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Preface

Objectives

In recent years linear matrix inequalities (LMI’s) have emerged as a powerful tool to approach control
problems that appear hard if not impossible to solve in an analytic fashion. Although the history of
LMI’s goes back to the fourties with a major emphasis of their role in control in the sixties (Kalman,
Yakubovich, Popov, Willems), only recently powerful numerical interior point techniques have been
developed to solve LMI’s in a practically efficient manner (Nesterov, Nemirovskii 1994). Several
Matlab software packages are available that allow a simple coding of general LMI problems and
provide efficient tools to solve typical control problems (LMI Control Toolbox, LMI-tool).

Boosted by the availability of fast LMI solvers, research in robust control has experienced a paradigm
shift – instead of arriving at an analytical solution the intention is to reformulate a given problem to
verifying whether an LMI is solvable or to optimizing functionals over LMI constraints.

The main emphasis of this book is

• to reveal the basic principles of formulating desired properties of a control system in the form
of LMI’s,

• to demonstrate the techniques to reduce the corresponding controller synthesis problem to an
LMI problem,

• to get familiar with the use of software packages for performance analysis and controller
synthesis using LMI tools.

The power of this approach is illustrated by several fundamental robustness and performance problems
in analysis and design of linear control systems.

vii



Topics

This book has been written for a graduate course on the subject of LMI’s in systems and control.
Within the graduate program of the Dutch Institute of Systems and Control (DISC), this course is
intended to provide up-to-date information on the topic for students involved in either the practical or
theoretical aspects of control system design. DISC courses have the format of two class hours once
per week during a period of eight weeks. In principle, the lecture notes are suitable for self-study.
The topics covered for this course are the following.

1. Examples. Facts from convex analysis. Interior point methods in convex programming and
their efficiency. Linear Matrix Inequalities, history. The three basic problems and their solution
with LMI-Lab.

2. Lyapunov functions for invariance, stability, performance, robust performance. Quadratic
stability and performance. Considered criteria: Dissipativity, Integral quadratic constraints,
H2-norm, H∞-norm, upper bound of peak-to-peak norm. LMI stability regions.

3. Frequency domain techniques for the robustness analysis of a control system. Integral Quadratic
Constraints. Multipliers. Relations to classical tests and to µ-theory.

4. A general technique to proceed from LMI analysis to LMI synthesis. State-feedback and
output-feedback synthesis algorithms for robust stability, nominal performance and robust
performance using general scalings.

5. Mixed control problems. Multi-model control problems. Lyapunov shaping technique.

6. Extension to linear parametrically varying systems. Gain-scheduling. Examples of occurrence.
Solution of design problem with scaling and gridding techniques.

7. Extension to certain nonlinear analysis and design problems.

In later years, the course has been reduced to a four-week course, which treats, roughly speaking,
half of the material presented in this book.

Material

The main reference material for the course will be the lectures notes and the following books

[1] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan
Linear Matrix Inequalities in System and Control Theory, SIAM studies in Applied Mathemat-
ics, Philadelphia, 1994.

[2] Gahinet et al., LMI-lab Matlab Toolbox for Control Analysis and Design.

viii



[3] L.E. Ghaoui and S.-I Niculescu (Edts.), Advances in Linear Matrix Inequality Methods in
Control, SIAM, Advances in Design and Control, 2000.

Prerequisites

Linear algebra, calculus, basic system theory, and some experience with MATLAB.
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Chapter 1

Convex optimization and linear
matrix inequalities

1.1 Introduction

Optimization questions and decision making processes are abundant in daily life and invariably
involve the selection of the best decision from a number of options or a set of candidate decisions.
Many examples of this theme can be found in technical sciences such as electrical, mechanical and
chemical engineering, in architecture and in economics, but also in the social sciences, in biological
and ecological processes and organizational questions. For example, production processes in industry
are more and more market driven and require an ever increasing flexibility of product changes and
product specifications due to customer demands in quality, price and specification. Products need to
be manufactured within strict product specifications, with large variations of input quality, against
competitive prices, with minimal waste of resources, energy and valuable production time, with
a minimal time-to-market and, of course, with maximal economical profit. Important economical
benefits can therefore only be realized by making proper decisions in the operating conditions of
production processes. Due to increasing requirements on the safety and flexibility of production
processes, there is a constant need for further optimization, efficiency and improvement of production
processes.

Casting an optimization problem in mathematics involves the specification of the candidate decisions
and, most importantly, the formalization of the concept of best or optimal decision. If the (finite or
infinite) set of candidate decisions is denoted by S, then one approach to quantify the performance
of a decision x ∈ S is to express its value in terms of a single real quantity f (x) where f is some
real valued function f : S → R. The value of decision x ∈ S is then given by f (x). Depending on
the interpretation of f , we may wish to minimize or maximize f over all possible candidates in S.
An optimal decision is then simply an element of S that minimizes or maximizes f over all possible

1



1.2. FACTS FROM CONVEX ANALYSIS

alternatives.

The optimization problem to minimize the criterion f over S involves various specific questions:

1. How to determine the optimal value (or optimal performance)

Vopt := inf
x∈S f (x) = inf{f (x) | x ∈ S}.

2. How to determine an almost optimal solution, i.e., for arbitrary ε > 0, how to determine xε ∈ S
such that

f (xε) ≤ Vopt + ε.

3. Does there exist an optimal solution xopt ∈ S such that f (xopt) = Vopt?

4. If such an optimal solution xopt exists, how can it be computed?

5. Finally, is the optimal solution xopt unique?

We will address each of these questions in the sequel.

1.2 Facts from convex analysis

In view of the optimization problems just formulated, we are interested in finding conditions for
optimal solutions to exist. It is therefore natural to resort to a branch of analysis which provides such
conditions: convex analysis. The results and definitions in this subsection are mainly basic, but they
have important implications and applications as we will see later.

We start with summarizing some definitions and elementary properties from linear algebra and func-
tional analysis. We assume the reader to be familiar with the basic concepts of vector spaces and
normed linear spaces.

Definition 1.1 (Continuity) A function f which maps a normed space S into a normed space T
is continuous at x0 ∈ S if for every ε > 0 there exist δ > 0 such that ‖x − x0‖ < δ implies that
‖f (x)− f (x0)‖ < ε. The function f is called continuous if it is continuous at each x0 ∈ S.

Obviously, continuity depends on the definition of the norm in the normed spaces S and T . We
remark that a function f : S → T is continuous at x0 ∈ S if and only if for every sequence {xn}∞n=1,
xn ∈ S, which converges to x0 as n→∞, there holds that f (xn)→ f (x0).

Definition 1.2 (Compactness) A set S in a normed linear space X is called compact if for every
sequence {xn}∞n=1 in S there exists a subsequence {xnm}∞m=1 which converges to an element x0 ∈ S.

2
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1.2. FACTS FROM CONVEX ANALYSIS

If the normed linear space X is finite dimensional then compactness has an equivalent characterization
as follows.

Proposition 1.3 If X is finite dimensional then S ⊂ X is compact if and only if S is closed and
bounded1.

The well-known Weierstrass theorem provides a useful tool to determine whether an optimization
problem admits a solution. It provides an answer to the third question raised in the previous subsection
for special sets S and special performance functions f .

Proposition 1.4 (Weierstrass) If f : S → R is a continuous function defined on a compact subset
S of a normed linear space X, then there exists xmin, xmax ∈ S such that

f (xmin) = inf
x∈S f (x) ≤ f (x) ≤ sup

x∈S
f (x) = f (xmax)

for all x ∈ S.

Proof. Define Vmin := infx∈S f (x). Then there exists a sequence {xn}∞n=1 in S such that f (xn)→
Vmin as n→∞. As S is compact, there must exist a subsequence {xnm}∞m=1 of {xn}which converges
to an element, say xmin, which lies in S. Obviously, f (xnm)→ Vmin and the continuity of f implies
that f (xnm)→ f (xmin) as nm→∞. We claim that Vmin = f (xmin). By definition of Vmin, we have
Vmin ≤ f (xmin). Now suppose that the latter inequality is strict, i.e., suppose that Vmin < f (xmin).
Then 0 < f (xmin)−Vmin = limnm→∞ f (xnm)−limnm→∞ f (xnm) = 0, which yields a contradiction.
The proof of the existence of a maximizing element is similar.

Note that Proposition 1.4 does not give a constructive method to find the extremizing solutions xmin
and xmax. It only guarantees the existence of these elements for continuous functions defined on
compact sets. For many optimization problems these conditions (continuity and compactness) turn
out to be overly restrictive. We will therefore resort to convex sets.

Definition 1.5 (Convex sets) A set S in a linear vector space is said to be convex if

{x1, x2 ∈ S} =⇒ {x := αx1 + (1− α)x2 ∈ S for all α ∈ (0, 1)}.

In geometric terms, this states that for any two points of a convex set also the line segment connecting
these two points belongs to the set. In general, the empty set is considered to be convex. The point
αx1 + (1 − α)x2 with α ∈ (0, 1) is called a convex combination of the two points x1 and x2. More
generally, convex combinations are defined for any finite set of points as follows.

Definition 1.6 (Convex combinations) Let S be a subset of a vector space and let x1, . . . , xn ∈ S.
If α1, . . . , αn is a set of non-negative real numbers with

∑n
i=1 αi = 1 then

x :=
n∑
i=1

αixi

1A set S is bounded if there exists a number B such that for all x ∈ S, ‖x‖ ≤ B; it is closed if xn → x implies that x ∈ S.

3
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1.2. FACTS FROM CONVEX ANALYSIS

is called a convex combination of x1, . . . , xn.

Suppose we take n points x1, . . . , xn in S. Then it is easy to see that the set of all convex combinations
of x1, . . . , xn is itself convex, i.e.,

C := {x | x is a convex combination of x1, . . . , xn}
is convex. We next define the notion of interior points and closure points of sets.

Definition 1.7 (Interior points) Let S be a subset of a normed space X. The point x ∈ S is called
an interior point of S if there exists an ε > 0 such that all points y ∈ X with ‖x − y‖ < ε also
belong the S. The interior of S is the collection of all interior points of S.

Definition 1.8 (Closure points) Let S be a subset of a normed space X. The point x ∈ X is called
a closure point of S if, for all ε > 0, there exists a point y ∈ S with ‖x − y‖ < ε. The closure of S
is the collection of all closure points of S. S is said to be closed if it is equal to its closure.

We summarize some elementary properties pertaining to convex sets in the following proposition.

Proposition 1.9 Let S and T be convex sets in a normed vector space X. Then

1. the set αS := {x | x = αs, s ∈ S} is convex for any scalar α.

2. the sum S + T := {x | x = s + t, s ∈ S, t ∈ T } is convex.

3. the closure and the interior of S (and T ) are convex.

4. the intersection S ∩ T := {x | x ∈ S and x ∈ T } is convex.

The last property actually holds for the intersection of an arbitrary collection of convex sets, i.e, if
Sα , α ∈ A is a family of convex sets then ∩α∈ASα is also convex. This property turns out to be useful
in constructing the smallest convex set that contains a given set. It is defined as follows.

Definition 1.10 (Convex hull) The convex hull co(S) of a set S is the intersection of all convex sets
containing S.

Convex hulls have the following property.

Proposition 1.11 (Convex hulls) For any subset S of a linear vector space X, the convex hull co(S)
is convex and consists precisely of all convex combinations of the elements of S.

Definition 1.12 (Convex functions) A function f : S → R is called convex if

1. S is convex and

4
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1.2. FACTS FROM CONVEX ANALYSIS

2. for all x1, x2 ∈ S and α ∈ (0, 1) there holds that

f (αx1 + (1− α)x2) ≤ αf (x1)+ (1− α)f (x2). (1.2.1)

f is called strictly convex if the inequality in (1.2.1) is strict for x1 �= x2.

Note that the domain of a convex function is by definition a convex set. Simple examples of convex
functions are f (x) = x2 on R, f (x) = sin x on [π, 2π ] and f (x) = |x| on R.

Instead of minimizing the function f : S → R we can set our aims a little lower and be satisfied with
considering all possible x ∈ S that give a guaranteed upper bound of f . For this, we introduce, for
any number α ∈ R, the sublevel sets associated with f as follows

Sα := {x ∈ S | f (x) ≤ α}.
Obviously, Sα = ∅ if α < infx∈S f (x) and Sα coincides with the set of global minimizers of f if
α = infx∈S f (x). Note also that Sα ⊆ Sβ whenever α ≤ β; that is sublevel sets are non-decreasing
(in a set theoretic sense) when viewed as function of α. As you could have guessed, convex functions
and convex sublevel sets are closely related to each other:

Proposition 1.13 If f : S → R is convex then the sublevel set Sα is convex for all α ∈ R.

Proof. Suppose f is convex, let α ∈ R and consider Sα . If Sα is empty then the statement is
trivial. Suppose therefore that Sα �= ∅ and let x1, x2 ∈ Sα , λ ∈ [0, 1]. Then, as S is convex,
λx1 + (1 − λ)x2 ∈ S and by definition of Sα we have that f (x1) ≤ α, f (x2) ≤ α. Convexity of f
now implies that

f (λx1 + (1− λ)x2) ≤ λf (x1)+ (1− λ)f (x2) ≤ λα + (1− λ)α = α

i.e., λx1 + (1− λ)x2 ∈ Sα .

We emphasize that it is not true that convexity of the sublevel sets Sα , α ∈ R implies convexity of
f . However, the class of functions for which all sublevel sets are convex are that important that they
deserve their own name. The following concept is probably the most important generalization of
convex functions.

Definition 1.14 (Quasi-convex functions) A function f : S → R is called quasi-convex if the
sublevel set Sα is convex for all α ∈ R.

It is easy to see that f is quasi-convex if and only if

f (αx1 + (1− α)x2) ≤ max[f (x1), f (x2)]
for all α ∈ [0, 1] and for all x1, x2 ∈ S. In particular, every convex function is also quasi-convex.
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1.3. CONVEX OPTIMIZATION

1.3 Convex optimization

After the previous section with definitions and elementary properties of convex sets, we hope that
this section will convince the most skeptical reader why convexity of sets and functions is such a
desirable property for optimization.

1.3.1 Local and global minima

Anyone who gained experience with numerical optimization methods got familiar with the pitfalls of
local minima and local maxima. One reason for studying convex functions is related to the absence
of local minima.

Definition 1.15 (Local and global minima) Let S be a subset of a normed space X. The function
f : S → R is said to have a local minimum at x0 ∈ S if there exists ε > 0 such that

f (x0) ≤ f (x) (1.3.1)

for all x ∈ S with ‖x − x0‖ < ε. It is a global minimum of f if (1.3.1) holds for all x ∈ S.

In words, f has a local minimum at x0 ∈ S if there exists a neighborhood N of x0 such that
f (x0) ≤ f (x) for all points x ∈ S ∩N . Note that according to this definition every global minimum
is a local minimum as well. The notions of local maximum and global maximum of a function f are
similarly defined. Here is a simple and nice result which provides one of our main interests in convex
functions.

Proposition 1.16 Suppose that f : S → R is convex. If f has a local minimum at x0 ∈ S then
f (x0) is also the global minimum of f . If f is strictly convex, then x0 is moreover unique.

Proof. Let f be convex and suppose that f has a local minimum at x0 ∈ S. Then for all x ∈ S and
α ∈ (0, 1) sufficiently small,

f (x0) ≤ f ((1− α)x0 + αx) = f (x0 + α(x − x0)) ≤ (1− α)f (x0)+ αf (x). (1.3.2)

This implies that
0 ≤ α(f (x)− f (x0)) (1.3.3)

or f (x0) ≤ f (x). So f (x0) is a global minimum. If f is strictly convex, then the second inequality
in (1.3.2) is strict so that (1.3.3) becomes strict for all x ∈ S. Hence, x0 is unique.

Interpretation 1.17 It is very important to emphasize that Proposition 1.16 does not make any
statement about existence of points x0 ∈ S which minimize f . It merely says that all local minima
of f are also global minima. It therefore suffices to compute local minima of a convex function f to
actually determine its global minimum.

Remark 1.18 Proposition 1.16 does not hold for quasi-convex functions.
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1.3. CONVEX OPTIMIZATION

1.3.2 Uniform bounds

The second good reason to investigate convex functions comes from the fact that uniform upperbounds
of convex functions can be verified on subsets of their domain. Here are the details: let S0 be a set
and suppose that f : S → R is a function with

S = co(S0).

As we have seen in Proposition 1.11, S is then convex and we have the following property which is
both simple and powerful.

Proposition 1.19 Let f : S → R be a convex function where S = co(S0). Then f (x) ≤ γ for all
x ∈ S if and only if f (x) ≤ γ for all x ∈ S0

Proof. The ‘only if’ part is trivial. To see the ‘if’ part, Proposition 1.11 implies that every x ∈ S
can be written as a convex combination x =∑n

i=1 αixi where n > 0, αi ≥ 0, xi ∈ S0, i = 1, . . . , n
and

∑n
i=1 αi = 1. Using convexity of f and non-negativity of the αi’s, we infer

f (x) = f (

n∑
i=1

αixi) ≤
n∑
i=1

αif (xi) ≤
n∑
i=1

αiγ = γ,

which yields the result.

Interpretation 1.20 Proposition 1.19 states that the uniform bound f (x) ≤ γ on S can equivalently
be verified on the set S0. This is of great practical relevance especially when S0 contains only a finite
number of elements. It then requires a finite number of tests to conclude whether or not f (x) ≤ γ

for all x ∈ S. In addition, since

γ0 := sup
x∈S

f (x) = max
x∈S0

f (x)

the supremum of f can be determined by considering S0 only.

1.3.3 Subgradients

Our third reason of interest in convex functions comes from the geometric idea that through any point
on the graph of a convex function we can draw a line such that the entire graph lies above or on the
line. For functions f : S → R with S ⊆ R, this idea is pretty intuitive and the result is as follows.

Proposition 1.21 Suppose that S ⊂ R is open. Then f : S → R is convex if and only if for all
x0 ∈ S there exists a number g ∈ R, depending on x0, such that

f (x) ≥ f (x0)+ g · (x − x0) (1.3.4)

for all x ∈ S.
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1.3. CONVEX OPTIMIZATION

Proof. Let f be convex and x0 ∈ S. Choose g in the interval [f ′−(x0), f
′+(x0)] where

f ′−(x0) := lim
x↑x0

f (x)− f (x0)

x − x0
, f ′+(x0) := lim

x↓x0

f (x)− f (x0)

x − x0
.

These limits actually exist as for any triple x−1, x0, x ∈ S with x−1 < x0 < x we have that

f (x0)− f (x−1)

x0 − x−1
≤ f (x)− f (x−1)

x − x−1
≤ f (x)− f (x0)

x − x0
.

Hence, (f (x) − f (x0))/(x − x0) is a decreasing function of x which is bounded from below by
(f (x0)−f (x−1))/(x0−x−1). The limit f ′+(x0) therefore exists. A similar argument proves existence

of the limit f ′−(x0). Now the existence of the limits has been proved, it follows that f (x)−f (x0)
x−x0

is
≥ g or ≤ g depending on whether x > x0 or x < x0. In either case we obtain (1.3.4) which proves
the ‘only if’ part. To prove the ‘if’ part, let x1, x2 ∈ S, α ∈ [0, 1] and put x0 = αx1 + (1− α)x2. By
assumption, there exists g ∈ R such that f (x0) ≤ f (xi)+ g · (xi − x0), i = 1, 2. But then also

f (x0) = αf (x0)+ (1− α)f (x0)

≤ αf (x1)+ (1− α)f (x2)+ g[αx1 + (1− α)x2 − x0]
= αf (x1)+ (1− α)f (x2)

which shows that f is convex.

Remark 1.22 The right-hand side of (1.3.4) is sometimes called a support functional for f at x0 ∈ S.
As can be deduced from the above proof, if f happens to be differentiable at x0 then g is uniquely
given by the derivative f ′(x0).

We now turn to the more general situation where S may be an arbitrary vector space. The natural
extension of the right hand side of (1.3.4) involves the introduction of an affine function through the
point (x0, f (x0)) on the graph of f .

Definition 1.23 (Affine functions) A function f : S → T is affine if f (x) = f0 + T (x) where
f0 ∈ T and T : S → T is a linear map, i.e.,

T (α1x1 + α2x2) = α1T (x1)+ α2T (x2)

for all x1, x2 ∈ S and α1, α2 ∈ R.

