbol{x} = 0,$$
 (5)

since $a_i^T x = 0$, $\forall i = \overline{1, n}$. Consequently, $x \perp y$ for all possible $x \in \text{Ker}(A^T)$ and $y \in \text{Im}(A)$, which means that the two subspaces are the *orthogonal complement* for each other:

$$Im(A) = Ker(A^{T})^{\perp}$$

$$Im(A) \cap Ker(A^{T}) = \{0\}$$
(6)

Following this idea, we can conclude that the subspaces are linearly independent, therefore,

$$\dim\left(\operatorname{Im}(A)\otimes\operatorname{Ker}(A^{T})\right)=r+(m-r)=m.$$
(7)

This can only happend if *direct product* of the two spaces is \mathbb{R}^m , which completes the proof for (2a). \Box

Proposition 2. (Self-adjoint operator) Let $\mathcal{A} : \mathbb{R}^n \to \mathbb{R}^n$, $\mathcal{A}(x) = Ax$, where $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix: $A = A^T$. Than, as a consequence of Theorem 1, we have that

$$\operatorname{Im}(A) = \operatorname{Ker}(A)^{\perp}$$
 and $\operatorname{Im}(A) \otimes \operatorname{Ker}(A) = \mathbb{R}^{n}$.

For more, see [2, Eq. (10.3)].

Proposition 3.	Singular value decomposition (SVD)
If we make the SVD for matrix $A \in \mathbb{R}^{m \times n}$	
A = U	$J\Sigma V^T$, (8)

where

In short

 $U \in \mathbb{R}^{m \times m}$ is unitary: $U^* U = I_m$ (9a)

 $V \in \mathbb{R}^{n \times n}$ is unitary: $V^* V = I_n$ (9b)

 $\Sigma \in \mathbb{R}^{m \times n} \text{ eigenvalues in the diagonal.}$ (9c)

After this decomposition, the basis of the four subspaces (2) can be obtained as presented below.

$\operatorname{Im}(A)$:	the first r colums of U	
$\operatorname{Ker}(A^T)$:	the last $m - r$ columns of U	
$\operatorname{Im}(A^T)$:	the first r columns of V	
$\operatorname{Ker}(A)$:	the last $n - r$ columns of V	
$_{\prime\prime} A = \left[\mathrm{Im}(A) \right.$	$\operatorname{Ker}(A^T)] \Sigma [\operatorname{Im}(A^T) \operatorname{Ker}(A)]^T$ "	(10)

References

- [1] Alexey Grigorev. The Fundamental Theorem of Linear Algebra. Technische Universität Berlin.
- [2] Lantos Béla. Irányítási rendszerek elmélete és tervezése I. Akadémiai Kiadó Budapest, 2001.