Computer Controlled Systems

Homework 3
Submission deadline: November 16. 2017. 10:00/12:00 (end of the seminar)

All solutions are expected to be calculated by hand, also all figures have to be drawn by hand. Computer programs can be used for self-verification, but all problems have to contain the detailed steps of solutions!

Frequency response analysis and controller design for a HDD head ${ }^{1}$

Consider a HDD read/write head with dynamics described by the following differential equation:

$$
J \ddot{\theta}+b \dot{\theta}+k_{1} \theta=k_{2} u
$$

where θ denotes the angular position of the head, while u is the input current.

The names and values of the system constants are:

$J=0.01 \mathrm{kgm}^{2}$	inertia of the head assembly
$b=0.004 \mathrm{Nm} /(\mathrm{rad} / \mathrm{sec})$	viscous damping coefficient of the bearings
$k_{1}=10 \mathrm{Nm} / \mathrm{rad}$	return spring constant
$k_{2}=0.05 \mathrm{Nm} / \mathrm{rad}$	motor torque constant

By choosing the angular position as output variable $(y=\theta)$, the input-output model of the HDD head is:

$$
\ddot{y}(t)+0.4 \dot{y}(t)+1000 y(t)=5 u(t)
$$

The head has a (damped) oscillatory behaviour, which is unacceptable. Moreover, it has to be positioned to prescribed values in a short time. To fulfill these needs, a PID controller is applied to the system as depicted in the figure below.

1. Determine the transfer function $H(s)$ of the input-output model by Laplace-transform! Solution.

$$
s^{2} Y(s)+0.4 s Y(s)+1000 Y(s)=5 U(s) \quad \Rightarrow \quad H(s)=\frac{5}{s^{2}+0.4 s+1000}
$$

2. Check the poles of $H(s)$! Is the system stable? What refers to the oscillatory behaviour?

Solution. The poles are the roots of the denominator: $\lambda_{1,2}=-0.2 \pm 31.622 j$. Since $\operatorname{Re}\left(\lambda_{1,2}\right)<0$ the system is stable. The complex conjugate poles refer to the oscillatory behaviour.
3. Give the frequency response function $H(j \omega)$ of the system! Give its gain $k(\omega)$ and phase $\phi(\omega)$ at $\omega=0 \mathrm{rad} / \mathrm{s}$ and $\omega=32 \mathrm{rad} / \mathrm{s}!$ What is the response $y(t)$ to the periodic input $u(t)=10 \sin (32 t)$?

[^0]
Solution.

$$
H(j \omega)=\frac{5}{(j \omega)^{2}+0.4(j \omega)+1000}
$$

At $\omega=0$:

$$
H(j 0)=\frac{5}{1000}, \quad k=|H(j 0)|=0.005, \quad \phi=\operatorname{arctg}\left(\frac{\operatorname{Im}(H(j 0))}{\operatorname{Re}(H(j 0))}\right)=0
$$

At $\omega=32$:

$$
\begin{aligned}
H(j 32) & =\frac{5}{(j 32)^{2}+0.4(j 32)+1000}=\frac{5}{-24+j 12.8} \\
k & =|H(j 32)|=\frac{5}{\sqrt{(-24)^{2}+12.8^{2}}}=0.184 \\
H(j 32) & =\frac{5}{-24+j 12.8} \cdot \frac{-24-j 12.8}{-24-j 12.8}=\frac{-120-j 64}{(-24)^{2}-(j 12.8)^{2}}=\frac{-120}{24^{2}+12.8^{2}}+j \frac{-64}{24^{2}+12.8^{2}}= \\
& =-0.1622-0.0865 j \\
\phi & =\operatorname{arctg}\left(\frac{\operatorname{Im}(H(j 32))}{\operatorname{Re}(H(j 32))}\right)=\operatorname{arctg}\left(\frac{-0.0865}{-0.1622}\right)=0.49 \operatorname{rad}
\end{aligned}
$$

The system response is:

$$
y(t)=k \cdot 10 \sin (32 t+\phi)=1.84 \sin (32 t+0.49)
$$

4. Give the transfer function $G(s)$ of the closed loop system!

Solution.

$$
\begin{aligned}
G(s) & =\frac{K_{P I D}(s) H(s)}{1+K_{P I D}(s) H(s)}=\frac{\left(K_{P}+K_{D} s+K_{I} \frac{1}{s}\right) \frac{5}{s^{2}+0.4 s+1000}}{1+\left(K_{P}+K_{D} s+K_{I} \frac{1}{s}\right) \frac{5}{s^{2}+0.4 s+1000}}= \\
& =\frac{5\left(K_{P}+K_{D} s+K_{I} \frac{1}{s}\right)}{s^{2}+0.4+1000+5\left(K_{P}+K_{D} s+K_{I} \frac{1}{s}\right)}=\frac{5\left(K_{D} s^{2}+K_{P} s+K_{I}\right)}{s^{3}+\left(5 K_{D}+0.4\right) s^{2}+\left(5 K_{P}+1000\right) s+5 K_{I}}
\end{aligned}
$$

5. Determine the tuning parameters K_{P}, K_{D} and K_{I} in such a way that all the poles of the closed loop system are equal to -20 !
Solution. The denominator of $G(s)$ is a third order polynomial therefore it has three poles. We have to choose K_{P}, K_{D} and K_{I} in such a way that the denominator is equal to $(s-20)^{3}$:

$$
s^{3}+\left(5 K_{D}+0.4\right) s^{2}+\left(5 K_{P}+1000\right) s+5 K_{I}=s^{3}+60 s^{2}+1200 s+8000
$$

This determines the values of the tuning parameters:

$$
K_{P}=40, K_{D}=11.92, K_{I}=1600
$$

6. Determine the DC gain of the closed loop system! Does this controlled system follow a constant reference (head positioning) signal?
Solution. DC gain is $G(j 0)=1$ (this is the effect of the integrator). Yes, it follows because of the integrator.

[^0]: ${ }^{1}$ Model is borrowed from MathWorks