Hence f : Rn → Rm is affine if and only if there exists x0 ∈ Rn such that the mapping x �→
f (x) − f (x0) is linear. This means that all affine functions f : Rn → Rm can be represented as
f (x) = f (x0) + T · (x − x0) where T is some matrix of dimension m × n and the dot · denotes
multiplication. We will be interested in the case where m = 1 and denote by 〈·, ·〉 the standard inner
product in Rn, that is, for x1, x2 ∈ Rn, 〈x1, x2〉 := x�2 x1.
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Proposition 1.24 Let S ⊆ Rn. If f : S → R is convex then for all x0 ∈ S there exists a subgradient
g ∈ Rn, depending on x0, such that

f (x) ≥ f (x0)+ 〈g, x − x0〉 (1.3.5)

for all x ∈ S.

Remark 1.25 Proposition 1.24 gives a necessary condition for convexity of a function f . If the
gradient of f

f ′ =
[
∂f
∂x1

. . .
∂f
∂xn

]
exists and is continuous at x0 ∈ S then g = f ′(x0) is the only subgradient of f at x0.

Interpretation 1.26 From (1.3.5) and the latter remark one easily infers that x0 ∈ S is a global
minimizer of the convex function f : S → R if and only if f has a subgradient g = 0 in x0.

Interpretation 1.27 If we consider the right hand side of (1.3.5), then trivially 〈g, (x − x0〉 > 0
implies that f (x) > f (x0). Thus all points in the half space {x ∈ S | 〈g, x− x0〉 > 0} lead to larger
values of f than f (x0). In particular, in searching the global minimum of f we can disregard this
entire half-space.

The observation in Interpretation 1.27 leads to a simple and straightforward recursive algorithm for
the computation of the global minimum of a convex function.

Algorithm 1.28 (Ellipsoid algorithm (conceptual)) Let x0 ∈ Rn and P0 = P�0 be a positive def-
inite matrix. Consider the problem of minimizing the convex function f : Rn → R over x ∈ Rn

subject to the constraint
(x − x0)

�P−1
0 (x − x0) ≤ 1.

Step 0 Set E0 := {x ∈ Rn | (x − x0)
�P−1

0 (x − x0) ≤ 1}.
Step k For k = 1, 2, . . .,

• Compute a subgradient gk−1 ∈ Rn for f at xk−1 and put

Rk := {x ∈ Rn | x ∈ Ek−1 and 〈gk−1, x − xk−1〉 ≤ 0}.

• Compute xk ∈ Rn and Pk = P�k > 0 with minimal determinant det(Pk) such that the
ellipsoid

Ek := {x ∈ Rn | (x − xk)�P−1
k (x − xk) ≤ 1}

contains Rk .

• Set k to k + 1 and return to Step k.
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The sequence of ellipsoids Ek and the sets Rk have the property that they contain an optimal solution.
The subgradients gk ∈ Rn divide Rn in the two half-spaces {x | 〈gk, x − xk〉 < 0} and {x |
〈gk, x − xk〉 > 0} while the cutting plane {x | 〈gk, x − xk〉 = 0} passes through the center of the
ellipsoid Ek for each k. In this construction, the sequence f (xk) has the property that it converges to
a minimizer of f . The algorithm therefore does not calculate a solution but only the minimal value
of f . Convergence of the algorithm is in ‘polynomial time’ due to the fact that the volume of the
ellipsoids decrease geometrically. However, in practice convergence is rather slow so that the method
is not particularly efficient from a computational point of view.

1.3.4 Duality in optimization

In many applications, the decision space S is described in terms of inequalities and equations. With
X ⊆ Rn, a typical decision space therefore assumes the form

S := {x ∈ X | g(x) ≤ 0, h(x) = 0} (1.3.6)

where g : X → Rk and h : X → Rl are functions and the inequality g(x) ≤ 0 is interpreted
component-wise. With decision sets of this form, we consider the optimization problem to find
Popt := infx∈S f (x) where f : X → R is a given function. In this section, we will refer to this
problem as a primal optimization problem and to Popt as the primal optimal value. We will assume
that S is non-empty.

Remark 1.29 If X, f and g are convex and h is affine, then it is easily seen that S is convex, in
which case this problem is commonly referred to as a convex program. This is probably the only
tractable instance of this problem and its study certainly belongs to the most sophisticated area of
nonlinear optimization theory. The special instance where f , g and h are all affine functions makes
the problem to determine Popt a linear programming problem.

Obviously, for any x0 ∈ S we have that Popt ≤ f (x0), i.e., an upperbound of Popt is obtained from
any feasible point x0 ∈ S. On the other hand, if x ∈ X satisfies g(x) ≤ 0 and h(x) = 0, then for
arbitrary vectors y ≥ 0 and z we have that

L(x, y, z) := f (x)+ 〈y, g(x)〉 + 〈z, h(x)〉 ≤ f (x).

Here, L(·, ·, ·) is called a Lagrangian, which is a function of n+ k+ l variables. It is immediate that
for all y ≥ 0 and z we have that

%(y, z) := inf
x∈XL(x, y, z) ≤ inf

x∈S f (x) = Popt.

The function %(·, ·) is the Lagrange dual cost and since it is independent of x we conclude that

Dopt := sup
(y,z), y≥0, z

%(y, z) = sup
(y,z), y≥0, z

inf
x∈XL(x, y, z) ≤ Popt

provides a lower bound of Popt. Note that %(y, z) is computed by solving an unconstrained optimiza-
tion problem. Furthermore,−%(·, ·) is a convex function (%(y, z) is a concave function) whenever the
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1.4. LINEAR MATRIX INEQUALITIES

primal problem is a convex program. The dual optimization problem to determineDopt is therefore a
concave maximization problem. Note that the constraints in the dual problem are much simpler than
the ones in the primal problem.

Of course, the question arises when Dopt = Popt. To answer this question, suppose that X, f and g
are convex and h is affine. As noted before, this implies that S is convex. We will say that S satisfies
the constraint qualification if there exists a point x0 in the interior of X with g(x0) ≤ 0, h(x0) = 0
such that gj (x0) < 0 for all component functions gj that are not affine2. We then have the following
key result.

Theorem 1.30 (Karush-Kuhn-Tucker) Suppose that X, f and g are convex and h is affine. If S
defined in (1.3.6) satisfies the constraint qualification then Dopt = Popt. In that case, there exists
vectors (yopt, zopt), yopt ≥ 0 such thatDopt = %(yopt, zopt), i.e., the dual optimization problem admits
an optimal solution. Moreover, xopt ∈ S satisfies f (xopt) = Popt if and only if xopt minimizes
L(x, yopt, zopt) over all x ∈ X such that 〈yopt, g(xopt)〉 = 0.

Remark 1.31 If the triple (xopt, yopt, zopt) defined in Theorem 1.30 exists it defines a saddle point
for the Lagrangian L in the sense that

L(xopt, y, z) ≤ L(xopt, yopt, zopt) ≤ L(x, yopt, zopt)

for all x ∈ X, y ≥ 0 and z. Under the given conditions, Theorem 1.30 therefore states that xopt is
a solution of primal optimization problem if and only if there exists (yopt, zopt), yopt ≥ 0 such that
(xopt, yopt, zopt) is a saddle point of L and such that 〈yopt, g(xopt)〉 = 0.

Remark 1.32 The result of Theorem 1.30 is very general and provides a strong tool in convex
optimization. This, because the dual optimization problem is, in general, simpler and, under the
stated assumptions, is guaranteed to be solvable. The point (yopt, zopt) is generally called a Kuhn-
Tucker point. The assumptions in the proposition are rather weak. If X = Rn, then all points are
interior points.

1.4 Linear matrix inequalities

1.4.1 What are they?

A linear matrix inequality is an expression of the form

F(x) := F0 + x1F1 + . . .+ xmFm > 0 (1.4.1)

where

• x = (x1, . . . , xm) is a vector of m real numbers called the decision variables.
2Some authors call S superconsistent in that case.
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• F0, . . . , Fm are real symmetric matrices, i.e., Fi = F�i ∈ Rn×n, i = 0, . . . , m for some
n ∈ Z+.

• the inequality > 0 in (1.4.1) means ‘positive definite’, i.e., u�F(x)u > 0 for all u ∈ Rn,
u �= 0. Equivalently, the smallest eigenvalue of F(x) is positive.

Stated slightly more general,

Definition 1.33 (Linear Matrix Inequality) A linear matrix inequality (LMI) is an inequality

F(x) > 0 (1.4.2)

where F is an affine function mapping a finite dimensional vector space V to the set S := {M | ∃n >
0 such that M = M� ∈ Rn×n}, of real symmetric matrices.

Remark 1.34 Recall from Definition 1.23 that an affine mapping F : V→ S necessarily takes the
form F(x) = F0 + T (x) where F0 ∈ S and T : V→ S is a linear transformation. Thus if V is finite
dimensional, say of dimension m, and {e1, . . . , em} constitutes a basis for V, then we can write

T (x) =
m∑
j=1

xjFj

where the elements {x1, . . . , xm} are such that x = ∑m
j=1 xj ej and Fj = T (ej ) for j = 1, . . . , m.

Hence we obtain (1.4.1) as a special case.

Remark 1.35 The same remark applies to affine mappings F : Rn×n→ S. A simple example is the
Lyapunov inequality F(X) = A�X + XA +Q > 0. Here, A,Q ∈ Rn×n are assumed to be given
and X ∈ Rn×n is the unknown. The unknown variable is therefore a matrix. Note that this defines
an LMI only ifQ is symmetric. We can view this LMI as a special case of (1.4.1) by defining a basis
E1, . . . , Em of V and writing X =∑m

j=1 xjEj . Indeed,

F(X) = F

 m∑
j=1

xjEj

 = F0 +
m∑
j=1

xjF (Ej ) = F0 +
m∑
j=1

xjFj

which is of the form (1.4.1).

Remark 1.36 A non-strict LMI is a linear matrix inequality where> in (1.4.1) and (1.4.2) is replaced
by≥. The matrix inequalitiesF(x) < 0, andF(x) > G(x)withF andG affine functions are obtained
as special cases of definition 1.33 as they can be rewritten as the linear matrix inequality−F(x) > 0
and F(x)−G(x) > 0.
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1.4.2 Why are they interesting?

The linear matrix inequality (1.4.2) defines a convex constraint on x. That is, the set S := {x |
F(x) > 0} is convex. Indeed, if x1, x2 ∈ S and α ∈ (0, 1) then

F(αx1 + (1− α)x2) = αF(x1)+ (1− α)F (x2) > 0

where in the equality we used that F is affine and the inequality follows from the fact that α ≥ 0 and
(1− α) ≥ 0.

Although the convex constraint F(x) > 0 on x may seem rather special, it turns out that many convex
sets can be represented in this way. In this subsection we discuss some seemingly trivial properties
of linear matrix inequalities which turn out to be of eminent help to reduce multiple constraints on
an unknown variable to an equivalent constraint involving a single linear matrix inequality.

Definition 1.37 (System of LMI’s) A system of linear matrix inequalities is a finite set of linear
matrix inequalities

F1(x) > 0, . . . , Fk(x) > 0. (1.4.3)

It is a simple but essential property that every system of LMI’s can be rewritten as one single LMI.
Specifically, F1(x) > 0, . . . , Fk(x) > 0 if and only if

F(x) :=


F1(x) 0 . . . 0

0 F2(x) . . . 0
...

. . .
...

0 0 . . . Fk(x)

 > 0.

The last inequality indeed makes sense as F(x) is symmetric for any x . Further, since the set of
eigenvalues of F(x) is simply the union of the eigenvalues of F1(x), . . . , Fk(x), any x that satisfies
F(x) > 0 also satisfies the system of LMI’s (1.4.3) and vice versa.

A second important property amounts to incorporating affine constraints in linear matrix inequalities.
By this, we mean that combined constraints (in the unknown x) of the form{

F(x) > 0

Ax = b

or {
F(x) > 0

x = Ay + b for some y

where the affine function F : Rm→ S and matrices A ∈ Rm×n and b ∈ Rm are given can be lumped
in one linear matrix inequality F(x) > 0. More generally, the combined equations{

F(x) > 0

x ∈M
(1.4.4)
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where M is an affine subset of Rm, i.e.,

M = x0 +M0 = {x0 +m0 | m0 ∈M0}

with x0 ∈ Rm and M0 a linear subspace of Rm, can be rewritten in the form of one single linear
matrix inequality F(x) > 0. To actually do this, let e1, . . . , em0 ∈ Rm be a basis of M0 and let
F(x) = F0 + T (x) be decomposed as in remark 1.34. Then (1.4.4) can be rewritten as

0 < F(x) = F0 + T (x0 +
m0∑
j=1

xj ej ) = F0 + T (x0)︸ ︷︷ ︸
constant part

+
m0∑
j=1

xjT (ej )︸ ︷︷ ︸
linear part

= F 0 + x1F 1 + . . .+ xm0Fm0

=: F(x)

where F 0 = F0 + T (x0), Fj = T (ej ) and x = (x1, . . . , xm0) are the coefficients of x − x0 in
the basis of M0. This implies that x ∈ Rm satisfies (1.4.4) if and only if F(x) > 0. Note that the
dimension m0 of x is smaller than the dimension m of x.

A third property of LMI’s is obtained from a simple exercise in algebraic. It turns out to be possible
to convert some non-linear inequalities to linear inequalities. Suppose that we partition a matrix
M ∈ Rn×n as

M =
(
M11 M12
M21 M22

)
where M11 has dimension r × r . Assume that M11 is non-singular. Then the matrix S := M22 −
M21M

−1
11 M12 is called the Schur complement of M11 in M . If M is symmetric then we have that

M > 0 ⇐⇒
(
M11 0

0 S

)
> 0

⇐⇒
{
M11 > 0

S > 0

For the interested reader, the result is obtained as follows.

M =
(
I −F
0 I

)� (
I F

0 I

)�
M

(
I F

0 I

)(
I −F
0 I

)
=
(
I −F
0 I

)� (
M11 M11F +M12

F�M11 +M21 F�M11F + F�M12 +M21F +M22

)(
I −F
0 I

)
which is positive definite if and only if the matrix in the middle factor in the last expression is positive definite.
Now take F = −M−1

11 M12 to obtain the result.

An immediate consequence of this observation is the following proposition.
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Proposition 1.38 (Schur complement) Let F : V → S be an affine function which is partitioned
according to

F(x) =
(
F11(x) F12(x)

F21(x) F22(x)

)
where F11(x) is square. Then F(x) > 0 if and only if{

F11(x) > 0

F22(x)− F12(x) [F11(x)]−1 F21(x) > 0
. (1.4.5)

Note that the second inequality in (1.4.5) is a non-linear matrix inequality in x. Using this result,
it follows that non-linear matrix inequalities of the form (1.4.5) can be converted to linear matrix
inequalities. In particular, it follows that non-linear inequalities of the form (1.4.5) define a convex
constraint on the variable x in the sense that all x satisfying (1.4.5) define a convex set.

1.4.3 What are they good for?

As we will see, many optimization problems in control, identification and signal processing can be
formulated (or reformulated) using linear matrix inequalities. Clearly, it only makes sense to cast
these problems in an LMI setting if these inequalities can be solved in an efficient and reliable way.
Since the linear matrix inequalityF(x) > 0 defines a convex constraint on the variable x, optimization
problems involving the minimization (or maximization) of a performance function f : S → R with
S := {x | F(x) > 0} belong to the class of convex optimization problems. Casting this in the setting
of the previous section, it may be apparent that the full power of convex optimization theory can be
employed if the performance function f is known to be convex.

Suppose that F,G,H : V→ S are affine functions. There are three generic problems related to the
study of linear matrix inequalities:

1. Feasibility: The test whether or not there exist solutions x ∈ V of F(x) > 0 is called a
feasibility problem. The LMI is called feasible if such x exists, otherwise the LMI F(x) > 0
is said to be infeasible.

2. Optimization: Let f : S → R and suppose that S = {x | F(x) > 0}. The problem to
determine

Vopt = inf
x∈S f (x)

is called an optimization problem with an LMI constraint. This problem involves the determi-
nation of Vopt and for arbitrary ε > 0 the calculation of an almost optimal solution x which
satisfies x ∈ S and Vopt ≤ f (x) ≤ Vopt + ε.
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3. Generalized eigenvalue problem: The generalized eigenvalue problem amounts to minimiz-
ing a scalar λ ∈ R subject to 

λF(x)−G(x) > 0

F(x) > 0

H(x) > 0

Let us give some simple examples to motivate the study of these problems.

Example 1: stability

Consider the problem to determine asymptotic stability of the linear autonomous system

ẋ = Ax (1.4.6)

where A ∈ Rn×n. By this, we mean the problem to decide whether or not all functions x : R→ Rn

which satisfy (1.4.6) have the property that limt→∞ x(t) = 0. Lyapunov taught us that this system is
asymptotically stable if and only if there exists X ∈ S such that X > 0 and A�X +XA < 0. Thus,
asymptotic stability of the system (1.4.6) is equivalent to feasibility of the LMI(

X 0
0 −A�X −XA

)
> 0.

Example 2: µ-analysis

Experts in µ-analysis (but other people as well!) regularly face the problem to determine a diagonal
matrix D such that ‖DMD−1‖ < 1 where M is some given matrix. Since

‖DMD−1‖ < 1⇐⇒ D−�M�D�DMD−1 < I

⇐⇒ M�D�DM < D�D
⇐⇒ X −M�XM > 0

where X := D�D > 0, we see that the existence of such a matrix is an LMI feasibility problem
where V needs to be taken as the set of diagonal matrices.

Example 3: eigenvalue minimization

Let F : V → S be an affine function and let λmax(·) denote the maximal eigenvalue of a real
symmetric matrix. Consider the problem to minimize f (x) := λmax(F (x)) over x. Clearly,

λmax(F
�(x)F (x)) < γ ⇐⇒ γ I − F�(x)F (x) > 0

⇐⇒
(
γ I F�(x)
F (x) I

)
> 0
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where the second inequality follows by taking Schur complements. If we define

x :=
(
x

γ

)
, F (x) :=

(
γ I F�(x)
F (x) I

)
, f (x) := γ

then F is an affine function of x and the problem to minimize the maximum eigenvalue of F(x) is
equivalent to determining inf f (x) subject to the LMI F(x) > 0. Hence, this is an optimization
problem with an LMI constraint with a linear objective function f .

Example 4: simultaneous stabilization

Consider the linear time-invariant system

ẋ = Aix + Biu
whereAi ∈ Rn×n andBi ∈ Rn×m, i = 1, . . . , k. This represents k linear time-invariant systems with
n dimensional state space andm-dimensional input space. The question of simultaneous stabilization
amounts to finding a state feedback lawu = FxwithF ∈ Rm×n such that the eigenvaluesλ(Ai+BiF )
belong to the left-half complex plane for all i = 1, . . . , k. Using Example 1 above, this problem is
solved when we can find matrices F and Xi , i = 1, . . . , k, such that for all of these i’s{

Xi > 0

(Ai + BiF )�Xi +Xi(Ai + BiF ) < 0
. (1.4.7)

Since both Xi and F are unknown, this is not a system of LMI’s in the variables Xi and F . A
simplification of this problem is obtained by assuming the existence of a joint Lyapunov function,
i.e. X1 = . . . = Xk =: X. If we introduce new variables Y = X−1 and K = FY (note that this
corresponds to a basis transformation in the state space of the system) then (1.4.7) reads{

Y > 0

AiY + YA�i + BiK +K�B�i < 0

for i = 1, . . . , k. The latter is a system of LMI’s in the variables Y and K . The joint stabilization
problem therefore has a solution if this system of LMI’s is feasible.

Example 5: quadratic cost evaluation

Consider the linear autonomous system
ẋ = Ax (1.4.8)

together with an arbitrary (but fixed) initial value x(0) = x0 and the criterion function J :=∫∞
0 x�(t)Qx(t) dt where Q = Q� is non-negative definite. Assume that the system is asymp-

totically stable. Then all solutions x of (1.4.8) are square integrable so that J < ∞. Now consider
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the non-strict linear matrix inequality A�X +XA+Q ≤ 0. For any solution X = X� of this LMI
we can differentiate the function x�(t)Xx(t) along solutions x of (1.4.8) to get

d

dt
[x�(t)Xx(t)] = x�(t)[A�X +XA]x(t) ≤ −x�(t)Qx(t).

