Computer controlled systems

Lecture 7, March 31, 2017

version: 2017.11.15. - 19:56:21

Inverted pendulum model

We consider a simple pendulum mounted an a chart that can move horizontally:

This system has a nonlinear equation, which can be linearized in a certain operating point ${ }^{1}$ (see Appendix). The state vector of the system is the following: $x=\left(\begin{array}{llll}r & v & \phi & \omega\end{array}\right)^{T}$, furthermore, the external force F constitutes the input of the system (u). The nonlinear model of the system is: $\dot{x}=f(x)+g(x) u$, where

$$
f(x)=\left(\begin{array}{c}
v \tag{1}\\
\frac{1}{q}\left(4 m l \sin (\phi) \omega^{2}-1.5 m g \sin (2 \phi)-4 b v\right) \\
\omega \\
\frac{3}{l q}\left(-\frac{m l}{2} \sin (2 \phi) \omega^{2}+(M+m) g \sin (\phi)+b \cos (\phi) v\right)
\end{array}\right), g(x)=\frac{1}{l q}\left(\begin{array}{c}
0 \\
4 l \\
0 \\
-3 \cos (\phi)
\end{array}\right)
$$

where $q=4(M+m)-3 m \cos (\phi)^{2}$. For the full derivation see Appendix. For each exercise, you can use your own parameter configuration. Some examples are listed below.
(A) no friction
$M=0.5[\mathrm{~kg}]$
$m=0.2[\mathrm{~kg}]$
$l=1 \quad[\mathrm{~m}]$
$g=9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
$b=0[\mathrm{~kg} / \mathrm{s}]$

> (B) with friction
> $M=0.5 \quad[\mathrm{~kg}]$
> $m=0.2 \quad[\mathrm{~kg}]$
> $l=1 \quad[\mathrm{~m}]$
> $g=9.8 \quad\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
> $b=10[\mathrm{~kg} / \mathrm{s}]$
(C) with friction + heavy rod

$$
\left.\begin{array}{c}
M=0.5 \quad[\mathrm{~kg}] \\
m=10
\end{array}\right][\mathrm{kg}]
$$

[^0]
Linearized model around the unstable equilibrium point ($\phi=0$)

Linearized state space model around the unstable operating point $x^{*}=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)^{T}$ is:

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{2}\\
0 & -\frac{4 b}{4 M+m} & -\frac{3 m g}{4 M+m} & 0 \\
0 & 0 & 0 & 1 \\
0 & \frac{3 b}{l(4 M+m)} & \frac{3(M+m) g}{l(4 M+m)} & 0
\end{array}\right), \quad B=\frac{1}{l(4 M+m)}\left(\begin{array}{c}
0 \\
4 l \\
0 \\
-3
\end{array}\right), \quad C=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Exercises

1. Simulate the motion of the inverted pendulum in Simulink, use the original nonlinear model of the system.

Instructions.

- Using the Simulink's "MATLAB function", you can implement the equation $\dot{x}=f(x)+g(x) u$ as a Matlab function $d x=\operatorname{invpend}(x, u)$ with two input arguments (the state variables $x \in \mathbb{R}^{4}$ and input $u \in \mathbb{R})$ and a single output argument $\left(\dot{x} \in \mathbb{R}^{4}\right.$ the time derivative of $\left.x\right)$
- The time derivative of \dot{x} is fed back through an integrator (see figure below).
- In order to plot the result, use the "Scope" block diagram.
- If you want to export the numerical values to the Matlab's global workspace use "To Workspace" block.
- The initial value of the system can be given as the initial value of the integrator: open the "Block Parameters" dialog of the integrator.

2. Design a state feedback gain in Matlab for the (linearized) system, which
(a) translates the poles into $\{-1,-2,-3,-4\}$ (or into arbitrary stable poles).
(b) minimizes the functional $J(x, u)=\int_{0}^{\infty} x^{T} Q x+u^{T} R u \mathrm{~d} t$, where $Q=I_{4}$ and $R=1$ (LQR design).
3. Apply the state feedback gain on the nonlinear model, and simulate it in Simulink. Instructions.

- Use the "Gain" block of Simulink, open its "Block Parameters" dialog, and type there the value of the obtained K.
- Be aware that the multiplication rule is set to be "Matrix $\left(\mathrm{K}^{*} \mathrm{u}\right)$ " (i.e. matrix by matrix multiplication).

4. In practical applications the actuator has a finite power to act on the system, so it cannot execute arbitrarily large input values. Simulate this saturation effect in Simulink using the "Saturation" block.

5. Design a stable state observer in Matlab for the (linearized) system.
6. Simulate the nonlinear system with the existing static feedback of the observed state vector \hat{x}.

- Optionally, you can add Gaussian noise to the input (actuator noise) or to the output (sensor noise). Use the "Gaussian Noise Generator" block.

