\qquad

Computer Controlled Systems

1st midterm test
2019. 10. 22.
computational problems (25 points)
(The answers can be given in Hungarian)

Neptun code: \qquad

$1:$	$2:$
$3:$	$\Sigma:$

In case of yes-no questions, please, always justify your answer! The test-sheet should be submitted with the computational part (white papers)!

1. We consider a SISO LTI system given by the following state-space model

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array}\right. \tag{i}\\
& \text { where } A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 & -2 & 0 \\
0 & 0 & -3
\end{array}\right), \quad B=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right), \quad D=0 \\
& \qquad A^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 & -2 & 0 \\
0 & 0 & -3
\end{array}\right) \tag{ii}
\end{align*}
$$

(a) Compute the controllable subspace of system (i).

$$
\mathcal{C}_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{iii}\\
1 & -2 & 4 \\
1 & 0 & 0
\end{array}\right), \operatorname{Im}\left\{\mathcal{C}_{3}\right\}=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

(b) Give two different state values, which can not be distinguished from each other by measuring only $y(t)=C x(t)$.

$$
\begin{align*}
& \mathcal{O}_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & -2 & 4 \\
1 & 0 & 0
\end{array}\right), \operatorname{Ker}\left\{\mathcal{O}_{3}\right\}=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} \\
& \text { e.g. } x_{1}=\left(\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right) \in \operatorname{Ker}\left\{\mathcal{O}_{3}\right\}, x_{2}=\left(\begin{array}{c}
3 \\
-3 \\
1
\end{array}\right) \in \operatorname{Ker}\left\{\mathcal{O}_{3}\right\} . \tag{iv}
\end{align*}
$$

(c) Is the state-space model (A, B, C) minimal?

It is not jointly controllable and observable, thus it is not minimal.
(d) Is the system globally asymptotically stable?

Eigenvalues of A are: 1, $-2,-3$. It is not asymptotically stable.
(e) Is the system BIBO stable?

$$
\begin{align*}
\operatorname{adj}(s I-A) & =\left(\begin{array}{ccc}
(s+2)(s+3) & -3(s+3) & 0 \\
0 & (s-1)(s+3) & 0 \\
0 & 0 & (s-1)(s+2)
\end{array}\right)^{\top} . \\
(s I-A)^{-1} & =\left(\begin{array}{ccc}
\frac{1}{s-1} & 0 & 0 \\
\frac{-3}{(s-1)(s+2)} & \frac{1}{s+2} & 0 \\
0 & 0 & \frac{1}{s+3}
\end{array}\right) \Rightarrow H(s)=C(s I-A)^{-1} B=\frac{1}{s+2} . \tag{v}
\end{align*}
$$

therefore $h(t)=e^{-2 t}$, which is absolute integrable on \mathbb{R}_{+}. It is BIBO stable.
2. It is given the following state space model:

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2}(t) \\
\dot{x}_{2}(t)=-8 x_{1}(t)-6 x_{2}(t)+3 u(t)
\end{array}\right. \tag{vi}\\
& \quad \text { with } y(t)=x_{1}(t)
\end{align*}
$$

where $u(t)$ is the input signal, $y(t)$ is the output signal.
(a) Determine the model matrices (A, B, C) of system (vi).

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \tag{vii}\\
y=C x
\end{array}, \text { where } A=\left(\begin{array}{cc}
0 & 1 \\
-8 & -6
\end{array}\right), B=\binom{0}{3}, C=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\right.
$$

(b) Determine the transfer function $H(s)$ for this system.

$$
H(s)=C(s I-A)^{-1} B=C\left(\begin{array}{cc}
s & -1 \\
8 & s+6
\end{array}\right)^{-1} B=\frac{1}{s^{2}+6 s+8}\left(\begin{array}{cc}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
s+6 & 1 \\
-8 & s
\end{array}\right)\binom{0}{3}=\frac{3}{s^{2}+6 s+8}
$$

(c) Using Laplace transformation determine the value of $Y(s)=\mathcal{L}\{y(t), s\}$ if the input is $u(t)=-2 e^{-3 t}$ and the initial state values are $x_{1}(0)=0$ and $x_{2}(0)=5$.

$$
Y(s)=C(s I-A)^{-1} x(0)+C(s I-A)^{-1} B U(s)=C(s I-A)^{-1}\binom{0}{5}+H(s) \frac{2}{s+3}=\frac{5 s+9}{(s+2)(s+3)(s+4)}
$$

(d) Compute the output $y(t)$ if the input and the initial state values are the same as in the previous point.

$$
\begin{equation*}
Y(s)=\frac{6}{s+3}-\frac{1}{2(s+2)}-\frac{11}{2(s+4)} \Rightarrow y(t)=6 e^{-3 t}-\frac{1}{2} e^{-2 t}-\frac{11}{2} e^{-4 t} \tag{viii}
\end{equation*}
$$

3. It is given the following nonlinear state-space model

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \tag{ix}\\
\dot{x}_{2}=x_{3}^{2}-x_{1} \\
\dot{x}_{3}=-2 x_{3}\left(x_{3}^{2}-x_{1}\right)
\end{array}\right.
$$

and a Lyapunov function candidate:

$$
\begin{equation*}
V(x)=\frac{x_{2}^{2}}{2}+\frac{\left(x_{3}^{2}-x_{1}\right)^{2}}{2}>0 \text { for all } x \neq 0, \text { and } V(x) \text { is cont. differentiable. } \tag{x}
\end{equation*}
$$

Check, whether $V(x)$ satisfies the Lyapunov conditions (i.e. with $V(x)$ we can prove global stability for system (ix)).

$$
\begin{align*}
& \frac{\partial V}{\partial x}=\left(\begin{array}{lll}
-\left(x_{3}^{2}-x_{1}\right) & x_{2} & \left.2\left(x_{3}^{2}-x_{1}\right) x_{3}\right), f(x)=\left(\begin{array}{c}
x_{2} \\
x_{3}^{2}-x_{1} \\
-2 x_{3}\left(x_{3}^{2}-x_{1}\right)
\end{array}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} V(x)=\left\langle\frac{\partial V}{\partial x}, \dot{x}\right\rangle=\left\langle\frac{\partial V}{\partial x}, f(x)\right\rangle=-4\left(x_{3}\left(x_{3}^{2}-x_{1}\right)\right)^{2} \leq 0 \text { for all } x \in \mathbb{R}^{3}
\end{array} . . \begin{array}{l}
\end{array} .\right. \tag{xi}
\end{align*}
$$