If we assume that X > 0 then integrating the latter inequality from t = 0 till ∞ yields the upper
bound

J =
∫ ∞

0
x�(t)Qx(t) dt ≤ x�0 Xx0.

Here, we used that limt→∞ x(t) = 0. Moreover, the smallest upperbound of J is obtained by
minimizing the function f (X) := x�0 Xx0 over all X = X� which satisfy{

X > 0

A�X +XA+Q ≤ 0
.

This is an optimization problem with an LMI constraint.

Example 6, a Leontief economy

A manufacturer may be able to produce n different products from m different resources. Assume
that the selling price of product j is pj and that it takes the manufacturer aij units of resource i to
produce one unit of product j . Let xj denote the amount of product j that is to be produced and
let ai denote the amount of available units of resource i, i = 1, . . . , m. The manufacturer probably
wishes to maximize his profit

p(x1, . . . , xn) := p1x1 + p2x2 + . . .+ pnxn
subject to the production constraints

a11x1 + a12x2 + . . .+ a1nxn ≤ a1

a21x1 + a22x2 + . . .+ a2nxn ≤ a2

...
...

am1x1 + am2x2 + . . .+ amnxn ≤ am

and xj ≥ 0, j = 1, . . . , n. Note that this is an optimization problem subject to a system of non-strict
linear matrix inequalities.

Wassily Leontief was born in 1906 in St. Petersburg and is winner of the 1973 Nobel
Prize of Economics. Among many things, he used input-output analysis to study the
characteristics of trade flow between the U.S. and other countries.
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1.4.4 How are they solved?

The three problems defined in the previous subsection can be solved with numerical efficient tools.
In this section we discuss the basic theoretical ideas behind the ‘LMI-solvers’.

Ellipsoid method for LMI’s

We first give a solution which is based on the ellipsoidal algorithm as explained in the previous
section. This solution is simple but not a very efficient one. Let F : S → S be an affine function
with S ⊂ Rm. Recall that F(x) < 0 if and only if λmax(F (x)) < 0. Define f (x) := λmax(F (x)) and
consider the problem to minimize f . If inf f (x) < 0 then the LMI F(x) < 0 is feasible, otherwise
the LMI is infeasible.

There are a few observations to make to apply Proposition 1.24. The first one is to establish that f
is a convex function. Indeed, for all 0 < α < 1 and x1, x2 ∈ S we have that

f (αx1 + (1− α)x2) = λmax(F (αx1 + (1− α)x2))

= λmax(αF (x1)+ (1− α)F (x2))

≤ αλmax(F (x1))+ (1− α)λmax(F (x2))

= αf (x1)+ (1− α)f (x2)

which shows that f is convex. Second, for any x0 we need to determine a subgradient g on the point
(x0, f (x0)) of the graph of f . To do this, we will use the fact that

f (x) = λmax(F (x)) = max
u�u=1

u�F(x)u.

This means that for an arbitrary x0 ∈ S we can determine a vector u0 ∈ Rn with u�0 u0 = 1 such that
λmax(F (x0)) = u�0 F(x0)u0. But then

f (x)− f (x0) = max
u�u=1

u�F(x)u− u�0 F(x0)u0

≥ u�0 F(x)u0 − u�0 F(x0)u0

= u�0 (F (x)− F(x0)) u0.

The last expression is an affine functional which vanishes at x0. This means that the right-hand side
of this expression must be of the form 〈g, x−x0〉 for some vector g ∈ Rm. To obtain g, we can write

u�0 F(x)u0 = u�0 F0u0︸ ︷︷ ︸
g0

+
m∑
j=1

xj u
�
0 Fju0︸ ︷︷ ︸
gj

= g0 + 〈g, x〉,
where gj are the components of g. In particular, we obtain that f (x) − f (x0) ≥ 〈g, x − x0〉. The
ellipsoid algorithm is now as follows.
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Algorithm 1.39 (Ellipsoid algorithm)

Step 0 Let x0 ∈ S and P0 ∈ S be a positive definite matrix. Define the ellipsoid

E0 := {x ∈ S | (x − x0)
�P−1

0 (x − x0) ≤ 1}.
from the initialization step of the ellipsoid algorithm.

Step k For k = 1, 2, . . .,

1. Compute a subgradient gk−1 ∈ Rm for f at xk−1 and put

Rk := {x ∈ S | x ∈ Ek−1 and 〈gk−1, x − xk−1〉 ≤ 0}.
2. Compute xk ∈ S and Pk > 0 such that the ellipsoid

Ek := {x ∈ Rm | (x − xk)�P−1
k (x − xk) ≤ 1}

entirely contains Rk . One such xk and Pk are given by

xk := xk−1 − Pk−1gk−1

(m+ 1)
√
g�k−1Pk−1gk−1

Pk := m2

m2 − 1

(
Pk−1 − 2

(m+ 1)g�k−1Pk−1gk−1
Pk−1gk−1g

�
k−1Pk−1

)

3. Set k to k + 1 and repeat Step k.

As noticed earlier, this recursive scheme generates a sequence of ellipsoids Ek that are guaranteed
to contain a minimizer of f in S. The algorithm needs an initialization step in which P0 and x0 are
determined. Note that this is the only ‘non-automated’ step in the algorithm. If S is a bounded subset
of Rm then the safest choice of the initial ellipsoid E0 would be one which guarantees that S ⊆ E0.

Interior point methods

A major breakthrough in convex optimization lies in the introduction of interior-point methods. These
methods were developed in a series of papers [11] and became of true interest in the context of LMI
problems in the work of Yrii Nesterov and Arkadii Nemirovskii [19].

The main idea is as follows. Let F be an affine function and let S := {x | F(x) > 0} be the domain
of a convex function f : S → R which we wish to minimize. That is, we wish to solve the convex
optimization problem

min f (x)

over all x which satisfy the linear matrix inequality F(x) > 0. To do this, it is first necessary to
introduce a barrier function. This is a smooth function φ which is required to
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1. be strictly convex on the interior of S and

2. approach infinity along each sequence of points xn in the interior of S that converge to a
boundary point of S.

Given such a barrier function φ, the constraint optimization problem to minimize f (x) over all x ∈ S
is replaced by the unconstrained optimization problem to minimize the functional

ft (x) := tf (x)+ φ(x) (1.4.9)

where t > 0 is a so called penalty parameter. The main idea is to determine a minimizer x(t) of ft and
to consider the behavior of x(t) as function of the penalty parameter t > 0. In almost all interior point
methods the latter unconstrained optimization problem is solved with the classical Newton-Raphson
iteration technique to approximate the minimum of ft . Under mild assumptions and for a suitably
defined sequence of penalty parameters tn with tn→∞ as n→∞, the sequence x(tn) with n ∈ Z+
will then converge to a point x which is a solution of the original convex optimization problem.

A small modification of this theme is obtained by replacing the the original constraint optimization
problem by the unconstrained optimization problem to minimize

gt (x) := φ0(t − f (x))+ φ(x) (1.4.10)

where t > t0 := infF(x)>0 f (x) andφ0 is a barrier function for the non-negative real half-axis. Again,
the idea is to calculate a minimizer x(t) of gt (typically using the classical Newton algorithm) and to
consider the ‘path’ x(t) as function of the penalty parameter t . The curve given by x(t) with t > t0
is called the path of centers for the optimization problem. Under suitable conditions the solutions
x(t) are analytic and have a limit as t ↓ t0, say xopt. The point xopt is optimal since for t > t0, x(t)
is feasible and satisfies f (x(t)) < t .

Interior point methods can be applied to each of the three problems as defined in the previous section.
If we consider the feasibility problem associated with the LMI F(x) > 0 then (f does not play a role
and) one candidate barrier function is the logarithmic function

φ(x) :=
{

log det F(x)−1 if x ∈ S

∞ otherwise
.

Under the assumption that the feasible set S is bounded and non-empty, it follows that φ is strictly
convex and hence it defines a barrier function for the feasibility set S. By invoking proposition 1.16,
we know that there exists a uniquely defined x0 ∈ S such that φ(xopt) is the global minimum of φ.
This point xopt obviously belongs to S and is called the analytic center of the feasibility set S. It is
usually obtained in a very efficient way from the classical Newton iteration

xk+1 = xk − (φ′′(xk))−1φ′(xk). (1.4.11)

Here φ′ and φ′′ denote the gradient and the Hessian of φ, respectively.
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The convergence of this algorithm can be analyzed as follows. Since φ is strongly convex and
sufficiently smooth, there exist numbers L andM such that for all vectors uwith norm ‖u‖ = 1 there
holds

u�φ′′(x)u ≥ M
‖φ′′(x)u− φ′′(y)u‖ ≤ L‖x − y‖.

In that case,

‖φ′(xk+1)‖2 ≤ L

2M2 ‖φ′(xk)‖2

so that whenever the initial value x0 is such that L
2M2 ‖φ′(x0)‖ < 1 the method is guaranteed to

converge quadratically.

The idea will be to implement this algorithm in such a way that quadratic convergence can be
guaranteed for the largest possible set of initial values x0. For this reason the iteration (1.4.11) is
modified as follows

xk+1 = xk − αk(λ(xk))φ′′(xk)−1φ(xk)

where

αk(λ) :=
{

1 if λ < 2−√3
1

1+λ if λ ≥ 2−√3
.

and λ(x) := √
φ′(x)�φ′′(x)φ′(x) is the so called Newton decrement associated with φ. It is this

damping factor that guarantees that xk will converge to the analytic center xopt, the unique minimizer
of φ. It is important to note that the step-size is variable in magnitude. The algorithm guarantees that
xk is always feasible in the sense that F(xk) > 0 and that xk converges globally to an optimum xopt.
It can be shown that φ(xk)− φ(xopt) ≤ ε whenever

k ≥ c1 + c2 log log(1/ε)+ c3
(
φ(x0)− φ(xopt)

)
where c1, c2 and c3 are constants. The first and second terms on the right-hand side do not dependent
on the optimization criterion and the specific LMI constraint. The second term can almost be neglected
for small values of ε.

The optimization problem to minimize f (x) subject to the LMI F(x) > 0 can be viewed as a
feasibility problem for the LMI

F t(x) :=
(
t − f (x) 0

0 F(x)

)
> 0.

where t > t∗ := infF(x)>0 f (x) is a penalty parameter. Using the same barrier function for this
linear matrix inequality yields the unconstrained optimization problem to minimize

gt (x) := log det F t(x)
−1 = log

1

t − f (x)︸ ︷︷ ︸
φ0(t−f (x))

+ log det F(x)−1︸ ︷︷ ︸
φ(x)

which is of the form (1.4.10). Due to the strict convexity of gt the minimizer x(t) of gt is unique
for all t > t∗. It can be shown that the sequence x(t) is feasible for all t > t∗ and approaches the
infimum infF(x)>0 f (x) as t ↑ t∗.
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1.4.5 How are they implemented?

The LMI toolbox in Matlab provides various routines for the computation of solutions to the
three generic problems that were formulated in subsection 1.4.3. The manual [5] is a well written
introduction for the usage of this software and provides plenty of examples. Since nobody likes to
read software manuals, we give a ‘nutshell summary’ of the most relevant routines and their usage in
this section.

The best introduction to the LMI toolbox (and in particular the LMI-lab which comprises the routines
for LMI solvers) is to run and study the tutorial lmidem of the LMI toolbox. We recommend every
‘beginner’ to try this tutorial at least once.

Implementation of LMI’s

In Matlab, the data for the description of a linear matrix inequality is internally represented in one
vector. This vector encodes the structure and dimension of the LMI, the structure and dimension of
the unknown variables and a description of all terms which occur in the inequality. The toolbox can
handle any system of LMI’s which take the form

N�L(X1, . . . , XK)N < M�R(X1, . . . , XK)M (lmi1)

where theXi’s are the (unknown) matrix variables, possibly with some prescribed structure,N andM
are (known) square matrices of identical dimensions and L(·) and R(·) are symmetric block matrices
with identical block structures. Each block of L(·) and R(·) is an affine expression in the matrix
variables X1, . . . , XK and their transposes and consists of the sum of elementary terms. A term is
constant when it does not depend on either of the decision variables, otherwise it is variable.

An LMI of this type can be specified in Matlab in either of the following ways:

1. by means of the interface lmiedit, an interactive graphical LMI editor to symbolically enter
a system of LMI’s.

2. by means of the more powerful command-line routines lmivar and lmiterm to incremen-
tally define a system of LMI’s.

For beginners, the simplest way to specify an LMI is by typing lmiedit at the Matlab prompt.
This will give you a graphical user interface in which all data for the specification of an LMI can be
entered in symbolic expressions. For more experienced and more demanding users, the command
line routines lmivar and lmiterm allow for an incremental specification of a system of LMI’s.
The usage of the latter is described as follows.

Initialization step To initialize a void structure, first give the command setlmis([]), possibly
followed by lmi1=newlmi to attach an identifying tag to the LMI you wish to specify.

23



1.4. LINEAR MATRIX INEQUALITIES

Variable definition For each of the unknown matrix variables X1, . . . , XK in (lmi1), invoke the
routine lmivar to define its structure and dimension. It turns out handy to respect the index-
ordering 1, . . . , K in doing so. The syntax is X=lmivar(type,struc), where

• type=1 for symmetric block diagonal matrices of the form

X = diag(S1, . . . , SJ ),

where each of the Sj is either a full symmetric matrix, a scalar multiple of the identity
matrix, or identically zero. In this case, struc is a J × 2 matrix whose j th row is set as
[sj,tj] where sj is the size of Sj and

tj =


1 if Sj is full symmetric

0 if Sj = sj I or

-1 if Sj = 0

• type=2 to specify a full m× n rectangular matrices. In this case struc=[m,n].

• type=3 for a-typical structures in which each entry ofX can be specified as zero or non-
zero. In this case struc has the dimension of X and struc(i,j)=0 if X(i, j) = 0;
struc(i,j)=n if X(i, j) = xn; struc(i,j)=-n if X(i, j) = −xn.

term specification The term content of an LMI is specified with lmiterm. The syntax is

lmiterm(id,A,B)

where A and B are real matrices, id=[lmi1,i,j,k] refers to the (i, j)th block of L(·) in
(lmi1) and k is an integer between −K and K . The command

lmiterm([lmi1,i,j,k],A,B)

adds the termAXkB,AX�k B orA to the (i, j)th block ofL(·) inlmi1, depending on whether k
is positive, negative or zero, respectively. Here, k will refer to the matrix variableXk provided
that Xk has been defined as the kth call of lmivar. The ‘outer-matrix’ N in (lmi1) is an
identity matrix by default, but can be set as A by taking id=[lmi1 0 0 0]. The right-hand
side of (lmi1) is zero be default, but can be similarly specified by replacing the first entry lmi1
in id by -lmi1. When describing an LMI with several blocks, it is important that

only the terms of the blocks on and above the diagonal need to be specified this way.

As a further comment, ifA and/or B is a scalar matrix i.e., a matrix of the form λI with λ ∈ R,
then A or B may be set equal to the scalar λ. Zero matrices need not be specified in the term
contents.

final step The specification is completed with the command lmisys=getlmis;. This returns the
internal Matlab representation of (lmi1) in the variable lmisys. Don’t forget the semicolon
as you do not want to see or understand the entries of this variable.
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LMI solvers

The basic routines for numerically solving the three generic problems formulated in section 1.4.3 are
the following

• feasp to compute a solution to the feasibility problem

• mincx to compute a solution to the optimization problem

• gevp to compute a solution to the generalized eigenvalue problem.

Each of these routines is implemented as a .mex file in Matlab and takes a variable which represents
the data of an LMI as its input. These routines do not return a feasible or optimal set of matrix
variablesX1, . . . , XK , but a vector x of decision variables x1, . . . , xm which constitute the non-zero
independent entries of X1, . . . , XK . The matrix variables X1, . . . , XK are retrieved from x by the
routine dec2mat. Specifically, Xk is obtained by the command Xk=dec2mat(lmisys,x,k).

Information retrieval

The routinelmiinfo can be used to interactively retrieve information about a linear matrix inequality
of the form (lmi1), its specific structure, block dimensions and term contents in the affine functions
L(·) and R(·).

Validation

A solution X1, . . . , XK of (lmi1) can be validated with the routines evallmi and showlmi. We
refer to the corresponding help information of these routines for more details.

1.4.6 When were they invented?

Contrary to what many authors nowadays seem to suggest, the study of linear matrix inequalities in
the context of dynamical systems and control goes back a long way in history and probably starts with
the fundamental work ofAleksandr Mikhailovich Lyapunov on the stability of motion. Lyapunov was
a school friend of Markov (yes, the one of the Markov parameters) and later a student of Chebyshev.
Around 1890, Lyapunov made a systematic study of the local expansion and contraction properties
of motions of dynamical systems around an attractor. He worked out the idea that an invariant set of
a differential equation is stable in the sense that it attracts all solutions if one can find a function that
is bounded from below and decreases along all solutions outside the invariant set.

Aleksandr Mikhailovich Lyapunov was born on May 25, 1857 and published in 1892 his work
‘The General Problem of the Stability of Motion’ in which he analyzed the question of stability of
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equilibrium motions of mechanical systems. This work served as his doctoral dissertation and was
defended on September 1892 in Moscow University. Put into modern jargon, he studied stability of
differential equations of the form

ẋ = A(x)

whereA : Rn→ Rn is some analytic function and x is a vector of positions and velocities of material
taking values in a finite dimensional state space X = Rn. As Theorem I in Chapter 1, section 16 it
contains the statement3 that

if the differential equation of the disturbed motion is such that it is possible to find a
definite function V of which the derivative V ′ is a function of fixed sign which is opposite
to that of V , or reduces identically to zero, the undisturbed motion is stable.

The intuitive idea behind this result is that the so called Lyapunov function V can be viewed as a
generalized ‘energy function’ (in the context of mechanical systems the kinetic and potential energies
always served as typical Lyapunov functions). A system is then stable if it is ‘dissipative’ in the sense
that the Lyapunov function decreases. We will consider stability issues in much more detail in a later
chapter.

1.5 Further reading

Optimization: [14]
Convex function analysis: [22, 25, 43, 50]
Theory of subgradients: [26]
Theory of interior point methods: [19]
Software issues: [5]

1.6 Exercises

Exercise 1

In section 1.2 we defined sublevel sets and related them to the convexity of functions f : S → R.
Define a suitable notion of suplevel sets (yes, this is a “p”) and formulate and prove a sufficient
condition (in the spirit of proposition 1.13) for suplevel sets to be compact.

3Translation by A.T. Fuller as published in the special issue of the International Journal of Control in March 1992 and
in [15].
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Exercise 2

Give an example of a non-convex function f : S → R whose sublevel sets Sα are convex for all
α ∈ R.

Exercise 3

Let f : S → R be a convex function.

1. Show the so called Jensen’s inequality which states that for a convex combination x =∑n
i=1 αixi of x1, . . . xn ∈ S there holds that

f (

n∑
i=1

αixi) ≤
n∑
i=1

αif (xi).

Hint: A proof by induction on n may be the easiest.

2. Show that co(S) is equal to the set of all convex combinations of S

Exercise 4

Run the Matlab demo lmidem.

Exercise 5

Use a feasibility test of the LMI toolbox to verify the asymptotic stability of the system ẋ = Ax,
where

A =
 0 1 0

0 0 1
−2 −3 −4

 .

To do this, use the routine ltisys to convert a state space model to an internal format which is used
for the LTI toolbox. Use the routine feasp to verify feasibility of a suitable LMI.

Exercise 6

Prove that

1. the function f : Rn → R defined by the quadratic form f (x) = x�Qx + s�x + r is convex
if and only if Q = Q� ≥ 0.
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2. the intersection of the sets Sj := {x ∈ Rn | x�Qjx + s�j x + rj ≤ 0} where j = 1, . . . , k and
Qj ≥ 0 is convex.

How does Sj look like if Qj = 0? And how if sj = 0?

Exercise 7

In this exercise we investigate the stability of the linear time-varying system

ẋ = A(t)x (1.6.1)

where for all t ∈ R+ the matrix A(t) is a convex combination of the triple

A1 :=
(−1 1
−1 −0.2

)
, A2 :=

(−1 1
−2 −0.7

)
, A3 :=

( −2 1
−1.2 0.4

)
.

