Computer Controlled Systems (Introduction to systems and control theory) Lecture 2

Gábor Szederkényi

Pázmány Péter Catholic University Faculty of Information Technology and Bionics

e-mail: szederkenyi@itk.ppke.hu

PPKE-ITK, 19 September, 2019

Contents

- Systems
- 2 Basic system properties
- 3 Mathematical models of CT-LTI systems
 - Input output models
 - State space systems

Systems

2 Basic system properties

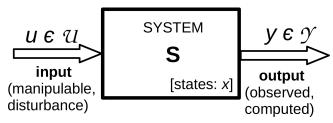
- Mathematical models of CT-LTI systems
 - Input output models
 - State space systems

Systems

System (S): performs operations on signals (abstract operator)

$$y = S[u]$$

- ullet input signal space: ${\cal U}$
- ullet output signal space: ${\cal Y}$
- inputs: $u \in \mathcal{U}$
- ullet output: $y \in \mathcal{Y}$



Systems – example

From the previous lecture: systems with possible inputs and outputs

- RLC circuit, eq.
 - input: u_{be} , output: u_C
 - input: u_{be} , output: i
- Primary circuit pressure control tank
 - input: heating power, output: primary circuit pressure
- steered car model
 - input: (u_{ϕ}, u_t) , output: (x, y, θ)

Systems

2 Basic system properties

- Mathematical models of CT-LTI systems
 - Input output models
 - State space systems

Basic system properties - 1

Linearity

$$S[c_1u_1 + c_2u_2] = c_1y_1 + c_2y_2 \tag{1}$$

 $c_1, c_2 \in \mathbb{R}$, $u_1, u_2 \in \mathcal{U}$, $y_1, y_2 \in \mathcal{Y}$, and $S[u_1] = y_1$, $S[u_2] = y_2$ i.e. satisfies the principle of *superposition*

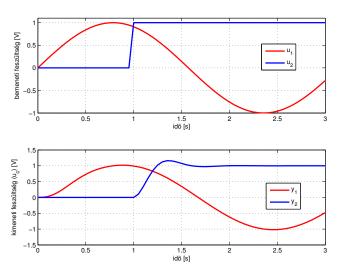
Examples

- the RLC circuit is linear
- the bioreactor model is nonlinear

Checking whether a system is linear or not: by definition (1)

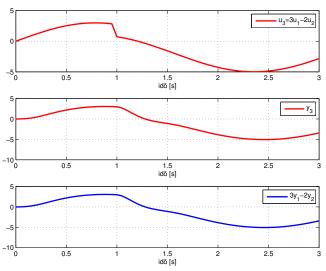
Example: RLC circuit

The system's output for two different inputs:



Example: RLC circuit

The system's output for a linear combination of the previous two inputs:

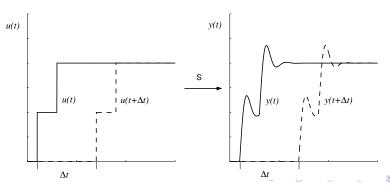


Basic system properties - 2

time invariance: the shift operator and the system operator commute, i.e.

$$\mathsf{T}_{\tau} \circ \mathsf{S} = \mathsf{S} \circ \mathsf{T}_{\tau}$$

where T_{τ} denotes the shift operator (in time), i.e. $T_{\tau} x(t) = x(t - \tau)$ Checking whether a system is time invariant: constant (time independent) parameters in the system's ordinary differential equations



Basic system properties – 3

- continuous time and discrete time systems continuous time: $(\mathcal{T} \subseteq \mathbb{R})$ discrete time: $\mathcal{T} = \{\cdots, t_0, t_1, t_2, \cdots\}$
- single input single output (SISO)
 multiple input multiple output (MIMO) systems
- causal/non causal systems

Systems

2 Basic system properties

- 3 Mathematical models of CT-LTI systems
 - Input output models
 - State space systems

