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@ Systems
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Systems

System (S): performs operations on signals (abstract operator)

y =S[y]
@ input signal space: U
@ output signal space: Y
@ inputs: ueld
@ output: y € Y
Uue U SYSTEM ye v
S
input ] output
(manipulable, [states: X] | (spserved,
disturbance) computed)
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Systems — example

From the previous lecture: systems with possible inputs and outputs

e RLC circuit, eq.

@ input: upe, output: uc

@ input: wupe, output: /
e Primary circuit pressure control tank

e input: heating power, output: primary circuit pressure
e steered car model

o input: (ug, us), output: (x,y,6)
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e Basic system properties
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Basic system properties — 1

Linearity
S[au + quw] = ay + ay (1)
a,0 ER, u,up €U, y1,y5 € Y, and

Slui] =y1 , Slw] =y
i.e. satisfies the principle of superposition

Examples
o the RLC circuit is linear
o the bioreactor model is nonlinear

Checking whether a system is linear or not: by definition (1)
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Example: RLC circuit

The system's output for two different inputs:
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Example: RLC circuit

The system's output for a linear combination of the previous two inputs:
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Basic system properties — 2

time invariance: the shift operator and the system operator commute, i.e.

where T, denotes the shift operator (in time), i.e.

T,0S=SoT,

Checking whether a system is time invariant: constant (time
independent) parameters in the system’s ordinary differential

equations
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Basic system properties — 3

e continuous time and discrete time systems
continuous time: (7 C R)
discrete time: T = {--- ,to, t1,to, -+ }
e single input — single output (51SO)
multiple input — multiple output (MIMO) systems
e causal/non causal systems
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© Mathematical models of CT-LTI systems
@ Input output models
@ State space systems
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CT-LTI system models

e input-output models of SISO systems

e time domain (t)
e operator domain (s - Laplace transform)
e frequency domain (w - Fourier transform)

e State space models
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CT-LTI system models — 1

Time domain
Linear differential equations with constant coefficients

d”y d"ly dy du d™u
n e +a "1dt”1+ —|—ald —|—aoy—b0u—|—b1d +bm—dtm

with given initial conditions

o Dy A" 0y —
¥(0) = yoo , E(O) =Y, --- den—1 (0) = Y(n-1)0
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CT-LTI system models — 2

Operator domain, SISO systems

Transfer function
Y(s) = H(s)U(s)

if zero initial conditions assumed (!)

Y(s) Laplace transform of the output signal
U(s) Laplace transform of the input signal

H(s) = % the system’s transfer function
where a(s) and b(s) are polynomials
deg b(s) =m
deg a(s) =n

Strictly proper transfer function: m < n
Proper: m = n,
improper: m > n
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CT-LTI system models — 3

Time domain — Impulse response function
Y(s) = H(s)U(s) = L' — y(t) = (h = u)(t), i.e.

t t
y(t) = / h(t — 7)u(r)dT = / h(T)u(t — 7)dT
0 0
using the definition of Dirac-0, one can obtain:

/Ooo 5(t — 7)h(r)dr = /Ot 5(t — 7)h(7)dT = h(t)
and -
L(5)(s) = / S(t)e—tdt = 1

consequently, h is the system’s response to a Dirac-d input
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Example

Impulse response functions of the RLC circuit (v = upe, y1 =i, y2 = uc)

Impulse Response
From: U(1)

To: Y(1)

Amplitude

To: Y(2)
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CT-LTI 1/O models (SISO)

Transfer function — linear differential equation

n n—1

d"y d d
.C{a,, —i—a,, 1dn_)1/+...—|—a1d—y+aoy}:
d™u

du
—ﬁ{bou—l-bldfﬁ- +b dm}

Transfer function — impulse response

H(s) = L{h(t)}
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CT-LTI 1/O models: key points

@ the Laplace transform converts (higher order) linear differential
equations into algebraic equations

@ zero initial conditions are assumed for transfer functions (initial state
information is not included!)

@ knowing the input, the output can be computed (Laplace transform
(and inverse), convolution)

@ the whole system operator is represented as a time-domain signal
(h(t)) and/or its Laplace transform (H(s))

@ the model parameters are the coefficients in b(s) and a(s)
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CT-LTI state space systems

General form
x(t) = Ax(t) + Bu(t) (state equation)
y(t) = Cx(t) + Du(t) (output equation)

e for a given initial condition x(ty) = x(0) and x(t) € R",
o y(t) e RP | u(t) e R"
e model parameters

AcR™" BeR™ | CecRPX", DecRP

G. Szederkényi (PPKE-ITK) Computer Controlled Systems PPKE-ITK

20/ 26



State transformation

x(t) = Ax(t) + Bu(t) , x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) , y(t) = Cx(t) + Du(t)

invertible transformation of the states:
TER™ | det T#0 , x=Tx = x=T Ix

dmX =dim X =n
T % = AT 'x + Bu

Xx=TAT X+ TBu , y=CT 'x+ Du

A=TAT! |, B=TB , C=CT! D=D

)
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Transfer function computed from the state space
model

Laplace transform of the state space model

sX(s) = AX(s) + BU(s) (state equation, x(0) =0)
Y(s) = CX(s) + DU(s) (output equation)

X(s) = (sl — A)~1BU(s)
Y(s) = {C(sl — A)~1B+ D}U(s)

The system's transfer function H(s), expressed with the corresponding
state space model matrices (A, B, C, D):

H(s)= C(sl — A)"1B+D
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Solution of the state space model
We determine the inverse Laplace transform of
X(s) = (sl — A)"1BU(s)

by considering the Taylor series of (matrix) expression: (s/ — A)~L:

1 A\ 1 A A2
ot =AY (A )
S S S S S

Thus, the inverse Laplace transform of (s/ — A)~!is

1
L7H(sl — A1} = I+At+§A2t2+...:eAt t>0

I

Finally, we obtain the unique solution x(t) of the state space model for the
initial condition x(0):

x(t) = +ftAtTBu (1)dT
y(t) = C (f) + Du(t)
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Markov parameters

x(t) = e*x(0) + [y €A=" Bu(r)dr

y(t) = Cx(t )+ Du(t)
Assuming x(0) =0, D = 0 and u(t) = 6(t), we obtain the impulse
response:

t2
h(t) = Ce**B = CB + CABt + CA2BE + ...

Markov parameters '
CAB , i=0,1,2,...

are invariant for the state transformations.
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state space models: key points

@ the Laplace transform converts sets of first order linear differential
equations into algebraic equations

@ SS models can handle non-zero initial conditions

@ knowing the input and the initial condition, the output can be
computed (Laplace transform (and inverse), convolution)

@ the model parameters are the A, B, C, D matrices (x(0) is also
needed for the solution)

@ SS models can be easily transformed to I/O models through Laplace
transform assuming x(0) = 0
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Summary

o fundamental system properties: linearity (superposition),
time-invariance

@ LTI 1/O models: higher order linear differential equations containing
only the input and the output (and derivatives)

e transfer function, impulse response function: LTI system operators
given in the form of signals

@ state space models: sets of first order ODEs with state variables,
inputs and outputs ; initial conditions not necessarily zero

@ SS and 1/O models can be converted to each other

@ key role of Laplace transform in handling/solving I/O and SS models
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