That is,

A(t) ∈ co(A1, A2, A3)

for all values of t ∈ R+. This is referred to as a polytopic model. It is an interesting fact that the
time-varying system (1.6.1) is asymptotically stable if there exists a X = X� > 0 such that

A�1 X +XA1 < 0

A�2 X +XA2 < 0

A�3 X +XA3 < 0.

(We will come this fact later!) If such an X exists then (1.6.1) is stable irrespective of how fast
the time variations of A(t) take place! In fact, the function V (x) := x�Xx serves as a Lyapunov
function for this time-varying system.

1. Reformulate the question of asymptotic stability of (1.6.1) as a feasibility problem.

2. Find, if possible a feasible solution X to this problem. To do so, either

• use the graphical interface LMI-editor lmiedit, or

• use the command-line instructions explained in subsection 1.4.5, or

• use the Matlab function quadstab. This routine tests the (quadratic) stability of
polytopic models. To invoke this routine, first use ltisys to represent the state space
systems ẋ = Aix for i = 1, 2, 3 in internal LMI format. Then define the polytopic
model (1.6.1) by using psys.
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Exercise 8

Consider the dynamical system
ẋ = Ax + Bu

where x is an n-dimensional state and u is a scalar-valued input which is supposed to belong to
U = {u : R → R | −1 ≤ u(t) ≤ 1 for all t ≥ 0}. Define the null controllable subspace of this
system as the set

C := {x0 ∈ Rn | ∃T ≥ 0 and u ∈ U such that x(T ) = 0}
i.e., the set of initial states that can be steered to the origin of the state space in finite time with
constrained inputs. Show that C is a convex set.
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Figure 1.1: Aleksandr Mikhailovich Lyapunov
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Chapter 2

Dissipative dynamical systems and
linear matrix inequalities

2.1 Introduction

The notion of dissipativity is a most important concept in systems theory both for theoretical consid-
erations as well as from a practical point of view. Especially in the physical sciences, dissipativity
is closely related to the notion of energy. Roughly speaking, a dissipative system is characterized
by the property that at any time the amount of energy which the system can conceivably supply to
its environment can not exceed the amount of energy that has been supplied to it. Stated otherwise,
when time evolves, a dissipative system absorbs a fraction of its supplied energy and transforms it for
example into heat, an increase of entropy, mass, electro-magnetic radiation, or other kinds of energy
‘losses’. In many applications, the question whether a system is dissipative or not can be answered
from physical considerations on the way the system interacts with its environment. For example, by
observing that the system is an interconnection of dissipative components, or by considering systems
in which a loss of energy is inherent to the behavior of the system due to friction, optical dispersion,
evaporation losses, etc.

In this chapter we will formalize the notion of a dissipative dynamical system for a very general
class of systems. It will be shown that linear matrix inequalities occur in a very natural way in
the study of linear dissipative systems. Perhaps the most appealing setting for studying LMI’s in
system and control theory is within the framework of dissipative dynamical systems. It will be shown
that solutions of LMI’s have a natural interpretation as storage functions associated with a dissipative
system. This interpretation will play a key role in understanding the importance of LMI’s in questions
related to stability, robustness, and a large variety of controller design problems.
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2.2 Dissipative dynamical systems

2.2.1 Definitions and examples

Consider a continuous time, time-invariant dynamical system ? described by the equations

0 = f (ẋ, x, u) (2.2.1a)

y = g(x, u) (2.2.1b)

Here, x is the state which takes its values in a state space X, u is the input taking its values in an
input space U and y denotes the output of the system which assumes its values in the output space
Y . Throughout this section, the precise representation of the system will not be relevant. What we
need, though, is that for any initial condition x(0) = x0 of (2.2.1a) and for any input u belonging to
an input class U, the state x and the output y are uniquely defined for all positive time and depend on
u in a causal way. The system (2.2.1) therefore generates outputs from inputs and initial conditions.
Let

s : U × Y → R

be a mapping and assume that for all t0, t1 ∈ R and for all input-output pairs u, y satisfying (2.2.1)
the composite function

s(t) := s(u(t), y(t))

is locally integrable, i.e.,
∫ t1
t0
|s(t)|dt < ∞. (We do realize that we abuse notation for s here). The

mapping s will be referred to as the supply function.

Definition 2.1 (Dissipativity) The system? with supply rate s is said to be dissipative if there exists
a non-negative function V : X→ R such that

V (x(t0))+
∫ t1

t0

s(u(t), y(t))dt ≥ V (x(t1)) (2.2.2)

for all t0 ≤ t1 and all trajectories (u, x, y) which satisfy (2.2.1).

Interpretation 2.2 The supply function (or supply rate) s should be interpreted as the supply de-
livered to the system. This means that in a time interval [0, t] work has been done on the system
whenever

∫ t
0 s(τ )dτ is positive, while work is done by the system if this integral is negative. The

non-negative function V is called a storage function and generalizes the notion of an energy function
for a dissipative system. With this interpretation, inequality (2.2.2) formalizes the idea that a dissipa-
tive system is characterized by the property that the change of internal storage V (x(t1))− V (x(t0))
in any time interval [t0, t1] will never exceed the amount of supply that flows into the system (or the
‘work done on the system’). This means that part of what is supplied to the system is stored, while
the remaining part is dissipated. Inequality (2.2.2) is known as the dissipation inequality.

Remark 2.3 Since the system communicates with its environment through the variables u and y, it
is natural to define the supply function s on the signal space U × Y . Moreover, since storage is a
concept related to the internal structure of the system, it is logical to view storage functions as state
functions.
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2.2. DISSIPATIVE DYNAMICAL SYSTEMS

Remark 2.4 Note that whenever the composite function V (x(·)) with V a storage function and
x : R→ X a state trajectory satisfying (2.2.1a), is differentiable as a function of time, then (2.2.2)
can be equivalently written as

V̇ (t) ≤ s(t). (2.2.3)

Example 2.5 The classical motivation for the study of dissipativity comes from circuit theory. In
the analysis of electrical networks the product of voltages and currents at the external branches of a
network, i.e. the power, is an obvious supply function. Similarly, the product of forces and velocities is
a candidate supply function in mechanical systems. For those familiar with the theory of bond-graphs
we remark that every bond-graph can be viewed as a representation of a dissipative dynamical system
where input and output variables are taken to be effort and flow variables and the supply function s
is the product of these two variables. A bond-graph is therefore a special case of a dissipative system
(and not the other way around!).

Example 2.6 Consider a thermodynamic system at uniform temperature T on which mechanical
work is being done at rate W and which is being heated at rate Q. Let (T ,Q,W) be the external
variables of such a system and assume that –either by physical or chemical principles or through
experimentation– the mathematical model of the thermodynamic system has been decided upon and
is given by the time invariant system (2.2.1). The first and second law of thermodynamics may then
be formulated in the sense of Definition 2.1 by saying that the system? is conservative with respect to
the supply function s1 := (W +Q) and dissipative with respect to the supply function s2 := −Q/T .
Indeed, the two basic laws of thermodynamics state that for all system trajectories (T ,Q,W) and all
time instants t0 ≤ t1

E(x(t0))+
∫ t1

t0

Q(t)+W(t) dt = E(x(t1))

(which is conservation of thermodynamical energy) and the second law of thermodynamics states
that the system trajectories satisfy

S(x(t0))+
∫ t1

t0

−Q(t)
T (t)

dt ≥ S(x(t1))

for a storage function S. Here, E is called the internal energy and S the entropy. The first law
promises that the change of internal energy is equal to the heat absorbed by the system and the
mechanical work which is done on the system. The second law states that the entropy decreases at a
higher rate than the quotient of absorbed heat and temperature. Note that thermodynamical systems
are dissipative with respect to more than one supply function!

Example 2.7 Typical examples of supply functions s : U × Y → R are

s(u, y) = u�y,
s(u, y) = ‖y‖2 − ‖u‖2
s(u, y) = ‖y‖2 + ‖u‖2
s(u, y) = ‖y‖2

which arise in network theory, bondgraph theory, scattering theory, H∞ theory, game theory and
LQ-optimal control and H2-optimal control theory.
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Remark 2.8 There are a few refinements to Definition 2.1 which are worth mentioning. The system
? is said to be conservative or lossless if there exists a non-negative function V : X→ R such that
equality holds in (2.2.2) for all t0 ≤ t1 and all (u, x, y)which satisfy (2.2.1). Also, Definition 2.1 can
be generalized to time-varying systems by letting the supply rate s explicitly depend on time. We will
not need a time-varying generalization for our purposes. Many authors have proposed a definition of
dissipativity for discrete time systems, but since we can not think of any physical example of such a
system, there seems little point in doing this. An other refinement is based on the idea that a system
? may be dissipative with respect to more than one supply function. See Example 2.6 below.

The notion of strict dissipativity is a refinement of Definition 2.1 which we will use in the sequel. For
this, let the state space X be equipped with its usual Euclidean norm. We will say that V : X→ R

has a strong global minimum if there exists xast ∈ X, δ > 0 and a continuous, strictly increasing
function α : R+ → R+ with α(0) = 0, such that (1) V (x∗) ≤ V (x) for all x ∈ X and (2)

V (x)− V (x∗) ≥ α(‖x − x∗‖)
for all x with ‖x − x∗} ≤ δ. Stated otherwise, V attains its global minimum at x∗, while V (x) is
strictly larger than V (x∗ for all x sufficiently close to x∗.

Definition 2.9 (Strict dissipativity) The system? with supply rate s is said to be strictly dissipative
if there exists a non-negative function V : X → R which attains a strong global minimum and an
ε > 0 such that

V (x(t0))+
∫ t1

t0

(
s(u(t), y(t))− ε2‖u(t)‖2

)
dt ≥ V (x(t1)) (2.2.4)

for all t0 ≤ t1 and all trajectories (u, x, y) which satisfy (2.2.1).

Clearly, a system is strictly dissipative only if a strict inequality holds in (2.2.2). In addition, storage
functions of strictly dissipative systems are assumed to have a strong global minimum at some point
x∗ ∈ X.

2.2.2 A classification of storage functions

If (?, s) is dissipative with storage function V then we will assume that there exists a reference
point x∗ ∈ X of minimal storage, i.e., there exists x∗ ∈ X such that V (x∗) = minx∈X V (x). Given
a storage function V , its normalization (with respect to x∗) is defined as V̄ (x) := V (x) − V (x∗).
Obviously, V̄ (x∗) = 0 and V̄ is a storage function of ? whenever V is.

Instead of considering the set of all possible storage functions associated with (?, s), we will restrict
attention to the set of normalized storage functions. Formally, the set of normalized storage functions
(associated with (?, s)) is defined by

V(x∗) := {V : X→ R+ | V (x∗) = 0 and (2.2.2) holds}.
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The existence of a reference point x∗ of minimal storage implies that for a dissipative system∫ t1

0
s(u(t), y(t)) dt ≥ 0

for any t1 ≥ 0 and any (u, x, y) satisfying (2.2.1) with x(0) = x∗. Stated otherwise, any trajectory
of the system which emerges from x∗ has the property that the net flow of supply is into the system.
Often, this property is taken as definition of passivity. Two mappings Vav : X → R+ ∪ ∞ and
Vreq : X→ R ∪ {−∞} will play a crucial role in the sequel. They are defined by

Vav(x0) := sup

{
−
∫ t1

0
s(t) dt | t1 ≥ 0; (u, x, y) satisfy (2.2.1) with x(0) = x0

}
(2.2.5a)

Vreq(x0) := inf

{∫ 0

t−1

s(t) dt | t−1 ≤ 0; (u, x, y) satisfy (2.2.1) with (2.2.5b)

x(0) = x0 and x(t−1) = x∗
}

Then Vav(x) denotes the maximal amount of internal storage that may be recovered from the sys-
tem over all state trajectories starting from x. Similarly, Vreq(x) reflects the minimal supply the
environment has to deliver to the system in order to excite the state x via any trajectory in the state
space originating in x∗. We refer to Vav and Vreq as the available storage and the required supply,
respectively. Note that in (2.2.5b) it is assumed that the point x0 ∈ X is reachable from the reference
point x∗, i.e., it is assumed that there exists a control input u ∈ U which steers the state from x∗ at
time t = t−1 to x0 at time t = 0. This is the case when the system ? is controllable.

Proposition 2.10 (Willems) Let the system? be described by (2.2.1) and let s be a supply function.
Then

1. ? is dissipative if and only if Vav(x) is finite for all x ∈ X.

2. If ? is dissipative and controllable then

(a) Vav, Vreq ∈ V(x∗).

(b) {V ∈ V(x∗)} ⇒ {For all x ∈ X there holds 0 ≤ Vav(x) ≤ V (x) ≤ Vreq(x)}.
(c) V(x∗) is a convex set. In particular,Vα := αVav+(1−α)Vreq ∈ V(x∗) for all α ∈ (0, 1).

Interpretation 2.11 Proposition 2.10 gives a necessary and sufficient condition for a system to be
dissipative. It shows that both the available storage and the required supply are possible storage
functions. Moreover, statement (b) shows that the available storage and the required supply are the
extremal storage functions in V(x∗). In particular, for any state of a dissipative system, the available
storage can not exceed its required supply. In addition, convex combinations of the available storage
and the required supply are candidate storage functions.
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Proof. 1. Let ? be dissipative, V a storage function and x0 ∈ X. From (2.2.2) it then follows that
for all t1 ≥ 0 and all (u, x, y) satisfying (2.2.1) with x(0) = x0,

−
∫ t1

0
s(u(t), y(t))dt ≤ V (x0) <∞.

Taking the supremum over all t1 ≥ 0 and all such trajectories (u, x, y) (with x(0) = x0) yields that
Vav(x0) ≤ V (x0) < ∞. To prove the converse implication it suffices to show that Vav is a storage
function. To see this, first note that Vav(x) ≥ 0 for all x ∈ X (take t1 = 0 in (2.2.5a)). To prove that
Vav satisfies (2.2.2), let t0 ≤ t1 ≤ t2 and (u, x, y) satisfy (2.2.1). Then

Vav(x(t0)) ≥ −
∫ t1

t0

s(u(t), y(t))dt −
∫ t2

t1

s(u(t), y(t))dt.

Since the second term in the right hand side of this inequality holds for arbitrary t2 ≥ t1 and arbitrary
(u, x, y)|[t1,t2] (with x(t1) fixed), we can take the supremum over all such trajectories to conclude
that

Vav(x(t0)) ≥ −
∫ t1

t0

s(u(t), y(t))dt + Vav(x(t1))

which shows that Vav satisfies (2.2.2).

2a. Suppose that ? is dissipative and let V be a storage function. Then V̄ (x) := V (x) − V (x∗) ∈
V(x∗) so that V(x∗) �= ∅. Observe that Vav(x

∗) ≥ 0 and Vreq(x
∗) ≤ 0 (take t1 = t−1 = 0 in (2.2.5)).

Suppose that the latter inequalities are strict. Then, using controllability of the system, there exists
t−1 ≤ 0 ≤ t1 and a state trajectory x with x(t−1) = x(0) = x(t1) = x∗ such that− ∫ t10 s(t)dt > 0 and∫ 0
t−1
s(t)dt < 0. But this yields a contradiction with (2.2.2) as both

∫ t1
0 s(t)dt ≥ 0 and

∫ 0
t−1
s(t)dt ≥ 0.

Thus, Vav(x
∗) = Vreq(x

∗) = 0. We already proved that Vav is a storage function so that Vav ∈ V(x∗).
Along the same lines one shows that also Vreq ∈ V(x∗).

2b. If V ∈ V(x∗) then

−
∫ t1

0
s(u(t), y(t))dt ≤ V (x0) ≤

∫ 0

t−1

s(u(t), y(t))dt

for all t−1 ≤ 0 ≤ t1 and (u, x, y) satisfying (2.2.1) with x(t−1) = x∗ and x(0) = x0. Now take the
supremum and infimum over all such trajectories to obtain that Vav ≤ V ≤ Vreq.

2c. Follows trivially from (2.2.2).

2.2.3 Dissipation functions and Lyapunov functions

If the system ? is dissipative with respect to the supply function s then

V (x(t0))+
∫ t1

t0

s(t) dt − V (x(t1))
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is a non-negative quantity that can be interpreted as the amount of supply that is dissipated in the
system in the time interval [t0, t1].
Definition 2.12 (Dissipation functions) A function d : X×U → R is called a dissipation function
for (?, s) if there exists a storage function V : X→ R+ such that

V (x(t0))+
∫ t1

t0

[s(u(t), y(t))− d(x(t), u(t))] dt = V (x(t1))

hold for all t0 ≤ t1 and all trajectories (u, x, y) which satisfy (2.2.1).

Obviously, the system ? is dissipative with respect to the supply function s if and only if there exists
a dissipation function d which is non-negative in the sense that d(x, u) ≥ 0 for all x, u. Note that
d is a non-negative dissipation function for (?, s) then ? is conservative with respect to the supply
function s − d .

Storage functions and Lyapunov functions are closely related. Indeed, if u(t) = u∗ with u∗ ∈ U is
taken as a constant input in (2.2.1) then we obtain the autonomous system

0 = f (ẋ, x, u∗)
y = g(x, u∗).

Let x∗ be an equilibrium point of this system, i.e., a point x∗ ∈ X which satisfies 0 = f (0, x∗, u∗).
Suppose that the system defined by (2.2.1) is dissipative with supply

s(u∗, y) = s(u∗, g(x, u∗)) ≤ 0

for all x in a neighborhood of x∗. From Remark 2.4 we then infer that any (differentiable) storage
functionV of this system is non-negative and monotone non-increasing along solutions in a neighbor-
hood of x∗. Consequently, by Lyapunov’s theorem, x∗ is a stable equilibrium if the storage function
V attains a strong local minimum at x∗. In that case, the storage function V is nothing else than a
Lyapunov function defined in a neighborhood of x∗.

2.3 Linear dissipative systems with quadratic supply rates

In this section we will apply the above theory to linear input-output systems ? described by(
ẋ

y

)
=
(
A B

C D

)(
x

u

)
(2.3.1)

with state space X = Rn, input space U = Rm and output space Y = Rp. Consider a general
quadratic supply function s : U × Y → R defined by

s(u, y) =
(
y

u

)� (
Qyy Qyu

Quy Quu

)(
y

u

)
(2.3.2)
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Here,

Q :=
(
Qyy Qyu

Quy Quu

)
is a real symmetric matrix which is partitioned conform with u and y. we emphasize that no a priori
definiteness assumptions are made on Q.

Remark 2.13 Substituting the output equation y = Cx + Du in (2.3.2) shows that (2.3.2) can
equivalently be viewed as a quadratic function in the variables u and x. Indeed,

s(u, y) = s(u, Cx +Du) =
(
x

u

)� (
Qxx Qxu

Qux Quu

)(
x

u

)
where (

Qxx Qxu

Qux Quu

)
=
(
C D

0 I

)� (
Qyy Qyu

Quy Quu

)(
C D

0 I

)
.

2.3.1 A characterization of linear dissipative systems

The following Theorem is the main result of this chapter. It provides necessary and sufficient con-
ditions for the pair (?, s) to be dissipative. For linear systems with quadratic supply functions, it
provides a complete parametrization of its normalized storage functions, together with a frequency
domain characterization of dissipativity.

Theorem 2.14 Suppose that the system ? described by (2.3.1) is controllable and let the supply
function s be defined by (2.3.2). Then the following statements are equivalent.

1. (?, s) is dissipative.

2. (?, s) admits a quadratic storage function V (x) := x�Kx with K = K� ≥ 0.

3. There exists K = K� ≥ 0 such that

F(K) := −
(
A�K +KA KB

B�K 0

)
+
(
C D

0 I

)� (
Qyy Qyu

Quy Quu

)(
C D

0 I

)
≥ 0. (2.3.3)

4. There exists K− = K�− ≥ 0 such that Vav(x) = x�K−x.

5. There exists K+ = K�+ ≥ 0 such that Vreq(x) = x�K+x.

6. For all ω ∈ R with det(iωI − A) �= 0, the transfer function G(s) := C(Is − A)−1B + D
satisfies (

G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
≥ 0 (2.3.4)
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Moreover, if one of the above equivalent statements holds, thenV (x) := x�Kx is a quadratic storage
function in V(0) if and only if K ≥ 0 and F(K) ≥ 0.

