Computer Controlled Systems

supplementary midterm test -2017.05.25.

(The answers can be given in Hungarian)

Theoretical questions (25 points)

- 1. How can we compute the response y(t) of a continuous time linear time invariant (CT-LTI) system, if the input is the Dirac- δ function $(u(t) = \delta(t))$, and we know the state-space representation (A, B, C, D) of the system? (We assume that the initial condition x(0) is zero.) (5p)
- 2. Describe the conditions, that a continuous-time Lyapunov function has to satisfy. (You do not need to state the Lyapunov theorem.) (5p)
- 3. When do we call a CT-LTI state space model (A, B, C) controllable? What is the necessary and sufficient condition for controllability? (5p)
- 4. Briefly describe PID control (controller structure, transfer function, parameters, block scheme of the whole PID control loop). (5p)
- 5. Write down the state space model of a discrete-time linear time invariant (DT-LTI) system. Give the dimensions of the vectors and matrices. How do the matrices of the DT-LTI model depend on the matrices of the CT-LTI system? (5p)

Computational exercises (25 points)

- 1. Consider the state space model $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$, where $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 1 \end{pmatrix}$.
 - (a) Give the transfer function H(s) for the system. (3p)
 - (b) Is the system asymptotically stable? Is the system BIBO stable? Is the system observable? Is the system and controllable? Is the state space model minimal? Justify your answers.(5p: 1p for each question)
- 2. The following continuous-time state space model is given:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \end{pmatrix}$$
(1)

Determine the model matrices Φ and Γ of the discretized state-space model

 $x(k+1) = \Phi x(k) + \Gamma u(k), \quad y(k) = C x(k),$

if the sampling period is $h = \ln(3)$. (5p)

3. Consider the following transfer function:

$$H(s) = \frac{s^2 + 1}{s^3 + 3s + 3}$$

- (a) Assume that u(t) = 6, $\forall t \ge 0$. To which value will the output (y) converge when $t \to \infty$? (In other words: determine $\lim_{t\to\infty} y(t)$.) (3p)
- (b) Give the controller form state space realization of the system. (4p)
- 4. Determine the overall transfer function $G_e(s)$ (from r to y)! (5p)

