A PHP Error was encountered

Severity: Warning

Message: fopen(/home/polpe/.phpsession/ci_session88c7a4e856aeaedbe9eade9c02bf2251c6a4eb13): failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 159

Backtrace:

File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library

File: /home/polpe/public_html/index.php
Line: 315
Function: require_once

Polcz Péter honlapja

Tartalomjegyzék

Inverted pendulum, local linearization

Teljes Matlab script kiegészítő függvényekkel.

File: ccs_nonlin_ipend_localin.m
Directory: 4_gyujtemegy/11_CCS/Modellek/inverse_pendulum/2018b_nonlin_pannon
Author: Peter Polcz (ppolcz@gmail.com)
First created on 2017.05.02. Tuesday, 22:39:05
Modified on 2018. August 26.

Nonlinear model

% Time
syms t real

% State variables
syms position v phi omega real

% Input
syms u real

% State vector
x = [
    position
    v
    phi
    omega
    ];

% Known model parameters
M = 0.5;
m = 0.2;
l = 1;
g = 9.8;
b = 0;

q = 4*(M+m) - 3*m*cos(phi)^2;

f_sym = [
    v
    (4*m*l*sin(phi)*omega^2 - 1.5*m*g*sin(2*phi) -4*b*v) / q
    omega
    3*(-m*l*sin(2*phi)*omega^2 / 2 + (M+m)*g*sin(phi) + b*cos(phi)*v) / (l*q)
    ];

g_sym = [
    0
    4*l
    0
    -3*cos(phi)
    ] / (l*q);

Linearized model around the unstable equilibrium point

A = double(subs(jacobian(f_sym,x), x, [0;0;0;0]));

B = double(subs(g_sym, x, [0;0;0;0]));

C = [
    1 0 0 0
    0 0 1 0
    ];

D = [ 0 ; 0 ];

Static feedback design using LQR or pole placement

K = lqr(A,B,eye(4),1);
K = place(A,B,[-1+1i -1-1i -2+1i -2-1i]);

% Equation of the closed loop system
f_cls_sym = f_sym - g_sym*K*x;

% Simulation of the closed loop system
f_cls_ode = matlabFunction(f_cls_sym, 'vars', {t x});
[tt,xx] = ode45(f_cls_ode, [0 10], [0 0 0.7 0]');
uu = -K*xx';

% Visualization
ipend_simulate_0(tt,xx,uu)