Proof. (1⇒2,4). If (?, s) is dissipative then we infer from Proposition 2.10 that the available
storage Vav(x) is finite for any x ∈ Rn. We claim that Vav(x) is a quadratic function of x. This
follows from [46] upon noting that the supply function s is quadratic and that

Vav(x) = sup−
∫ t1

0
s(t)dt = − inf

∫ t1

0
s(t)dt

denotes the optimal cost of a linear quadratic optimization problem. It is well known that the latter
infimum is a quadratic form in x.

(4⇒1). Obvious from Proposition (2.10).

(2⇒3). If V (x) = x�Kx with K ≥ 0 is a storage function then the dissipation inequality can be
rewritten as ∫ t1

t0

(
− d

dt
x(t)�Kx(t)+ s(u(t), y(t))

)
dt ≥ 0.

Substituting the system equations (2.3.1), this is equivalent to∫ t1

t0

(
x(t)

u(t)

)� {
−
(
A�K +KA KB

B�K 0

)
+
(
C D

0 I

)� (
Qyy Qyu

Quy Quu

)(
C D

0 I

)}
︸ ︷︷ ︸

F(K)

(
x(t)

u(t)

)
dt ≥ 0.

(2.3.5)
Since (2.3.5) holds for all t0 ≤ t1 and all inputs u this reduces to the requirement that K ≥ 0 satisfies
the LMI F(K) ≥ 0.

(3⇒2). Conversely, if there exist K ≥ 0 such that F(K) ≥ 0 then (2.3.5) holds and it follows that
V (x) = x�Kx is a storage function which satisfies the dissipation inequality.

(1⇔5). If (?, s) is dissipative then by Proposition (2.10), Vreq is a storage function. Since Vreq is
defined as an optimal cost corresponding to a linear quadratic optimization problem, Vreq is quadratic.
Hence, if the reference point x∗ = 0, Vreq(x) is of the form x�K+x for some K+ ≥ 0. Conversely,
if Vreq = x�K+x, K+ ≥ 0, then it is easily seen that Vreq satisfies the dissipation inequality (2.2.2)
which implies that (?, s) is dissipative.

(1⇔6). Letω ∈ R be such that det(iωI−A) �= 0 and consider the (complex) inputu(t) = exp(iωt)u0
with u0 ∈ Rm. Define x(t) := exp(iωt)(iωI − A)−1Bu0 and y(t) := Cx(t) + Du(t). Then
y(t) = exp(iωt)G(iω)u0 and the triple (u, x, y) satisfies (2.3.1). Moreover,

s(u(t), y(t)) = ū∗0
(
G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
u0

which is constant for all time t ∈ R. Now suppose that (?, s) is dissipative. For non-zero frequencies
ω, the triple (u, x, y) is periodic with period P = 2π/ω. In particular, for all k ∈ Z, x(t0) =
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x(t0+ kP ) and hence V (x(t0)) = V (x(t0+ kP )). For t1 > t0, the dissipation inequality (2.2.2) now
reads ∫ t1

t0

s(u(t), y(t)) dt =
∫ t1

t0

ū∗0
(
G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
u0 dω

= (t1 − t0)ū∗0
(
G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
u0 ≥ 0

Since u0 and t1 > t0 are arbitrary this yields 6.

The implication (1⇔6) is much more involved and will be omitted here.

We recognize in (2.3.3) a non-strict linear matrix inequality. The matrix F(K) is usually called the
dissipation matrix. Observe that in the above proposition the set of quadratic storage functions in
V(0) is completely characterized by the inequalities K ≥ 0 and F(K) ≥ 0. In other words, the
set of normalized quadratic storage functions associated with (?, s) coincides with the feasibility
set of the system of LMI’s K = K� ≥ 0 and F(K) ≥ 0. In particular, the available storage and
the required supply are quadratic storage functions and hence K− and K+ also satisfy F(K−) ≥ 0
and F(K+) ≥ 0. Using Proposition 2.10, it moreover follows that any solution K = K� ≥ 0 of
F(K) ≥ 0 has the property that

0 ≤ K− ≤ K ≤ K+.
In other words, among the set of positive semi-definite solutions K of the LMI F(K) ≥ 0 there
exists a smallest and a largest element. The equivalence between statements 1 and the frequency
domain characterization in statement 6 has a long history in system theory. The result goes back to
V.A. Yakubovich (1962) and R. Kalman (1963) and is often referred to as to ‘Kalman-Yakubovich
Lemma’.

For conservative systems with quadratic supply functions a similar characterization can be given.
The precise formulation is evident from Theorem 2.14 and is left to the reader. For strictly dissipative
system the result is worth mentioning.

Theorem 2.15 Suppose that the system ? described by (2.3.1) is controllable and let the supply
function s be defined by (2.3.2). Then the following statements are equivalent.

1. (?, s) is strictly dissipative.

2. (?, s) admits a quadratic storage function V (x) := x�Kx with K = K� > 0.

3. There exists K = K� > 0 such that

F(K) := −
(
A�K +KA KB

B�K 0

)
+
(
C D

0 I

)� (
Qyy Qyu

Quy Quu

)(
C D

0 I

)
> 0 (2.3.6)

4. For all ω ∈ R with det(iωI − A) �= 0, the transfer function G(s) := C(Is − A)−1B + D
satisfies (

G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
> 0 (2.3.7)
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2.3. LINEAR DISSIPATIVE SYSTEMS WITH QUADRATIC SUPPLY RATES

Moreover, if one of the above equivalent statements holds, thenV (x) := x�Kx is a quadratic storage
function in V(0) if and only if K > 0 and F(K) > 0.

Proof. The proof proceeds along the same lines as the proof of Theorem 2.14. We only prove the
implication (3⇒1) here. LetK > 0 be such that F(K) > 0. Then obviously, there exists ε > 0 such
that F(K)− diag(0, ε2I ) ≥ 0. But then∫ t1

t0

(
− d

dt
x(t)�Kx(t)+ s(u(t), y(t))− ε2‖u(t)‖2

)
dt =

∫ t1

t0

(
x(t)

u(t)

)� [
F(K)−

(
0 0
0 ε2I

)](
x(t)

u(t)

)
dt ≥ 0

which is (2.2.4) with V (x) = x�Kx. Since V is non-negative and attains a strong global minimum
at 0, it follows that (?, s) is strictly dissipative.

2.3.2 Dissipation functions

There is a simple relation between the dissipation matrix F(K) and dissipation functions. Indeed, if
K = K� ≥ 0 (or > 0) is such that F(K) ≥ 0 then the dissipation matrix can be factorized as

F(K) = (
MK NK

)� (
MK NK

)
.

where
(
MK NK

)
is a real matrix with n+m columns and rK := rank(F (K)) rows. For any triple

(u, x, y) satisfying (2.3.1) we then obtain that∫ t1

t0

‖MKx(t)+NKu(t)‖2 dt =
∫ t1

t0

(
x

u

)�
F(K)

(
x

u

)
dt

= x(t0)
�Kx(t0)− x(t1)�Kx(t1)+

∫ t1

t0

s(t) dt.

In other words, the function
d(x, u) := ‖MKx +NKu‖2

is a dissipation function of the system (2.3.1).

2.3.3 The positive real lemma

Consider the system (2.3.1) together with the quadratic supply function s(u, y) = y�u+u�y. Then
the following is an immediate consequence of Theorem 2.14.

Corollary 2.16 Suppose that the system ? described by (2.3.1) is controllable and has transfer
function G. Let s(u, y) = y�u+ u�y be a supply function. Then equivalent statements are

1. (?, s) is dissipative.
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2.3. LINEAR DISSIPATIVE SYSTEMS WITH QUADRATIC SUPPLY RATES

2. the system of LMI’s

K = K� ≥ 0(−A�K −KA −KB + C�
−B�K + C D +D�

)
≥ 0

is feasible

3. For all ω ∈ R with det(iωI − A) �= 0 G(iω)∗ +G(iω) ≥ 0.

Moreover, V (x) = x�Kx defines a quadratic storage function if and only if K satisfies the above
system of LMI’s.

Remark 2.17 Corollary 2.16 is known as the Kalman-Yacubovich-Popov or the positive real lemma
and has played a crucial role in questions related to the stability of control systems and synthesis of
passive electrical networks. Transfer functions which satisfy the third statement are generally called
positive real.

2.3.4 The bounded real lemma

Consider the quadratic supply function

s(u, y) = γ 2u�u− y�y (2.3.8)

where γ ≥ 0. We obtain the following result as an immediate consequence of Theorem 2.14.

Corollary 2.18 Suppose that the system ? described by (2.3.1) is controllable and has transfer
function G. Let s(u, y) = γ 2u�u− y�y be a supply function. Then equivalent statements are

1. (?, s) is dissipative.

2. The system of LMI’s

K = K� ≥ 0(
A�K +KA+ C�C KB + C�D

B�K +D�C D�D − γ 2I

)
≤ 0

is feasible.

3. For all ω ∈ R with det(iωI − A) �= 0 G(iω)∗G(iω) ≤ γ 2I .

Moreover, V (x) = x�Kx defines a quadratic storage function if and only if K satisfies the above
system of LMI’s.
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2.4. FURTHER READING

Let us analyze the importance of this result. If ? is dissipative with respect to the supply function
(2.3.8) then we infer from Remark 2.4 that for any quadratic storage function V (x) = x�Kx,

V̇ ≤ γ 2u�u− y�y (2.3.9)

along solutions (u, x, y) of (2.3.1). Suppose that x(0) = 0, A has all its eigenvalues in the open
left-half complex plane and the input u is taken from the set L2 of square integrable functions, i.e.,
u is such that

‖u‖22 :=
∫ ∞

0
u�(t)u(t) dt < ∞.

Then both the state x and the output y of (2.3.1) are square integrable functions and limt→∞ x(t) = 0.
We can therefore integrate (2.3.9) from t = 0 till∞ to obtain that for all u ∈ L2

γ 2‖u‖22 − ‖y‖22 ≥ 0.

Equivalently,

sup
u∈L2

‖y‖2
‖u‖2 ≤ γ. (2.3.10)

The left-hand side of (2.3.10) is the so called L2-induced norm or L2-gain of the system (2.3.1).
The L2-gain is therefore the smallest γ ≥ 0 for which (2.3.10) holds.

Translated in terms of LMI’s, we infer that the upperbound (2.3.10) holds if and only if there exists
K that satisfies the linear matrix inequalities of Corollary (2.18). This provides a feasibility test,
parametrized in γ > 0, to determine the L2-gain of the system. We will analyze the consequences
of this observation for control in the next chapter.

2.4 Further reading

The material on dissipative systems originates from [47, 48] and has been further developed in [42]
and [44, 45].

2.5 Exercises

Exercise 1

Show that for conservative controllable systems the set of normalized storage functions V(x∗) consist
of one element only. (Consequently, storage functions of conservative or lossless systems are unique
up to normalization!).
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Exercise 2

Show that the set of dissipation functions associated with a dissipative system is convex.

Exercise 3

Suppose that (
ẋ

y

)
=
(
A B

C D

)(
x

u

)
is a minimal (i.e. controllable and observable) representation of a linear time-invariant dynamical
system ?. Show that ? is stable (in the sense that the unforced system ẋ = Ax has solutions x with
limt→∞ x(t) = 0) whenever ? is dissipative with respect to the supply function s(u, y) = y�u.

Exercise 4

Consider the suspension system ? of a transport vehicle as depicted in Figure 2.1. The system is

Figure 2.1: Model for suspension system

modeled by the equations

m2q̈2 + b2(q̇2 − q̇1)+ k2(q2 − q1)− F = 0

m1q̈1 + b2(q̇1 − q̇2)+ k2(q1 − q2)+ k1(q1 − q0)+ F = 0

where F (resp. −F ) is a force acting on the chassis mass m2 (the axle mass m1). Here, q2 − q1 is
the distance between chassis and axle, and q̈2 denotes the acceleration of the chassis mass m2. b2 is
a damping coefficient and k1 and k2 are spring coefficients. (b1 = 0). The variable q0 represents the

m1 m2 k1 k2 b2

1.5× 103 1.0× 104 5.0× 106 5.0× 105 50× 103

Table 2.1: Physical parameters
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road profile. A ‘real life’ set of system parameters is given in Table 2.1.

1. Derive a state space model of the form 2.3.1 of the system which assumes u = col(q0, F ) and
y = col(q1, q̇1, q2, q̇2) as its input and output, respectively.

2. Define a supply function s : U × Y → R such that (?, s) is dissipative. (Base your definition
on physical insight).

3. Characterize the set of all quadratic storage functions of the system as the feasibility set of a
linear matrix inequality.

4. Use the Matlab routine feasp to compute a quadratic storage function V (x) = x�Kx of
this system.

5. Use Matlab to determine a dissipation function d : X × U → R for this system.

Exercise 5

Consider the transfer functions

1. G1(s) = 1/(s + 1)

2. G2(s) = (s − 1)/(s + 1)

3. G3(s) =
(
(s + 2)(s − 1)/(s + 1)2 (s + 3)/(s + 4)

(s − 1)/(s + 0.5) (s + 1)/(s + 2)

)
.

Determine for each of these transfer functions (1) whether or not they are positive real and (2) their
L2-induced norm. Reformulate this problem as a feasibility test involving a suitably defined LMI
(See Corollary 2.16 and Corollary 2.18 of this chapter).

Exercise 6

Consider the following electrical circuit. We will be interested in modeling the relation between

RC RL

C L

V

I

✍✌
✎�

the external voltage V and the current I through the circuit. Assume that the resistors RC = 1 and
RL = 1, the capacitor C = 2 and the inductance L = 1.
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1. Derive a linear, time-invariant system ? that models the relation between the voltage V and
the current I .

2. Find a state space representation of the form (2.3.1) which represents?. Is the choice of input
and output variable unique?

3. Define a supply function s : U × Y → R such that (?, s) is dissipative.

4. Characterize the set of all quadratic storage functions of the system as the feasibility set of a
linear matrix inequality.

5. Use the Matlab routine feasp to compute a quadratic storage function V (x) = x�Kx of
this system.

6. Does dissipativitity of (?, s) depend on whether you take the voltage V or the current I as
input of your system?

Exercise 7

Consider a first-order unstable system P(s) = 1/(−3s + 1). It is desirable to design a feedback
compensatorC, so that the feedback system is dissipative. Assume that the compensatorC is a simple
gain C(s) = k. Find the range of gains that will make the system depicted in Figure 2.2 dissipative
with respect to the supply function s(u, y) = yu.

✲u ❢ ✲+ C ✲ P ✲ y

Figure 2.2: Feedback configuration

46



Chapter 3

Stability and nominal performance

3.1 Lyapunov stability

As mentioned in Chapter 1, Lyapunov studied contraction and expansion phenomena of the motions
of a dynamical systems around an equilibrium of a mechanical system. Translated in modern jargon,
the study of what we call Lyapunov stability concerns the asymptotic behavior of the state of an
autonomous dynamical system. The main contribution of Lyapunov has been that stability of such
systems can be verified in terms of the existence of functions, called Lyapunov functions. For
the general class of nonlinear systems there are no systematic procedures for finding such functions.
However, for linear systems the problem of finding Lyapunov functions turns can be solved adequately
as a feasibility test of a linear matrix inequality.

Consider the differential equation

ẋ = f (x) (3.1.1)

with finite dimensional state space X = Rn and f : Rn → Rn an analytic function. Usually, the
differential equation (3.1.1) is referred to as a flow, while for system theorists this is an example
of an autonomous dynamical system. Assume that for all initial conditions x0 ∈ X there exists a
unique solution x : R+ → X of (3.1.1) which passes through x0 at the initial time t = 0 and which
is defined for all t > 0. With some abuse of notation this solution will be denoted as x(t, x0) to
explicitly display the dependence of the initial value. In particular, x(0, x0) = x0.

A set S ⊂ X is called an invariant set of (3.1.1) if x0 ∈ S implies that x(t, x0) ∈ S for all t ∈ R.
The idea of an invariant set is therefore that a solution remains in the set once it started there. A
point x∗ in X is called an equilibrium point of the flow if the singleton S = {x∗} is an invariant set.
Obviously, every equilibrium point defines a constant solution x(t, x∗) = x∗, t ≥ 0 of the differential
equation (3.1.1). In particular, an equilibrium point x∗ of (3.1.1) satisfies 0 = f (x∗). To investigate
the issue of stability, we will be interested in the behavior of solutions x(t, x0) with t ≥ 0 and initial
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3.1. LYAPUNOV STABILITY

condition x0 in the neighborhood of an equilibrium point x∗. To do this, we equip the state space X
with its natural (Euclidean) norm ‖ · ‖.

Definition 3.1 (Lyapunov stability) Consider the differential equation (3.1.1).

1. An equilibrium point x∗ ∈ X is called stable (in the sense of Lyapunov) if given any ε > 0,
there exists δ > 0 (only depending on ε and not on t) such that

‖x∗ − x0‖ ≤ δ =⇒ ‖x(t, x0)− x∗‖ ≤ ε for all t ≥ 0

2. The equilibrium point x∗ ∈ X is called an attractor if there exists ε > 0 with the property that

‖x∗ − x0‖ ≤ ε =⇒ lim
t→∞ x(t, x0) = x∗

3. It is called asymptotically stable (in the sense of Lyapunov) if x∗ is both stable (in the sense of
Lyapunov) and an attractor.

4. The equilibrium point x∗ ∈ X is said to be unstable if it is not stable (in the sense of Lyapunov).

There are many variations to these concepts. The region of attraction associated with an equilibrium
point x∗ is defined to be set of all initial states x0 ∈ X for which x(t, x0)→ x∗ as t →∞. If this
region coincides with X then x∗ is said to be a global attractor. We will say that an equilibrium x∗
is globally asymptotically stable if it is stable and a global attractor. Lyapunov functions are defined
as follows.

Definition 3.2 (Lyapunov functions) A function V : X → R is called a Lyapunov function in a
neighborhood N (x∗) ⊂ X of an equilibrium point x∗ if

1. V is continuous at x∗,

2. V attains a strong local mimimum at x∗, i.e., there exists a function α : R+ → R+ which is
continuous, strictly increasing, with α(0) = 0, such that

V (x)− V (x∗) ≥ α(‖x − x∗‖)
for all x ∈ N (x∗).

3. V is monotone non-increasing along all solutions x(t, x0) of (3.1.1) with x0 ∈ N (x∗), i.e.,
V (x(t, x0)) is monotone non-increasing as a function of t for all x0 ∈ N (x∗).

If a Lyapunov function V is differentiable, the last item states that

d

dt
V (x(t, x0)) :=

n∑
j=1

∂V

∂xj
fj (x(t, x0))
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3.1. LYAPUNOV STABILITY

is less than or equal to zero for solutions x(t, x0) of (3.1.1) with initial condition x0 nearby the
equilibrium x∗. An intuitive way to think about Lyapunov functions is in terms of storage functions
(as introduced in Chapter 2). Due to the dissipativity property of a system, the storage (or ‘stored
energy’) decreases along trajectories of the system. For example, in a mechanical system, it is natural
to take the (mechanical) energy in the system as a Lyapunov function. The derivative of the energy
then denotes the dissipation rate.

The main stability results for autonomous systems of the form (3.1.1) are summarized in the following
proposition.

Proposition 3.3 (Lyapunov theorem) Consider the differential equation (3.1.1) and let x∗ ∈ X be
an equilibrium point.

1. x∗ is a stable equilibrium if there exists a Lyapunov function V in a neigborhood N (x∗) of x∗.

2. x∗ is an aymptotically stable equilibrium if there exists a Lyapunov function V in a neighbor-
hood N (x∗) of x∗ such that the only solution x of (3.1.1) in N (x∗) for which V̇ (x(t)) = 0 is
x(t) = x∗.