CT-LTI system models

- input-output models of SISO systems
 - time domain (t)
 - operator domain (s Laplace transform)
 - ullet frequency domain (ω Fourier transform)
- State space models

CT-LTI system models – 1

Time domain

Linear differential equations with constant coefficients

$$a_{n}\frac{d^{n}y}{dt^{n}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + ... + a_{1}\frac{dy}{dt} + a_{0}y = b_{0}u + b_{1}\frac{du}{dt} + ... + b_{m}\frac{d^{m}u}{dt^{m}}$$

with given initial conditions

$$y(0) = y_{00} , \frac{dy}{dt}(0) = y_{10} , \dots , \frac{d^{n-1}y}{dt^{n-1}}(0) = y_{(n-1)0}$$

CT-LTI system models – 2

Operator domain, SISO systems

Transfer function

$$Y(s)=H(s)U(s)$$

if zero initial conditions assumed (!)

$$Y(s)$$
 Laplace transform of the output signal $U(s)$ Laplace transform of the input signal $H(s) = \frac{b(s)}{a(s)}$ the system's transfer function where $a(s)$ and $b(s)$ are polynomials deg $b(s) = m$ deg $a(s) = n$

Strictly proper transfer function: m < n

Proper: m = n, improper: m > n

CT-LTI system models – 3

Time domain – Impulse response function

$$Y(s)=H(s)U(s)
ightarrow \mathcal{L}^{-1}
ightarrow y(t)=(h*u)(t)$$
, i.e.

$$y(t) = \int_0^t h(t-\tau)u(\tau)d\tau = \int_0^t h(\tau)u(t-\tau)d\tau$$

using the definition of Dirac- δ , one can obtain:

$$\int_0^\infty \delta(t-\tau)h(\tau)d\tau = \int_0^t \delta(t-\tau)h(\tau)d\tau = h(t)$$

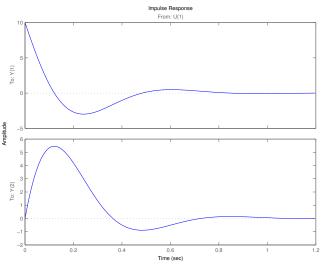
and

$$L(\delta)(s) = \int_0^\infty \delta(t)e^{-st}dt = 1$$

consequently, h is the system's response to a Dirac- δ input

Example

Impulse response functions of the RLC circuit ($u=u_{be},\ y_1=i,\ y_2=u_C$)



CT-LTI I/O models (SISO)

Transfer function – linear differential equation

$$\mathcal{L}\{a_{n}\frac{d^{n}y}{dt^{n}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{1}\frac{dy}{dt} + a_{0}y\} =$$

$$= \mathcal{L}\{b_{0}u + b_{1}\frac{du}{dt} + \dots + b_{m}\frac{d^{m}u}{dt^{m}}\}$$

$$H(s) = \frac{Y(s)}{U(s)} = \frac{b(s)}{a(s)}$$

Transfer function – impulse response

$$H(s) = \mathcal{L}\{h(t)\}$$

CT-LTI I/O models: key points

- the Laplace transform converts (higher order) linear differential equations into algebraic equations
- zero initial conditions are assumed for transfer functions (initial state information is not included!)
- knowing the input, the output can be computed (Laplace transform (and inverse), convolution)
- the whole system operator is represented as a time-domain signal (h(t)) and/or its Laplace transform (H(s))
- the model parameters are the coefficients in b(s) and a(s)

CT-LTI state space systems

General form

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 (state equation)
 $y(t) = Cx(t) + Du(t)$ (output equation)

- ullet for a given initial condition $x(t_0)=x(0)$ and $x(t)\in\mathbb{R}^n$,
- $y(t) \in \mathbb{R}^p$, $u(t) \in \mathbb{R}^r$
- model parameters

$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times r}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times r}$