Appendix

I. Linearize a nonlinear model around an equilibrium point

We have a nonlinear system in the following form:

$$
\begin{equation*}
\dot{x}=F(x, u)=f(x)+g(x) u \tag{3}
\end{equation*}
$$

Let $x^{*} \in \mathbb{R}^{n}$ be an equilibrium point of the nonlinear system, which means that $F\left(x^{*}, 0\right)=f\left(x^{*}\right)=0$. We assume that the system operates around this equilibrium point, and by default there is no input given to the system. Therefore, we say that the system's operating point ${ }^{2}$ is $\left(x^{*}, u^{*}=0\right)$.
The Jacobian matrix of $F(x, u)$ is

$$
\begin{equation*}
\mathrm{D}[F(x, u)]=\left(\left.\frac{\partial F(x, u)}{\partial x} \right\rvert\, \frac{\partial F(x, u)}{\partial u}\right)=\left(\left.\frac{\partial f(x)}{\partial x}+\frac{\partial g(x)}{\partial x} u \right\rvert\, g(x)\right) \tag{4}
\end{equation*}
$$

The value of the Jacobian matrix in this operating point is

$$
\begin{equation*}
\mathrm{D}\left[F\left(x^{*}, 0\right)\right]=\left(\left.\frac{\partial f\left(x^{*}\right)}{\partial x} \right\rvert\, g\left(x^{*}\right)\right) \tag{5}
\end{equation*}
$$

Now we estimate $F(x, u)$ by its first order Taylor polynomial around the operating point:

$$
\begin{align*}
& F(x, u) \simeq \underbrace{F\left(x^{*}, 0\right)}_{0}+\mathrm{D}\left[F\left(x^{*}, 0\right)\right]\binom{x-x^{*}}{u-0} \tag{6}\\
& F(x, u) \simeq \frac{\partial f\left(x^{*}\right)}{\partial x}\left(x-x^{*}\right)+g\left(x^{*}\right) u
\end{align*}
$$

Hence, the linear model is

$$
\dot{x}=A\left(x-x^{*}\right)+B u, \quad \text { where } \quad \begin{align*}
& A:=\frac{\partial f\left(x^{*}\right)}{\partial x} \tag{7}\\
& B:=g\left(x^{*}\right)
\end{align*}
$$

There's only one more thing left, we need to center the system. We introduce the centered state vector $\bar{x}:=x-x^{*}$. Therefore, the time derivative of the transformed state vector will be:

$$
\begin{equation*}
\dot{\bar{x}}=\dot{x}=A\left(x-x^{*}\right)+B u=A \bar{x}+B u \tag{8}
\end{equation*}
$$

Finally, we obtained the centered linearized model:

$$
\begin{array}{ll}
\dot{\bar{x}}=A \bar{x}+B u, \quad \text { where } \quad & A:=\frac{\partial f\left(x^{*}\right)}{\partial x} \tag{9}\\
& B:=g\left(x^{*}\right)
\end{array}
$$

II. Derivation of the inverted pendulum's equation

The equation of the inverted pendulum is the following:

$$
\begin{align*}
& (M+m) \ddot{x}+m l \ddot{\phi} \cos (\phi)-m l \dot{\phi}^{2} \sin (\phi)=F \\
& m l \ddot{x} \cos (\phi)+\frac{4}{3} m l^{2} \ddot{\phi}-m g l \sin (\phi)=0 \tag{10}
\end{align*}
$$

The nonlinear state space equation of the inverted pendulum:

$$
\left\{\begin{array}{l}
\dot{x}=v \tag{11}\\
\dot{v}=\frac{1}{q}\left(4 m l \sin (\phi) \omega^{2}-1.5 m g \sin (2 \phi)-4 b v\right)+\frac{4}{q} F \\
\dot{\phi}=\omega \\
\dot{\omega}=\frac{3}{l q}\left(-\frac{m l}{2} \sin (2 \phi) \omega^{2}+(M+m) g \sin (\phi)+b \cos (\phi) v\right)-\frac{3 \cos (\phi)}{l q} F
\end{array}\right.
$$

[^1]where $q=4(M+m)-3 m \cos (\phi)^{2}$. Let the state vector be $x=\left(\begin{array}{llll}x & v & \phi & \omega\end{array}\right)^{T}$.

$$
f(x)=\left(\begin{array}{c}
v \tag{12}\\
\frac{1}{q}\left(4 m l \sin (\phi) \omega^{2}-1.5 m g \sin (2 \phi)-4 b v\right) \\
\omega \\
\frac{3}{l q}\left(-\frac{m l}{2} \sin (2 \phi) \omega^{2}+(M+m) g \sin (\phi)+b \cos (\phi) v\right)
\end{array}\right), \quad g(x)=\frac{1}{l q}\left(\begin{array}{c}
0 \\
4 l \\
0 \\
-3 \cos (\phi)
\end{array}\right)
$$

Linearized model around the stable operating point $x^{*}=\left(\begin{array}{llll}0 & 0 & \pi & 0\end{array}\right)^{T}$:

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{13}\\
0 & -\frac{4 b}{4 M+m} & -\frac{3 m g}{4 M+m} & 0 \\
0 & 0 & 0 & 1 \\
0 & -\frac{3 b}{l(4 M+m)} & -\frac{3(M+m) g}{l(4 M+m)} & 0
\end{array}\right), \quad B=\frac{1}{l(4 M+m)}\left(\begin{array}{c}
0 \\
4 l \\
0 \\
3
\end{array}\right), \quad C=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Linearized state space model around the unstable operating point $x^{*}=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)^{T}$ is:

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{14}\\
0 & -\frac{4 b}{4 M+m} & -\frac{3 m g}{4 M+m} & 0 \\
0 & 0 & 0 & 1 \\
0 & \frac{3 b}{l(4 M+m)} & \frac{3(M+m) g}{l(4 M+m)} & 0
\end{array}\right), \quad B=\frac{1}{l(4 M+m)}\left(\begin{array}{c}
0 \\
4 l \\
0 \\
-3
\end{array}\right), \quad C=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

[^0]: ${ }^{1}$ munkapont

[^1]: ${ }^{2}$ munkapont