Proof. 1. Suppose that x∗ ∈ X is an equilibrium point and V a Lyapunov function. Let ε > 0 be
given. Since V is continuous at x∗, there exists δ > 0 such that V (x0) − V (x∗) ≤ α(ε) for every
x0 ∈ X such that ‖x − x∗‖ < δ. Since V has a strong local minimum at x∗, we infer that

0 ≤ α(‖x0 − x∗‖) ≤ V (x0)− V (x∗) ≤ α(ε).
Since V is monotone non-increasing for all solution x(t, x0) with x0 ∈ N (x∗), also the inequality

0 ≤ α(‖x(t, x0)− x∗‖) ≤ V (x(t, x0))− V (x∗) ≤ V (x0)− V (x∗) < α(ε)

withx0 ∈ N (x∗)holds for t > 0. Infer from the fact thatα is strictly increasing, that‖x(t, x0)−x∗‖ <
ε for all t ≥ 0.

2. Similarly proven.

Together with the autonomous system (3.1.1) let us also consider the linear autonomous system

ẋ = Ax (3.1.2)

where A : Rn → Rn is a linear map obtained as the linearization of f : Rn → Rn around an
equilibrium point x∗ ∈ X of (3.1.1). Precisely, for x∗ ∈ X we write

f (x) = f (x∗)+
n∑

j=1

∂f

∂xj
(x∗)[x − x∗] + . . .

where we assume that f is at least once differentiable. The linearization of f around x∗ is defined
by the system (3.1.2) with A defined by the real n× n matrix

A :=
n∑

j=1

∂f

∂xj
(x∗).
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The origin of the linear flow (3.1.2) is the only candidate equilibrium point. The origin of the linear
flow (3.1.2) is asymptotically stable if and only if there exists an ellipsoid

E = {x ∈ X | x�Xx = 1}, X > 0

with center in the origin such that the velocity vector Ax is directed inward at any point x of the
ellipsoid E . The positive definite quadratic function V : X→ R defined by

V (x) = x�Xx

then serves as a quadratic Lyapunov function. Indeed, V is continuous at x∗ = 0, is assumes a strong
local minimum at x = 0 (actually this is a strong global minimum of V ), while the derivative of V (x)
in the direction of the vector field Ax is given by

VxAx = x�[A�X +XA]x
which should be negative to guarantee that the origin is an asymptotic stable equilibrium point of
(3.1.2). We thus obtain the following result:

Proposition 3.4 Let the linear system (3.1.2) be a linearization of (3.1.1) at the equilibrium x∗. The
following statements are equivalent.

1. The origin is an asymptotic stable equilibrium for (3.1.2).

2. The origin is a global asymptotic stable equilibrium for (3.1.2).

3. All eigenvalues λ(A) of A have strictly negative real part.

4. The linear matrix inequalities

A�X +XA < 0, X = X� > 0

are feasible.

Moreover, if one of these statements hold, then the equilibrium x∗ of the flow (3.1.1) is asymptotically
stable.

The most important conclusion of Proposition 3.4 is that asymptotic stability of the equilibrium x∗
of the nonlinear flow (3.1.1) can be concluded from the asymptotic stability of the linearized system.
It is evident that this result has important consequences for systems and control.

3.2 Generalized stability regions for LTI systems

As we have seen, the autonomous dynamical system

ẋ = Ax
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3.2. GENERALIZED STABILITY REGIONS FOR LTI SYSTEMS

is asymptotically stable if and only if all eigenvalues ofA lie in C−, the open left half complex plane.
For many applications in control and engineering we may be interested in more general stability
regions. Let us define a stability region as a subset Cstab ⊆ C with the following two properties{

Property 1: λ ∈ Cstab =⇒ λ̄ ∈ Cstab

Property 2: Cstab is convex .

Typical examples of common stability sets include

Cstab = C− open left half complex plane

Cstab = C no stability requirement

Cstab = {s ∈ C | )(s) < −α} guaranteed damping

Cstab = {s ∈ C | )(s) < −α, |s| < r} maximal damping and oscillation

Cstab = {s ∈ C | α1 < )(s) < α2} vertical strip

Cstab = {s ∈ C | |*(s)| < α} horizontal strip

Cstab = {s ∈ C | )(s) tan θ < −|*(s)|} conic stability region.

Here, θ ∈ (0, π/2) and r, α, α1, α2 are real numbers. We consider the question whether we can derive
a feasibility test to verify whether the eigenmodes of the system ẋ = Ax belong to either of these
sets. This can indeed be done in the case of the given examples. To see this, we observe that

)(s) < 0 ⇐⇒ s + s̄ < 0

)(s) < −α ⇐⇒ s + s̄ + 2α < 0

|s| < r ⇐⇒
(−r s

s̄ −r
)
< 0

α1 < )(s) < α2 ⇐⇒
(
(s + s̄)− 2α2 0

0 −(s + s̄)+ 2α1

)
< 0

)(s) tan(θ) < −|*(s)| ⇐⇒
(
(s + s̄) sin θ (s − s̄) cos θ
(s − s̄) cos θ (s + s̄) sin θ

)
< 0.

Here, in the third equivalence we used that |s| < r if and only if ss̄ < r2 which in turn is equivalent
to r − sr−1s̄ > 0. The latter expression can then be recognized as a Schur complement of r .

In any case, each of these regions can be expressed as the set of complex numbers s ∈ C for which

F(s) := P +Qs +Q�s̄ < 0 (3.2.1)

where P = P� and Q are real matrices. As F(s) is symmetric for all s ∈ C this defines a linear
matrix inequality whose feasibility set is a convex subset of C. The matrix valued function F(s) is
called the characteristic function of the stability region

Cstab := {s ∈ C | F(s) < 0}.
This set includes all the examples given above and regions bounded by circles, ellipses, strips,
parabolas and hyperbolas. Since finite intersections of such regions can be obtained by systems of
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LMI’s one can virtually approximate any convex region in the complex plane by an LMI of the form
P1 0 . . . 0
0 P2 . . . 0
...

. . .
...

0 . . . 0 Pk

+

Q1 0 . . . 0
0 Q2 . . . 0
...

. . .
...

0 . . . 0 Qk

 s +


Q1 0 . . . 0
0 Q2 . . . 0
...

. . .
...

0 . . . 0 Qk

 s̄ < 0

which is again of the form (3.2.1). Stability regions Cstab which are described as feasibility sets of
this form lead to the following interesting generalization of the Lyapunov inequality. The result can
be found as Theorem 2.2 in [3].

Proposition 3.5 (M. Chilali and P. Gahinet) Let P = P�,Q and A be real matrices. Then A has
all its eigenvalues in the stability region

Cstab := {s ∈ C | P +Qs +Q�s̄ < 0}
if and only if there exists a real symmetric matrix X = X� > 0 withp11X + q11AX + q11XA

� . . . p1kX + q1kAX + qk1XA
�

...
. . .

...

pk1X + qk1AX + q1kXA
� . . . pkkX + qkkAX + qkkXA�

 < 0 (3.2.2)

where pij and qij are the ij -th entry of P and Q, respectively.

Stated otherwise, A has all its eigenvalues in the stability region Cstab with characteristic function
P +Qs +Q�s̄ if and only if there exists a positive definite matrix X such that

(pijX + qijXA+ qjiA�X) < 0.

for all i, j . Note that this is an LMI in X and that the classical Lyapunov theorem corresponds to the
characteristic function f (s) = s+ s̄. Note also that the condition (3.2.2) is related to the characteristic
function of the stability region by the substitution (A,AX,XA�)↔ (1, s, s̄).

3.3 Nominal performance and LMI’s

In this section we will use the results on dissipative systems of Chapter 2 to characterize a number of
relevant performance criteria for dynamical systems. In view of forthcoming chapters we consider
the system {

ẋ = Ax + Bw
z = Cx +Dw (3.3.1)

where x(t) ∈ X = Rn is the state, w(t) ∈ W = Rm the input and z(t) ∈ Z = Rp the output.
Assume throughout this section that the system is asymptotically stable (i.e. the eigenvalues ofA are
in the open left-half complex plane). Let

T (s) = C(Is − A)−1B +D
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3.3. NOMINAL PERFORMANCE AND LMI’S

denote the transfer function corresponding to (3.3.1). Here, we will view w as an input variable (a
‘disturbance’) whose effect on the output z we wish to minimize. There are various ways to quantify
the effect of w on z. For example, for a given input w, and for suitable choices of norms the quotient
‖z‖/‖w‖ indicates the relative gain which the inputw has on the output z. More generally, the worst
case gain of the system is the quantity

‖T ‖ := sup
0<‖w‖<∞

‖z‖
‖w‖

which, of course, depends on the specific norms. Other indicators for nominal performance could be
the energy in the impulse response of the system, the (asymptotic) variance of the output when the
system is fed with inputs with a prescribed stochastic nature, etc.

3.3.1 Quadratic nominal performance

Recall from Chapter 2 that a quadratic supply function associated with the system (3.3.1) is a function
of the form

s(w, z) =
(
w

z

)� (
Qww Qwz

Qzw Qzz

)(
w

z

)
.

The following proposition is an immediate consequence of the Kalman-Yabubovich-Popov lemma
and we will see that it has important implications for the characterization of performance criteria.
We refer to Theorem 2.15 and Lemma ?? for its proof.

Proposition 3.6 Consider the system (3.3.1) with transfer function T . Suppose that A has its eigen-
values in C− and let x(0) = 0. The following statements are equivalent.

1. there exists ε > 0 such that for all w ∈ L2∫ ∞
0

(
w

z

)� (
Qww Qwz

Qzw Qzz

)(
w

z

)
dt ≤ −ε2

∫ ∞
0

w�(t)w(t)dt (3.3.2)

2. for all ω ∈ R ∪ {∞} there holds(
I

T (iω)

)∗ (
Qww Qwz

Qzw Qzz

)(
I

T (iω)

)
< 0.

3. there exists K = K� ∈ Rn×n such that(
A�K +KA KB

B�K 0

)
+
(

0 I

C D

)� (
Qww Qwz

Qzw Qzz

)(
0 I

C D

)
< 0.

This result characterizes quadratic performance of the system (3.3.1) in the sense that it provides
necessary and sufficient conditions for the quadratic performance function J := ∫∞

0 s(w, z)dt to
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3.3. NOMINAL PERFORMANCE AND LMI’S

be strictly negative for all square integrable trajectories of the system. Proposition (3.6) provides
an equivalent condition in terms of a frequency domain inequality and an equivalent linear matrix
inequality for this. This very general result proves useful in a number of important special cases,
which we describe below.

3.3.2 H∞ nominal performance

A popular performance measure of a stable linear time-invariant system is theH∞ norm of its transfer
function. It is defined as follows. Consider the system (3.3.1) together with its transfer function T .
Assume the system to be asymptotically stable. In that case, T (s) is bounded for all s ∈ C with
positive real part. By this, we mean that the largest singular value σmax(T (s)) is finite for all s ∈ C

with )s > 0. This is an example of an H∞ function. To be slightly more formal on this class of
functions, let C+ denote the set of complex numbers with positive real part. The Hardy space H∞
consists of all complex valued functions T : C+ → Cp×m which are analytic and for which

‖T ‖∞ := sup
s∈C+

σmax(T (s)) < ∞.

The left-hand side of this expression satisfies the axioms of a norm and defines the H∞ norm of T .
Although H∞ functions are defined on the right-half complex plane, it can be shown that each such
function has a unique extension to the imaginary axis (which is usually also denoted by T ) and that
the H∞ norm is given by

‖T ‖∞ = sup
ω∈R

σmax(T (iω)).

In words, the H∞ norm of a transfer function is the supremum of the maximum singular value of the
frequency response of the system.

Remark 3.7 Various graphical representations of frequency responses are illustrative to investigate
system properties like bandwidth, gains, etc. Probably the most important one is a plot of the singular
values σj (T (iω)) (j = 1, . . . ,min(m, p)) viewed as function of the frequency ω ∈ R. For single-
input single-output systems there is only one singular value and σ(T (iω)) = |T (iω)|. A Bode
diagram of the system is a plot of the mapping ω �→ |T (iω)| and provides useful information to
what extent the system amplifies purely harmonic input signals with frequencies ω ∈ R. In order to
interpret these diagrams one usually takes logarithmic scales on theω axis and plots 2010 log(T (jω))
to get units in decibels dB. The H∞ norm of a transfer function is then nothing else than the highest
peak value which occurs in the Bode plot. In other words it is the largest gain if the system is fed
with harmonic input signals.

TheH∞ norm of a stable linear system admits an interpretation in terms of dissipativity of the system
with respect to a specific quadratic supply function. This is expressed in the following result.

Proposition 3.8 Let the system (3.3.1) be asymptotically stable and γ > 0. Then the following
statements are equivalent.
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3.3. NOMINAL PERFORMANCE AND LMI’S

1. ‖T ‖∞ < γ .

2. for all w there holds that

sup
0<‖w‖2<∞

‖z‖2
‖w‖2 < γ

where z is the output of (3.3.1) subject to input w and initial condition x(0) = 0.

3. The system (3.3.1) is strictly dissipative with respect to the supply function s(w, z) = γ 2‖w‖2−
‖z‖2.

4. there exists a solution K = K� to the LMI(
A�K +KA+ C�C KB + C�D

B�K +D�C D�D − γ 2I

)
< 0. (3.3.3)

Proof. Apply Proposition 3.6 with(
Qww Qwz

Qzw Qzz

)
=
(
γ 2I 0

0 −I
)
.

For a stable system, the H∞ norm of the transfer function therefore coincides with the L2-induced
norm of the input-output operator associated with the system. Using the Kalman-Yakubovich-Popov
lemma, this yields an LMI feasibility test to verify whether or not the H∞ norm of the transfer
function T is bounded by γ .

Interpretation 3.9 We can compute the smallest possible upperbound of the L2-induced gain of the
system (which is the H∞ norm of the transfer function) by minimizing γ > 0 over all variables γ
and K = K� that satisfy the LMI (3.3.3).

3.3.3 H2 nominal performance

The Hardy space H2 consists of the class of complex valued functions which are analytic in C+ and
for which

‖T ‖H2 :=
√

1

2π
sup
σ>0

trace
∫ ∞
−∞

T (σ + iω)[T (σ + iω)]∗ dω

is finite. This defines the H2 norm of T . this ‘cold-blooded’ definition may seem little appealing at
first sight, but in fact, it has nice and important system theoretic interpretations. As in H∞, it can be
shown that each function in H2 has a unique extension to the imaginary axis, which we also denote
by T , and that in fact the H2 norm satisfies

‖T ‖2H2
= 1

2π
trace

∫ ∞
−∞

T (iω)T (iω)∗ dω (3.3.4)
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3.3. NOMINAL PERFORMANCE AND LMI’S

We will first give an interpretation of the H2 norm of a system in terms of its impulsive behavior.
Consider the system (3.3.1) and suppose that we are interested only in the impulse responses of this
system. This means, that we take impulsive inputs1 of the form

w(t) = δ(t)ej

where ej the j th basis vector in the standard basis of the input space Rm, (j = 1, . . . , m). The output
zj which corresponds to the input w and initial condition x(0) = 0 is uniquely defined and given by

zj (t) =


C exp(At)Bej for t > 0

Dejδ(t) for t = 0

0 for t < 0

.

Since the system is assumed to be stable, the outputs zj are square integrable for all j = 1, . . . , m,
provided that D = 0. In that case

m∑
j=1

‖zj‖22 = trace
∫ ∞

0
B� exp(A�t)C�C exp(At)B dt

= trace
∫ ∞

0
C exp(At)BB� exp(A�t)C� dt.

Long ago, Parseval taught us that the latter expression is equal to

1

2π
trace

∫ ∞
−∞

T (iω)T (iω)∗ dω

which is ‖T ‖2H2
. Infer that the squared H2 norm of T coincides with the total ‘output energy’ in the

impulse responses of the system. What is more, this observation provides a straightforward algorithm
to determine the H2 norm of a stable rational transfer function. Indeed, associate with the system
(3.3.1) the symmetric non-negative matrices

W :=
∫ ∞

0
exp(At)BB� exp(A�t) dt

M :=
∫ ∞

0
exp(A�t)C�C exp(At) dt.

Then W is usually referred to as the controllability gramian and M the observability gramian of the
system (3.3.1). The gramians satisfy the matrix equations

AW +WA� + BB� = 0, A�M +MA+ C�C = 0

and are, in fact, the unique solutions to these equations whenever A has its eigenvalues in C− (as is
assumed here). Consequently,

‖T ‖2H2
= trace(CWC�) = trace(B�MB).

1Formally, the impulse δ is not a function and for this reason it is neither a signal. It requires a complete introduction to
distribution theory to make these statements more precise, but we will not do this at this place.
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A second interpretation of the H2 norm makes use of stochastics. Consider the system (3.3.1) and
assume that the components of the input w are independent zero-mean, white noise processes. If we
take x(0) = 0 as initial condition, the state variance matrix

W(t) := E(x(t)x�(t))

is the solution of the matrix differential equation

Ẇ = AW +WA� + BB�, W(0) = 0.

Consequently, with D = 0, the output variance

E(z�z(t)) = E(x�C�Cx(t)) = E trace(Cx(t)x�(t)C�) =
= traceCE(x(t)x�(t))C� = trace(CW(t)C�).

SinceA is asymptotically stable, the limitW := limt→∞W(t) exists and is equal to the controllability
gramian of the system (3.3.1). Consequently, the asymptotic output variance

lim
t→∞ E(z(t)z�(t)) = trace(CWC�)

which is the square of the H2 norm of the system. The H2 norm therefore has an interpretation in
terms of the asymptotic output variance of the system when it is excited by white noise input signals.

The following theorem characterizes the H2 norm in terms of linear matrix inequalities.

Proposition 3.10 Suppose that the system (3.3.1) is asymptotically stable and let T (s) = C(Is −
A)−1B +D denote its transfer function. Then

1. ‖T ‖2 < ∞ if and only if D = 0.

2. If D = 0 then the following statements are equivalent

(a) ‖T ‖2 < γ

(b) there exists X > 0 such that

AX +XA� + BB� < 0, trace(CXC�) < γ 2.

(c) there exists Y > 0 such that

A�Y + YA+ C�C < 0, trace(B�YB) < γ 2.

(d) there exists K = K� > 0 and Z such that(
A�K +KA KB

B�K −I
)
< 0;

(
K C�
C Z

)
> 0; trace(Z) < γ 2 (3.3.5)

57

Polcz Peter
Lower bound for the H2 norm LMI megoldas



3.3. NOMINAL PERFORMANCE AND LMI’S

(e) there exists K = K� > 0 and Z such that(
AK +KA� KC�

CK −I
)
< 0;

(
K B

B� Z

)
> 0; trace(Z) < γ 2. (3.3.6)

Proof. The first claim is immediate from the definition of the H2 norm. To prove the second
part, note that ‖T ‖2 < γ is equivalent to requiring that the controllability gramian W satisfies
trace(CWC�) < γ 2. Since the controllability gramian is the unique positive definite solution of the
Lyapunov equation AW + WA� + BB� = 0 this is equivalent to saying that there exists X > 0
such that

AX +XA� + BB� < 0; trace(CXC�) < γ 2.

In turn, with a change of variables K := X−1, this is equivalent to the existence of K > 0 and Z
such that

A�K +KA+KBB�K < 0; CK−1C� < Z; trace(Z) < γ 2.

Now, using Schur complements for the first two inequalities yields that ‖T ‖2 < γ is equivalent to
the existence of K > 0 and Z such that(

A�K +KA KB

B�K −I
)
< 0;

(
K C�
C Z

)
> 0; trace(Z) < γ 2

which is (3.3.5) as desired. The equivalence with (3.3.6) and the matrix inequalities in Y are obtained
by a direct dualization and the observation that ‖T ‖2 = ‖T �‖2.

Interpretation 3.11 The smallest possible upperbound of the H2-norm of the transfer function can
be calculated by minimizing the criterion trace(Z) over the variables K > 0 and Z that satisfy the
LMI’s defined by the first two inequalities in (3.3.5) or (3.3.6).