State transformation

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 , $\dot{\overline{x}}(t) = \overline{A}\overline{x}(t) + \overline{B}u(t)$
 $y(t) = Cx(t) + Du(t)$, $y(t) = \overline{C}\overline{x}(t) + \overline{D}u(t)$

invertible transformation of the states:

$$T \in \mathbb{R}^{n \times n}$$
 , $\det T \neq 0$, $\overline{x} = Tx$ $\Rightarrow x = T^{-1}\overline{x}$
$$\dim \mathcal{X} = \dim \overline{\mathcal{X}} = n$$

$$T^{-1}\dot{\overline{x}} = AT^{-1}\overline{x} + Bu$$

$$\dot{\overline{x}} = TAT^{-1}\overline{x} + TBu \quad , \quad y = CT^{-1}\overline{x} + Du$$
 $\overline{A} = TAT^{-1}$. $\overline{B} = TB$. $\overline{C} = CT^{-1}$. $\overline{D} = D$

Transfer function computed from the state space model

Laplace transform of the state space model

$$sX(s) = AX(s) + BU(s)$$
 (state equation, $x(0) = 0$)
 $Y(s) = CX(s) + DU(s)$ (output equation)

$$X(s) = (sI - A)^{-1}BU(s)$$

$$Y(s) = \{C(sI - A)^{-1}B + D\}U(s)$$

The system's transfer function H(s), expressed with the corresponding state space model matrices (A, B, C, D):

$$H(s) = C(sI - A)^{-1}B + D$$

Solution of the state space model

We determine the inverse Laplace transform of

$$X(s) = (sI - A)^{-1}BU(s)$$

by considering the Taylor series of (matrix) expression: $(sI - A)^{-1}$:

$$(sI - A)^{-1} = \frac{1}{s} \left(I - \frac{A}{s} \right)^{-1} = \frac{1}{s} \left(I + \frac{A}{s} + \frac{A^2}{s^2} + \dots \right)$$

Thus, the inverse Laplace transform of $(sI - A)^{-1}$ is

$$\mathcal{L}^{-1}\{(sI-A)^{-1}\} = I + At + \frac{1}{2!}A^2t^2 + \dots = e^{At}$$
 , $t \ge 0$

Finally, we obtain the unique solution x(t) of the state space model for the initial condition x(0):

$$\begin{array}{l} x(t) = \mathrm{e}^{At} x(0) + \int_0^t \mathrm{e}^{A(t-\tau)} B u(\tau) d\tau \\ y(t) = C x(t) + D u(t) \end{array}$$

Markov parameters

$$\begin{array}{l} x(t) = \mathrm{e}^{At} x(0) + \int_0^t \mathrm{e}^{A(t-\tau)} B u(\tau) d\tau \\ y(t) = C x(t) + D u(t) \end{array}$$

Assuming x(0) = 0, D = 0 and $u(t) = \delta(t)$, we obtain the impulse response:

$$h(t) = Ce^{At}B = CB + CABt + CA^{2}B\frac{t^{2}}{2!} + ...$$

Markov parameters

$$CA^{i}B$$
 , $i = 0, 1, 2, ...$

are **invariant** for the state transformations.

state space models: key points

- the Laplace transform converts sets of first order linear differential equations into algebraic equations
- SS models can handle non-zero initial conditions
- knowing the input and the initial condition, the output can be computed (Laplace transform (and inverse), convolution)
- the model parameters are the A, B, C, D matrices (x(0)) is also needed for the solution
- SS models can be easily transformed to I/O models through Laplace transform assuming x(0) = 0

Summary

- fundamental system properties: linearity (superposition), time-invariance
- LTI I/O models: higher order linear differential equations containing only the input and the output (and derivatives)
- transfer function, impulse response function: LTI system operators given in the form of signals
- state space models: sets of first order ODEs with state variables, inputs and outputs; initial conditions not necessarily zero
- SS and I/O models can be converted to each other
- key role of Laplace transform in handling/solving I/O and SS models