## 1 Homework

## 1.1 problem

The given linear mapping is $\mathcal{A}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}, \mathcal{A}(v)=A v$, where

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

(a)

We apply the mapping to the vector $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \in \mathbb{R}^{3}$.

$$
\mathcal{A}(v)=A v=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
v_{2}+v_{3} \\
v_{1}+v_{3} \\
v_{1}+v_{2}
\end{array}\right) .
$$

(b)

The characteristic equation and the eigenvalues are

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{ccc}
\lambda & -1 & -1 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda
\end{array}\right|=\lambda^{3}-3 \lambda-2=(\lambda-2)(\lambda+1)^{2}=0 \Longrightarrow \lambda_{1}=2 \lambda_{2,3}=-1
$$

1. 

$$
\left(\lambda_{1} I-A\right) x=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 x_{1}-x_{2}-x_{3} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{1}-x_{2}+2 x_{3}
\end{array}\right)=0
$$

From this we get

$$
\begin{aligned}
2 x_{1}-x_{2}-x_{3} & =0 \\
\frac{3}{2} x_{2}-\frac{3}{2} x_{3} & =0
\end{aligned}
$$

and $x_{1}=x_{2}=x_{3}$, which means that the eigenvector corresponding to $\lambda_{1}=2$ is $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and the eigenspace is

$$
\operatorname{span}\left\{v_{1}\right\}=\left\{p v_{1} \mid p \in \mathbb{R} \backslash\{0\}\right\}
$$

2. 

$$
\left(\lambda_{2,3} I-A\right) x=\left(\begin{array}{lll}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

From this we get

$$
x_{1}=-x_{2}-x_{3} .
$$

This means that the eigenvectors corresponding to $\lambda_{2,3}=-1$ are $v_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ and $v_{3}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ and the eigenspace is

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\}=\left\{p v_{2}+q v_{3} \mid p, q \in \mathbb{R}, p+q \neq 0\right\}
$$

(c)

The matrix

$$
S=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & -1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

is an appropriate coordinate transformation matrix and

$$
D=S^{-1} A S=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(d)

Since $D$ is a diagonal matrix

$$
e^{D}=\left(\begin{array}{ccc}
e^{2} & 0 & 0 \\
0 & \frac{1}{e} & 0 \\
0 & 0 & \frac{1}{e}
\end{array}\right)
$$

(e)

$$
e^{A}=S e^{D} S^{-1}=\left(\begin{array}{ccc}
\frac{e^{3}+2}{3 e} & \frac{e^{3}-1}{3 e} & \frac{e^{3}-1}{3 e} \\
\frac{e^{3}-1}{3 e} & \frac{e^{3}+2}{3 e} & \frac{e^{3}-1}{3 e} \\
\frac{e^{3}-1}{3 e} & \frac{e^{3}-1}{3 e} & \frac{e^{3}+2}{3 e}
\end{array}\right)
$$

## 1.2 problem

The given matrix is

$$
B=\left(\begin{array}{cccc}
1 & -1 & 0 & 22 \\
0 & 1 & -2 & 5 \\
-3 & 2 & 5 & -65 \\
-2 & 6 & 4 & 0
\end{array}\right)
$$

We need to solve the linear equation system

$$
B x=\left(\begin{array}{c}
x_{1}-x_{2}+22 x_{4} \\
x_{2}-2 x_{3}+5 x_{4} \\
-3 x_{1}+2 x_{2}+5 x_{3}-65 x_{4} \\
-2 x_{1}+6 x_{2}+4 x_{3}
\end{array}\right)=0
$$

After Gaussian elimination we get

$$
\begin{aligned}
x_{1}-x_{2}+22 x_{4} & =0 \\
x_{2}-2 x_{3}+5 x_{4} & =0 \\
3 x_{3}+6 x_{4} & =0 .
\end{aligned}
$$

From this we get $x_{3}=-2 x_{4}, x_{2}=-9 x_{4}$ and $x_{1}=-31 x_{4}$ which means that any $v=\left(\begin{array}{c}-31 x_{4} \\ -9 x_{4} \\ -2 x_{4} \\ x_{4}\end{array}\right)=x_{4}\left(\begin{array}{c}-31 \\ -9 \\ -2 \\ 1\end{array}\right)$ is a solution of the linear equation system $B x=0, \forall x_{4} \in \mathbb{R}$. Using this

$$
\begin{aligned}
\operatorname{Im}(B) & =\operatorname{span}\left\{b_{1}, b_{2}, b_{3}\right\} \\
\operatorname{Ker}(B) & =\operatorname{span}\{v\}
\end{aligned}
$$

where $B=\left(\begin{array}{llll}b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right)$.

## 1.3 problem

$$
\ddot{y}+4 \dot{y}+3 y=u(t)
$$

where $\dot{y}(0)=-1$ and $y(0)=1$. We know that

$$
\begin{aligned}
& \mathcal{L}\{\ddot{y}\}=s^{2} Y(s)-s y(0)-\dot{y}(0)=s^{2} Y(s)-s+1 \\
& \mathcal{L}\{\dot{y}\}=s Y(s)-y(0)=s Y(s)-1
\end{aligned}
$$

Using this the above equation can be written as

$$
s^{2} Y(s)-s+1+4 s Y(s)-4+3 Y(s)=\left(s^{2}+4 s+3\right) Y(s)-s-3=U(s) \Longrightarrow Y(s)=\frac{U(s)+s+3}{(s+1)(s+3)}
$$

(a)

With $u(t)=4 e^{-2 t}$ we get $U(s)=\frac{4}{s+2}$ and

$$
Y(s)=\frac{s^{2}+5 s+10}{(s+1)(s+2)(s+3)} \Longrightarrow y(t)=3 e^{-t}-4 e^{-2 t}+2 e^{-3 t}
$$

(b)

With $u(t)=\sin 5 t$ we get $U(s)=\frac{5}{s^{2}+25}$ and

$$
Y(s)=\frac{s^{3}+3 s^{2}+25 s+80}{(s+1)(s+3)\left(s^{2}+25\right)} \Longrightarrow y(t)=\frac{57}{52} e^{-t}--\frac{5}{68} e^{-3 t}-\frac{5}{221} \cos 5 t-\frac{11}{442} \sin 5 t .
$$

(c)

With $u(t)=e^{-2 t} \cos 5 t$ we get $U(s)=\frac{s+2}{(s+2)^{2}+25}$ and

$$
Y(s)=\frac{s^{3}+7 s^{2}+42 s+89}{(s+1)(s+3)\left(s^{2}+4 s+29\right)} \Longrightarrow y(t)=\frac{53}{52} e^{-t}+\frac{1}{52} e^{-3 t}-\frac{1}{26} e^{-2 t} \cos 5 t .
$$

## 1.4 problem

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

where

$$
A=\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right) \quad B=\binom{1}{0} \quad C=(1-1)
$$

(a)

$$
H(s)=\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B=\frac{s-1}{s^{2}-3 s+1}
$$

(b)

$$
h(t)=\mathcal{L}^{-1}\{H(s)\}=e^{\frac{3}{2} t}\left(\cosh \frac{\sqrt{5}}{2} t+\frac{1}{\sqrt{5}} \sinh \frac{\sqrt{5}}{2} t\right)
$$