3.3.4 Generalized H2 nominal performance

Consider again the system (3.3.1) and suppose that x(0) = 0 andA has its eigenvalues in C−. Recall
that ‖T ‖H2 <∞ if and only if D = 0. The system then defines a bounded operator from L2 inputs
to L∞ outputs. That is, for any input w for which ‖w‖22 :=

∫∞
0 ‖w(t)‖2dt < ∞ the corresponding

output z belongs to L∞, the space of signals z : R+ → Rp of finite amplitude2

‖z‖∞ := sup
t≥0

√〈z(t), z(t)〉.
The L2-L∞ induced norm (or ‘energy to peak’ norm) of the system is defined as

‖T ‖2,∞ := sup
0<‖w‖2<∞

‖z‖∞
‖w‖2

2An alternative and more common definition for the L∞ norm of a signal z : R → R
p is ‖z‖∞ :=

maxj=1,...,p supt≥0 |zj (t)|. For scalar valued signals this coincides with the given definition, but for non-scalar signals
this is a different signal norm. When equipped with this alternative amplitude norm of output signals, the characterization
(3.3.7) still holds, but λmax(·) needs to be interpreted as the maximal entry on the diagonal of its argument. See [27] for
details.
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3.3. NOMINAL PERFORMANCE AND LMI’S

and satisfies ( [27])

‖T ‖22,∞ =
1

2π
λmax

(∫ ∞
−∞

T (iω)T (iω)∗ dω
)

(3.3.7)

where λmax(·) denotes maximum eigenvalue. Note that when z is scalar valued, the latter expression
reduces to the H2 norm, i.e, for systems with scalar valued output variables

‖T ‖2,∞ = ‖T ‖H2 ,

which is the reason why we refer to (3.3.7) as a generalized H2 norm. The following result charac-
terizes an upperbound on this quantity.

Proposition 3.12 Suppose that the system (3.3.1) is asymptotically stable and that D = 0. Then
‖T ‖2,∞ < γ if and only if there exists a solution K = K� > 0 to the LMI’s(

A�K +KA KB

B�K −I
)
< 0;

(
K C�
C γ 2I

)
> 0 (3.3.8)

Proof. Firstly, infer from Theorem 2.15 that the existence of K > 0 with(
A�K +KA KB

B�K −I
)
< 0

is equivalent to the dissipativity of the system (3.3.1) with respect to the supply function s(w, z) =
w�w. Equivalently, for all w ∈ L2 and t ≥ 0 there holds

x(t)�Kx(t) ≤
∫ t

0
w(τ)�w(τ) dτ.

Secondly, using Schur complements, the LMI(
K C�
C γ 2I

)
> 0

is equivalent to the existence of an ε > 0 such that C�C < (γ 2 − ε2)K . Together, this yields that
for all t ≥ 0

〈z(t), z(t)〉 = x(t)�C�Cx(t) ≤ (γ 2 − ε2)x(t)�Kx(t)

≤ (γ 2 − ε2)

∫ t

0
w(τ)�w(τ) dτ.

≤
∫ ∞

0
w(τ)�w(τ) dτ.

Take the supremum over t ≥ 0 yields the existence of ε > 0 such that for all w ∈ L2

‖z‖2∞ ≤ (γ 2 − ε2)‖w‖22.
Dividing the latter expression by ‖w‖22 and taking the supremum over all w ∈ L2 then yields the
result.

Interpretation 3.13 The smallest possible upperbound of the L2-L∞ gain of a system can be cal-
culated by minimizing γ over all variables γ and K > 0 for which the LMI’s (3.3.8) are feasible.
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3.3.5 L1 or peak-to-peak nominal performance

Consider the system (3.3.1) and assume again that the system is stable. For fixed initial condition
x(0) = 0 this system defines a mapping from bounded amplitude inputs w ∈ L∞ to bounded
amplitude outputs z ∈ L∞ and a relevant performance criterion is the ‘peak-to-peak’ or L∞-induced
norm of this mapping

‖T ‖∞,∞ := sup
0<‖w‖∞<∞

‖z‖∞
‖w‖∞ .

We just remark that this induced norm is equal to the L1 norm of the impulse response of the system.
The following result gives a sufficient condition for an upperbound γ of the peak-to-peak gain of the
system.

Proposition 3.14 If there exists K > 0, λ > 0 and µ > 0 such that(
A�K +KA+ λK KB

B�K −µI
)
< 0;

λK 0 C�
0 (γ − µ)I D�
C D γ I

 > 0 (3.3.9)

then the peak-to-peak (or L∞ induced) norm of the system is smaller than γ , i.e., ‖T ‖∞,∞ < γ .

Proof. The first inequality in (3.3.9) implies that

d

dt
x(t)�Kx(t)+ λx(t)Kx(t)− µw(t)�w(t) < 0.

for all w and x for which ẋ = Ax +Bw. Now assume that x(0) = 0 and w ∈ L∞ with ‖w‖∞ ≤ 1.
Then, since K > 0, we obtain (pointwise in t ≥ 0) that

x(t)�Kx(t) ≤ µ

λ
.

Taking a Schur complement of the second inequality in (3.3.9) yields that(
λK 0
0 (γ − µ)I

)
− 1

γ − ε
(
C D

)� (
C D

)
> 0

so that, pointwise in t ≥ 0 and for all ‖w‖∞ ≤ 1 we can write

〈z(t), z(t)〉 ≤ (γ − ε)[λx(t)�Kx(t)+ (γ − µ)w(t)�w(t)]
≤ γ (γ − ε)

Consequently, the peak-to-peak gain of the system is smaller than γ .

Remark 3.15 We emphasize that Proposition 3.14 gives only a sufficient condition for an upperbound
γ of the peak-to-peak gain of the system. The minimal γ ≥ 0 for which the there existK > 0, λ > 0
and µ ≥ 0 such that (3.3.9) is satisfied is usually only an upperbound of the real peak-to-peak gain
of the system.
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3.4. FURTHER READING

3.4 Further reading

Lyapunov theory: [6, 15, 28, 49]
More details on the generalized H2 norm, see [27].

3.5 Exercises

Exercise 1

A pendulum of massm is connected to a servomotor which is driven by a voltage u. The angle which
the pendulum makes with respect to a vertical axis is denoted by θ . The system is described by the
equations

J
d2θ

dt2
= mlg sin(θ)+ u (3.5.1)

y = θ (3.5.2)

where l denotes the distance from the axis of the servomotor to the center of mass of the pendulum,
J is the inertia and g is the gravitation constant. The system is specified by the constants J = 0.03,
m = 1, l = 0.15 and g = 10.

1. Determine the equilibrium points of this system.

2. Are the equilibrium points Lyapunov stable? If so, determine a Lyapunov function.

3. Linearize the system around the equilibrium points and provide a state space representation of
the linearized systems.

4. Verify whether the linearized systems are stable, unstable or asymptotically stable.

5. A proportional feedback controller is a controller of the form u = ky where k ∈ R. Does there
exists a proportional feedback controller such that the unstable equilibrium point of the system
becomes asymptotically stable?

Exercise 2

Let a stability region Cstab be defined as those complex numbers s ∈ C which satisfy
)(s) < −α and

|s − c| < r and

|*(s)| < |)(s)|.
where α > 0, c > 0 and r > 0. Specify a characteristic function F(s), as defined in (3.2.1), such
that Cstab = {s ∈ C | F(s) < 0}.
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Exercise 3

Let 0 ≤ α ≤ π and consider the Lyapunov equation A�X +XA+ I = 0 where

A =
(

sin(α) cos(α)
− cos(α) sin(α)

)
Show that the solutionX of the Lyapunov equation diverges in the sense that det(X) −→∞whenever
α −→ 0.

Exercise 4

Consider the the suspension system in Exercise 4 of Chapter 2. Recall that the variable q0 represents
the road profile.

1. Consider the case where F = 0 and q0 = 0 (thus no active force between chassis and axle and
a ‘flat’ road characteristic). Verify whether this system is asymptotically stable.

2. Determine a Lyapunov function V : X → R of this system (with F = 0 and q0 = 0) and
show that its derivative is negative along solutions of the autonomous behavior of the system
(i.e. F = 0 and q0 = 0).

3. Design your favorite road profile q0 in Matlab and simulate the response of the system to this
road profile (the force F is kept 0). Plot the variables q1 and q2. What are your conclusions?

4. Consider, with F = 0, the transfer function T which maps the road profile q0 to the output
col(q1, q2) of the system. Determine the norms ‖T ‖H∞ and ‖T ‖H2 .

Exercise 5

Consider a batch chemical reactor with a constant volume V of liquids. Inside the reactor the series
reaction

A
k1−−−−→ B

k2−−−−→ C

takes place. Here k1 and k2 represent the kinetic rate constants (1/sec.) for the conversions A→ B

and B → C, respectively. The conversions are assumed to be irreversible which leads to the model
equations

ĊA = −k1CA

ĊB = k1CA − k2CB

ĊC = k2CB

where CA, CB and CC denote the concentrations of the components A, B and C, respectively, and
k1 and k2 are positive constants. Reactant B is the desired product and we will be interested in the
evolution of its concentration.

62



3.5. EXERCISES

1. Show that the system which describes the evolution of CB is asymptotically stable.

2. Determine a Lyapunov function for this system.

3. Suppose that at time t = 0 the reactor is injected with an initial concentration CA0 = 10
(mol/liter) of reactant A and that CB(0) = CC(0) = 0. Plot the time evolution of the concen-
tration CB of reactant B if (k1, k2) = (0.2, 0.4) and if (k1, k2) = (0.3, 0.3).
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Chapter 4

Controller synthesis

In this chapter we provide a powerful result that allows to step in a straightforward manner from
the performance analysis conditions formulated in terms of matrix inequalities to the corresponding
matrix inequalities for controller synthesis. This is achieved by a nonlinear and essentially bijective
transformation of the controller parameters.

4.1 The setup

Suppose a linear time-invariant system is described as
ẋ

z1
...

zq
y

 =


A B1 · · · Bq B

C1 D1 · · · D1q E1
...

...
. . .

...
...

Cq Dq1 · · · Dq Eq
C F1 · · · Fq 0




x

w1
...

wq
u

 . (4.1.1)

We denote by u the control input, by y the measured output available for control, and bywj → zj the
channels on which we want to impose certain robustness and/or performance objectives. Since we
want to extend the design technique to mixed problems with various performance specifications on
various channels, we already start at this point with a multi-channel system description. Sometimes
we collect the signals as

z =
 z1

...

zq

 , w =
 w1

...

wq

 .
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Remark 4.1 Note that we do not exclude the situation that some of the signalswj or zj are identical.
Therefore, we only need to consider an equal number of input- and output-signals. Moreover, it might
seem restrictive to only consider the diagonal channels and neglect the channels wj → zk for j �= k.
This is not the case. As a typical example, suppose we intend to impose for z = Tw specifications on
LjT Rj where Lj , Rj are arbitrary matrices that pick out certain linear combinations of the signals
z, w (or of the rows/columns of the transfer matrix if T is described by an LTI system). If we set
w = Rjwj , zj = Ljz, we are hence interested in specifications on the diagonal channels of z1

z2
...

 =
 L1
L2
...

 T
(
R1 R2 . . .

) w1
w2
...

 .

If T is LTI, the selection matrices Lj and Rj can be easily incorporated into the realization to arrive
at the description (4.1.1).

A controller is any finite dimensional linear time invariant system described as(
ẋc
u

)
=
(
Ac Bc
Cc Dc

)(
xc
y

)
(4.1.2)

that has y as its input and u as its output. Controllers are hence simply parameterized by the matrices
Ac, Bc, Cc, Dc.

The controlled or closed-loop system then admits the description

(
ξ̇

z

)
=
(

A B
C D

)(
ξ

w

)
or


ξ̇

z1
...

zq

 =


A B1 · · · Bq

C1 D1 · · · D1q
...

...
. . .

...

Cq Dq1 · · · Dq




ξ

w1
...

wq

 . (4.1.3)

The corresponding input-output mappings (or transfer matrices) are denoted as

w = T z or

 z1
...

zq

 =
 T1 ∗

. . .

∗ Tq


 w1

...

wq

 .

respectively.

One can easily calculate a realization of Tj as(
ξ̇

zj

)
=
(

A Bj

Cj Dj

)(
ξ

wj

)
(4.1.4)

where (
A Bj

Cj Dj

)
=
 A+ BDcC BCc Bj + BDcFj

BcC Ac BcFj
Cj + EjDcC EjCc Dj + EjDcFj

 .
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Figure 4.1: Multi-channel closed-loop system
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It simplifies some calculations if we use the equivalent alternative formula

(
A Bj

Cj Dj

)
=
 A 0 Bj

0 0 0
Cj 0 Dj

+
 0 B

I 0
0 Ej

(
Ac Bc
Cc Dc

)(
0 I 0
C 0 Fj

)
. (4.1.5)

From this notation it is immediate that the left-hand side is an affine function of the controller
parameters.

4.2 From analysis to synthesis – a general procedure

As a paradigm example let us consider the design of a controller that achieves stability and quadratic
performance in the channelwj → zj . For that purpose we suppose that we have given a performance
index

Pj =
(
Qj Sj
STj Rj

)
with Rj ≥ 0.

In Chapter 2 we have revealed that the following conditions are equivalent: The controller (4.1.2)
renders (4.1.4) internally stable and leads to∫ ∞

0

(
wj(t)

zj (t)

)T
Pj

(
wj(t)

zj (t)

)
dt ≤ −ε

∫ ∞
0

wj(t)
T wj (t) dt

for some ε > 0 if and only if

σ(A) ⊂ C− and

(
I

Tj (iω)

)∗
Pj

(
I

Tj (iω)

)
< 0 for all ω ∈ R ∪ {∞}

if and only if there exists a symmetric X satisfying

X > 0,

(
ATX+XA XBj

BT
j X 0

)
+
(

0 I

Cj Dj

)T
Pj

(
0 I

Cj Dj

)
< 0. (4.2.1)

The corresponding quadratic performance synthesis problem amounts to finding controller parameters(
Ac Bc
Cc Dc

)
and an X > 0 such that (4.2.1) holds.

Obviously, A depends on the controller parameters. Since X is also a variable, we observe that XA
depends non-linearly on the variables to be found.

It has been observed only quite recently [17, 30] that there exist a nonlinear transformation(
X,

(
Ac Bc
Cc Dc

) )
→ v =

(
X, Y,

(
K L

M N

) )
(4.2.2)
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and a Y such that, with the functions

X(v) :=
(
Y I

I X

)
(

A(v) Bj (v)

Cj (v) Dj (v)

)
:=

 AY + BM A+ BNC Bj + BNFj
K AX + LC XBj + LFj

CjY + EjM Cj + EjNC Dj + EjNFj


 (4.2.3)

one has
YTXY = X(v)(

YTXAY YTXBj

CjY Dj

)
=

(
A(v) Bj (v)

Cj (v) Dj (v)

)  (4.2.4)

Hence, under congruence transformations with the matrices

Y and

(
Y 0
0 I

)
, (4.2.5)

the blocks transform as

X→ X(v),

(
XA XBj

Cj Dj

)
→

(
A(v) Bj (v)

Cj (v) Dj (v)

)
.

Therefore, the original blocks that depend non-linearly on the decision variables X and

(
Ac Bc
Cc Dc

)
are transformed into blocks that are affine functions of the new variables v.

If Y is nonsingular, we can perform a congruence transformation on the two inequalities in (4.2.1)
with the nonsingular matrices (4.2.5) to obtain

YTXY > 0,

(
YT [ATX+XA]Y YTXBj

BT
j XY 0

)
+
(

0 I

CjY Dj

)T
Pj

(
0 I

CjY Dj

)
< 0

(4.2.6)
what is nothing but

X(v) > 0,

(
A(v)T +A(v) Bj (v)

Bj (v)
T 0

)
+
(

0 I

Cj (v) Dj (v)

)T
Pj

(
0 I

Cj (v) Dj (v)

)
< 0.

(4.2.7)

For Rj = 0 (as it happens in the positive real performance index), we infer Pj =
(
Qj Sj
STj 0

)
what

implies that the inequalities (4.2.7) are affine in v. For a general performance index with Rj ≥ 0,
the second inequality in (4.2.7) is non-linear but convex in v. It is straightforward to transform it
to a genuine LMI with a Schur complement argument. Since it is more convenient to stay with the
inequalities in the form (4.2.7), we rather formulate a general auxiliary result that displays how to
perform the linearization whenever it is required for computational purposes.
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Lemma 4.2 (Linearization Lemma) Suppose thatAandS are constant matrices, thatB(v),Q(v) =
Q(v)T depend affinely on a parameter v, and that R(v) can be decomposed as T U(v)−1T T with
U(v) being affine. Then the non-linear matrix inequalities

U(v) > 0,

(
A

B(v)

)T (
Q(v) S

S′ R(v)

)(
A

B(v)

)
< 0

are equivalent to the linear matrix inequality(
ATQ(v)A+ AT SB(v)+ B(v)T ST A B(v)T T

T T B(v) −U(v)
)
< 0.

In order to apply this lemma we rewrite the second inequality of (4.2.7) as
I 0

A(v) Bj (v)

0 I

Cj (v) Dj (v)


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
A(v) Bj (v)

0 I

Cj (v) Dj (v)

 < 0 (4.2.8)

what is, after a simple permutation, nothing but
I 0
0 I

A(v) Bj (v)

Cj (v) Dj (v)


T 

0 0 I 0
0 Qj 0 Sj
I 0 0 0
0 STj 0 Rj




I 0
0 I

A(v) Bj (v)

Cj (v) Dj (v)

 < 0. (4.2.9)

This inequality can be linearized according to Lemma 4.2 with an arbitrary factorization

Rj = TjT
T
j leading to

(
0 0
0 Rj

)
=
(

0
Tj

)(
0 T Tj

)
.

So far we have discussed how to derive the synthesis inequalities (4.2.7). Let us now suppose that
we have verified that these inequalities do have a solution, and that we have computed some solution

v. If we can find a preimage

(
X,

(
Ac Bc
Cc Dc

) )
of v under the transformation (4.2.2) and a

nonsingular Y for which (4.2.4) holds, then we can simply reverse all the steps performed above to

reveal that (4.2.7) is equivalent to (4.2.1). Therefore, the controller defined by

(
Ac Bc
Cc Dc

)
renders

(4.2.1) satisfied and, hence, leads to the desired quadratic performance specification for the controlled
system.

Before we comment on the resulting design procedure, let us first provide a proof of the following
result that summarizes the discussion.

Theorem 4.3 There exists a controller

(
Ac Bc
Cc Dc

)
and an X satisfying (4.2.1) iff there exists an v

that solves the inequalities (4.2.7). If v satisfies (4.2.7), then I −XY is nonsingular and there exist
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nonsingular U , V with I −XY = UV T . The unique X and

(
Ac Bc
Cc Dc

)
with

(
Y V

I 0

)
X =

(
I 0
X U

)
and(

K L

M N

)
=
(
U XB

0 I

)(
Ac Bc
Cc Dc

)(
V T 0
CY I

)
+
(
XAY 0

0 0

)
(4.2.10)

satisfy the LMI’s (4.2.1).

Note that U and V are square and nonsingular so that (4.2.10) leads to the formulas

X =
(
Y V

I 0

)−1 (
I 0
X U

)
and(

Ac Bc
Cc Dc

)
=
(
U XB

0 I

)−1 (
K −XAY L

M N

)(
V T 0
CY I

)−1

.

Due to the zero blocks in the inverses, the formulas can be rendered even more explicit. Of course,
numerically it is better to directly solve the equations (4.2.10) by a stable technique.

Proof. Suppose a controller and some X satisfy (4.2.1). Let us partition

X =
(

X U

UT ∗
)

and X−1 =
(

Y V

V T ∗
)

according to A. Define

Y =
(

Y I

V T 0

)
and Z =

(
I 0
X U

)
to get YTX = Z. (4.2.11)

Without loss of generality we can assume that the dimension ofAc is larger than that ofA. Hence, U
has more columns than rows, and we can perturb this block (since we work with strict inequalities)
such that it has full row rank. Then Z has full row rank and, hence, Y has full column rank.

Due to XY + UV T = I , we infer

YTXY =
(
Y I

I X

)
= X(v)

what leads to the first relation in (4.2.4). Let us now consider(
Y 0
0 I

)T (
XA XBj

Cj Dj

)(
Y 0
0 I

)
=
(

YTXAY YTXBj

CjY Dj

)
.
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Using (4.1.5), a very brief calculation (do it!) reveals that

(
YTXAY YTXBj

CjY Dj

)
=
(

ZAY ZBj

CjY Dj

)
=
 AY A Bj

0 XA XBj
CjY Cj Dj

+
+
 0 B

I 0
0 Ej

[(
U XB

0 I

)(
Ac Bc
Cc Dc

)(
V T 0
CY I

)
+
(
XAY 0

0 0

)](
I 0 0
0 C Fj

)
.

If we introduce the new parameters

(
K L

M N

)
as in (4.2.10), we infer

(
YTXAY YTXBj

CjY Dj

)
=

=
 AY A Bj

0 XA XBj
CjY Cj Dj

+
 0 B

I 0
0 Ej

(
K L

M N

)(
I 0 0
0 C Fj

)
=

=
 AY + BM A+ BNC Bj + BNFj

K AX + LC XBj + LFj
CjY + EjM Cj + EjNC Dj + EjNFj

 = (
A(v) Bj (v)

Cj (v) Dj (v)

)
.

Hence the relations (4.2.4) are valid. Since Y has full column rank, (4.2.1) implies (4.2.6), and by
(4.2.4), (4.2.6) is identical to (4.2.7). This proves necessity.

To reverse the arguments we assume that v is a solution of (4.2.7). Due to X(v) > 0, we infer that
I − XY is nonsingular. Hence we can factorize I − XY = UV T with square and nonsingular U ,
V . Then Y and Z defined in (4.2.11) are, as well, square and nonsingular. Hence we can choose

X,

(
Ac Bc
Cc Dc

)
such that (4.2.10) hold true; this implies that, again, the relations (4.2.4) are valid.

Therefore, (4.2.7) and (4.2.6) are identical. Since Y is nonsingular, a congruence transformation with
Y−1 and diag(Y−1, I ) leads from (4.2.6) back to (4.2.1) and the proof is finished.

We have obtained a general procedure for deriving from analysis inequalities the corresponding
synthesis inequalities and for construction corresponding controllers as follows:

• Rewrite the analysis inequalities in the blocks X, XA, XBj , Cj , Dj in order to be able to
find a (formal) congruence transformation involving Y which leads to inequalities in the blocks
YTXY, YTXAY, YTXBj , CjY, Dj .

• Perform the substitution (4.2.4) to arrive at matrix inequalities in the variables v.

• After having solved the synthesis inequalities for v, one factorizes I − XY into non-singular
blocks UV T and solves the equations (4.2.10) to obtain the controller parameters Ac, Bc, Cc,
Dc and a Lyapunov matrix X which render the analysis inequalities satisfied.

72



4.2. FROM ANALYSIS TO SYNTHESIS – A GENERAL PROCEDURE

The power of this procedure lies in its simplicity and its generality. Virtually all controller design
methods that are based on matrix inequality analysis results can be converted with ease into the
corresponding synthesis result. In the subsequent section we will include an extensive discussion
of how to apply this technique to the various analysis results that have been obtained in the present
notes.

Remark 4.4 (controller order) In Theorem 4.3 we have not restricted the order of the controller.
In proving necessity of the solvability of the synthesis inequalities, the size of Ac was arbitrary. The
specific construction of a controller in proving sufficiency leads to an Ac that has the same size as
A. Hence Theorem 4.3 also include the side result that controllers of order larger than that of the
plant offer no advantage over controllers that have the same order as the plant. The story is very
different in reduced order control: Then the intention is to include a constraint dim(Ac) ≤ k for some
k that is smaller than the dimension ofA. It is not very difficult to derive the corresponding synthesis
inequalities; however, they include rank constraints that are hard if not impossible to treat by current
optimization techniques. We will only briefly comment on a concrete result later.

Remark 4.5 (strictly proper controllers) Note that the direct feed-through of the controller Dc is
actually not transformed; we simply have Dc = N . If we intend to design a strictly proper controller
(i.e. Dc = 0), we can just set N = 0 to arrive at the corresponding synthesis inequalities. The
construction of the other controller parameters remains the same. Clearly, the same holds if one
wishes to impose an arbitrary more refined structural constraint on the direct feed-through term as
long as it can be expressed in terms of LMI’s.

Remark 4.6 (numerical aspects) After having verified the solvability of the synthesis inequalities,
we recommend to take some precautions to improve the conditioning of the calculations to reconstruct
the controller out of the decision variable v. In particular, one should avoid that the parameters v
get too large, and that I − XY is close to singular what might render the controller computation
ill-conditioned. We have observed good results with the following two-step procedure:

• Add to the feasibility inequalities the bounds

‖X‖ < α, ‖Y‖ < α,

∥∥∥∥( K L

M N

)∥∥∥∥ < α

as extra constraints and minimize α. Note that these bounds are equivalently rewritten in LMI
form as

X < αI, Y < αI,


αI 0 K L

0 αI M N

KT MT αI 0
LT NT 0 αI

 > 0.

Hence they can be easily included in the feasibility test, and one can directly minimize α to
compute the smallest bound α∗.

• In a second step, one adds to the feasibility inequalities and to the bounding inequalities for
some enlarged but fixed α > α∗ the extra constraint(

Y βI

βI X

)
> 0.
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Of course, the resulting LMI system is feasible for β = 1. One can hence maximize β to obtain
a supremal β∗ > 1. The value β∗ gives an indication of the conditioning of the controller
reconstruction procedure. In fact, the extra inequality is equivalent toX−β2Y−1 > 0. Hence,
maximizing β amounts to ‘pushing X away from Y−1’. Therefore, this step is expected to
push the smallest singular value of I − XY away from zero. The larger the smaller singular
value of I −XY , the larger one can choose the smallest singular values of both U and V in the
factorization I − XY = UV T . This improves the conditioning of U and V , and renders the
calculation of the controller parameters more reliable.

4.3 Other performance specifications

4.3.1 H∞ Design

The optimal value of the H∞ problem is defined as

γ ∗j = inf
Ac,Bc,Cc,Dc such that σ(A)⊂C−

‖Tj‖∞.

Clearly, the number γj is larger than γ ∗j iff there exists a controller which renders

σ(A) ⊂ C− and ‖Tj‖∞ < γj

satisfied. These two properties are equivalent to stability and quadratic performance for the index

Pj =
(
Qj Sj
STj Rj

)
=
( −γj I 0

0 (γj I )
−1

)
.

The corresponding synthesis inequalities (4.2.7) are rewritten with Lemma 4.2 to

X(v) > 0,

 A(v)T +A(v) Bj (v) Cj (v)
T

Bj (v)
T −γj I Dj (v)

T

Cj (v) Dj (v) −γj I

 < 0.

Note that the the optimalH∞ value γ ∗j is then just given by the minimal γj for which these inequalities
are feasible; one can directly compute γ ∗j by a standard LMI algorithm.

For the controller reconstruction, one should improve the conditioning (as described in the previous
section) by an additional LMI optimization. We recommend not to perform this step with the optimal
value γ ∗j itself but with a slightly increased value γj > γ ∗j . This is motivated by the observation that,
at optimality, the matrix X(v) is often (but not always!) close to singular; then I − XY is close to
singular and it is expected to be difficult to render it better conditioned if γj is too close to the optimal
value γ ∗j .
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4.3.2 Positive real design

In this problem the goal is to test whether there exists a controller which renders the following two
conditions satisfied:

σ(A) ⊂ C−, Tj (iω)
∗ + Tj (iω) > 0 for all ω ∈ R ∪ {∞}.

This is equivalent to stability and quadratic performance for

Pj =
(
Qj Sj
STj Rj

)
=
(

0 −I
−I 0

)
,

and the corresponding synthesis inequalities read as

X(v) > 0,

(
A(v)T +A(v) Bj (v)− Cj (v)

T

Bj (v)
T − Cj (v) −Dj (v)−Dj (v)

T

)
< 0.

4.3.3 H2-problems

Let us define the linear functional
fj (Z) := trace(Z).

Then we recall that A is stable and ‖Tj‖2 < γj iff there exists a symmetric X with

Dj = 0, X > 0,

(
ATX+XA XBj

BT
j X −γj I

)
< 0, fj (CjX

−1CT
j ) < γj . (4.3.1)

The latter inequality is rendered affine in X and Cj by introducing the auxiliary variable (or slack
variable) Zj . Indeed, the analysis test is equivalent to

Dj = 0,

(
ATX+XA XBj

BT
j X −γj I

)
< 0,

(
X CT

j

Cj Zj

)
> 0, fj (Zj ) < γj . (4.3.2)

This version of the inequalities is suited to simply read-off the corresponding synthesis inequalities.

Corollary 4.7 There exists a controller that renders (4.3.2) for some X, Zj satisfied iff there exist v
and Zj with

Dj (v) = 0,

(
A(v)T +A(v) Bj (v)

Bj (v)
T −γj I

)
< 0,

(
X(v) Cj (v)

T

Cj (v) Zj

)
> 0, fj (Zj ) < γj . (4.3.3)

The proof of this statement and the controller construction are literally the same as for quadratic
performance.
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For the generalized H2-norm ‖Tj‖2g , we recall that A is stable and ‖Tj‖2g < γj iff

Dj = 0, X > 0,

(
ATX+XA XBj

BT
j X −γj I

)
< 0, CjX

−1CT
j < γj I.

These conditions are nothing but

Dj = 0,

(
ATX+XA XBj

BT
j X −γj I

)
< 0,

(
X CT

j

Cj γj I

)
> 0

and it is straightforward to derive the synthesis LMI’s.

Note that the corresponding inequalities are equivalent to (4.3.3) for the function

fj (Z) = Z.

In contrast to the genuine H2-problem, there is no need for the extra variable Zj to render the
inequalities affine.

Remarks.

• If f assigns to Z its diagonal diag(z1, . . . , zm) (where m is the dimension of Z), one char-
acterizes a bound on the gain of L2 , wj → zj ∈ L∞ if equipping L∞ with the norm
‖x‖∞ := ess supt≥0 maxk |xk(t)| [27,32]. Note that the three concreteH2-like analysis results
for fj (Z) = trace(Z), fj (Z) = Z, fj (Z) = diag(z1, . . . , zm) are exact characterizations, and
that the corresponding synthesis results do not involve any conservatism.

• In fact, Corollary 4.7 holds for any affine functionf that maps symmetric matrices into symmet-
ric matrices (of possibly different dimension) and that has the property Z ≥ 0 ⇒ f (Z) ≥ 0.
Hence, Corollary 4.7 admits many other specializations.

• Similarly as in the H∞ problem, we can directly minimize the bound γj to find the optimal
H2-value or the optimal generalized H2-value that can be achieved by stabilizing controllers.

• We observe that it causes no trouble in our general procedure to derive the synthesis inequalities
if the underlying analysis inequalities involve certain auxiliary parameters (such asZj ) as extra
decision variables.

• It is instructive to equivalently rewrite (4.3.2) as X > 0, Zj > 0, fj (Zj ) < γj and I 0
XA XBj

0 I

T  0 I 0
I 0 0
0 0 −γj I

 I 0
XA XBj

0 I

 < 0,

 I 0
0 I

Cj Dj

T  −X 0 0
0 0 0
0 0 Z−1

j

 I 0
0 I

Cj Dj

 ≤ 0.
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Note that the last inequality is non-strict and includes the algebraic constraint Dj = 0. It can
be equivalently replaced by(

I

Cj

)T ( −X 0
0 Z−1

j

)(
I

Cj

)
< 0, Dj = 0.

The synthesis relations then read as X(v) > 0, Zj > 0, fj (Zj ) < γj and I 0
A(v) Bj (v)

0 I

T  0 I 0
I 0 0
0 0 −γj I

 I 0
A(v) Bj (v)

0 I

 < 0, (4.3.4)

(
I

Cj (v)

)T ( −X(v) 0
0 Z−1

j

)(
I

Cj (v)

)
< 0, Dj (v) = 0. (4.3.5)

The first inequality is affine in v, whereas the second one can be rendered affine in v and Zj with
Lemma 4.2.

4.3.4 Upper bound on peak-to-peak norm

The controller (4.1.2) renders A stable and the bound

‖wj‖∞ ≤ γj‖zj‖∞ for all zj ∈ L∞
satisfied if there exist a symmetric X and real parameters λ, µ with

λ > 0,

(
ATX+XA+ λX XBj

BT
j X 0

)
+
(

0 I

Cj Dj

)T ( −µI 0
0 0

)(
0 I

Cj Dj

)
< 0(

0 I

Cj Dj

)T ( 0 0
0 1

γj
I

)(
0 I

Cj Dj

)
<

(
λX 0
0 (γj − µ)I

)
.

(Note that X > 0 is built in. Where?) The inequalities are obviously equivalent to

λ > 0,

(
ATX+XA+ λX XBj

BT
j X −µI

)
< 0,

 λX 0 CT
j

0 (γj − µ)I DT
j

Cj Dj γj I

 > 0,

and the corresponding synthesis inequalities thus read as

λ > 0,

(
A(v)T +A(v)+ λX(v) Bj (v)

Bj (v)
T −µI

)
< 0,

 λX(v) 0 Cj (v)
T

0 (γj − µ)I Dj (v)
T

Cj (v) Dj (v) γj I

 > 0.

If these inequalities are feasible, one can construct a stabilizing controller which bounds the peak-
to-peak norm of zj = Tj zj by γj . We would like to stress that the converse of this statement is not
true since the analysis result involves conservatism.
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4.4. MULTI-OBJECTIVE AND MIXED CONTROLLER DESIGN

Note that the synthesis inequalities are formulated in terms of the variables v, λ, and µ; hence they
are non-linear since λX(v) depends quadratically on λ and v. This problem can be overcome as
follows: For fixed λ > 0, test whether the resulting linear matrix inequalities are feasible; if yes, one
can stop since the bound γj on the peak-to-peak norm has been assured; if the LMI’s are infeasible,
one has to pick another λ > 0 and repeat the test.

In practice, it might be advantageous to find the best possible upper bound on the peak-to-peak norm
that can be assured with the present analysis result. This would lead to the problem of minimizing γj
under the synthesis inequality constraints as follows: Perform a line-search over λ > 0 to minimize
γ ∗j (λ), the minimal value of γj if λ > 0 is held fixed; note that the calculation of γ ∗j (λ) indeed
amounts to solving a genuine LMI problem. The line-search leads to the best achievable upper bound

γ uj = inf
λ>0

γ ∗j (λ).

To estimate the conservatism, let us recall that ‖Tj‖∞ is a lower bound on the peak-to-peak norm of
Tj . If we calculate the minimal achievable H∞-norm, say γ lj , of Tj , we know that the actual optimal
peak-to-peak gain must be contained in the interval

[γ lj , γ uj ].
If the length of this interval is small, we have a good estimate of the actual optimal peak-to-peak gain
that is achievable by control, and if the interval is large, this estimate is poor.

4.4 Multi-objective and mixed controller design

In a realistic design problem one is usually not just confronted with a single-objective problem but
one has to render various objectives satisfied. As a typical example, one might wish to keep the
H∞ norm of z1 = T1w1 below a bound γ1 to ensure robust stability against uncertainties entering
as w1 = Lz1 where the stable mapping L has L2-gain smaller than 1/γ1, and render, at the same
time, the H2-norm of z2 = T2w2 as small as possible to ensure good performance measured in the
H2-norm (such as guaranteeing small asymptotic variance of zj against white noise inputs wj or
small energy of the output zj against pulses as inputs wj .)

Such a problem would lead to minimizing γ2 over all controllers which render

σ(A) ⊂ C−, ‖T1‖∞ < γ1, ‖T2‖2 < γ2 (4.4.1)

satisfied. This is a multi-objective H2/H∞ control problem with two performance specifications.

Note that it is often interesting to investigate the trade-off between the H∞-norm and the H2-norm
constraint. For that purpose one plots the curve of optimal values if varying γ1 in some interval
[γ l1, γ u1 ] where the lower bound γ l1 could be taken close to the smallest achievable H∞-norm of T1.
Note that the optimal value will be non-increasing if increasing γ1. The actual curve will provide
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insight in how far one can improve performance by giving up robustness. In practice, it might be
numerically advantageous to give up the hard constraints and proceed, alternatively, as follows: For
fixed real weights α1 and α2, minimize

α1γ1 + α2γ2

over all controllers that satisfy (4.4.1). The larger αj , the more weight is put on penalizing large
values of γj , the more the optimization procedure is expected to reduce the corresponding bound γj .

Multi-objective control problems as formulated here are hard to solve. Let us briefly sketch one line
of approach. The Youla parameterization [16] reveals that the set of all Tj that can be obtained by
internally stabilizing controllers can be parameterized as

T
j
1 + T j2 QT j3 with Q varying freely in RHp×q∞ .

Here T j1 , T j2 , T j3 are real-rational proper and stable transfer matrices which can be easily computed in
terms of the system description (4.1.1) and an arbitrary stabilizing controller. Recall also thatRHp×q∞
denotes the algebra of real-rational proper and stable transfer matrices of dimension p× q. With this
re-parameterization, the multi-objective control problem then amounts to finding aQ ∈ RHp×q∞ that
minimizes γ2 under the constraints

‖T 1
1 + T 1

2 QT
1
3 ‖∞ < γ1, ‖T 2

1 + T 2
2 QT

2
3 ‖2 < γ2. (4.4.2)

After this re-formulation, we are hence faced with a convex optimization problem in the parameterQ
which varies in the infinite-dimensional spaceRH∞. A pretty standard Ritz-Galerkin approximation
scheme leads to finite-dimensional problems. In fact, consider for a fixed real parameter a > 0 the
sequence of finite-dimensional subspaces

Sν :=
{
Q0 +Q1

s − a
s + a +Q2

(s − a)2
(s + a)2 + · · · +Qν

(s − a)ν
(s + a)ν : Q0, . . . ,Qν ∈ Rp×q

}
of the space RHp×q∞ . Let us now denote the infimum of all γ2 satisfying the constraint (4.4.2) for
Q ∈ RHp×q∞ by γ ∗2 , and that for Q ∈ Sν by γ2(ν). Since Sν ⊂ RH

p×q∞ , we clearly have

γ ∗2 ≤ γ2(ν + 1) ≤ γ2(ν) for all ν = 0, 1, 2 . . . .

Hence solving the optimization problems for increasing ν leads to a non-increasing sequence of
values γ (ν) that are all upper bounds on the actual optimum γ ∗2 . If we now note that any element of
Q can be approximated in the H∞-norm with arbitrary accuracy by an element in Sν if ν is chosen
sufficiently large, it is not surprising that γ2(ν) actually converges to γ ∗2 for ν → ∞. To be more
precise, we need to assume that the strict constraint ‖T 1

1 + T 1
2 QT

1
3 ‖∞ < γ1 is feasible for Q ∈ Sν

and some ν, and that T 1
1 and T 2

2 or T 3
2 are strictly proper such that ‖T 2

1 + T 2
2 QT

2
3 ‖2 is finite for all

Q ∈ RHp×q∞ . Then it is not difficult to show that

lim
ν→∞ γ2(ν) = γ ∗2 .

Finally, we observe that computing γ2(ν) is in fact an LMI problem. For more information on this
and related problems the reader is referred to [8, 33, 41].

79



4.4. MULTI-OBJECTIVE AND MIXED CONTROLLER DESIGN

We observe that the approach that is sketched above suffers from two severe disadvantages: First,
if improving the approximation accuracy by letting ν grow, the size of the LMI’s and the number
of variables that are involved grow drastically what renders the corresponding computations slow.
Second, increasing ν amounts to a potential increase of the McMillan degree of Q ∈ Sν what leads
to controllers whose McMillan degree cannot be bounded a priori.

In view of these difficulties, it has been proposed to replace the multi-objective control problem by
the mixed control problem. To prepare its definition, recall that the conditions (4.4.1) are guaranteed
by the existence of symmetric matrices X1, X2, Z2 satisfying

X1 > 0,

 ATX1 +X1A X1B1 CT
1

X1B1 −γ1I DT
1

C1 D1 −γ1I

 < 0

D2 = 0,

(
ATX2 +X2A X2B2

BT
2 X2 −γ2I

)
< 0,

(
X2 CT

2
C2 Z2

)
> 0, trace(Z2) < γ2.

If trying to apply the general procedure to derive the synthesis inequalities, there is some trouble since
the controller parameter transformation depends on the closed-loop Lyapunov matrix; here two such
matrices X1, X2 do appear such that the technique breaks down. This observation itself motivates a
remedy: Just force the two Lyapunov matrices to be equal. This certainly introduces conservatism
that is, in general, hard to quantify. On the positive side, if one can find a common matrix

X = X1 = X2

that satisfies the analysis relations, we can still guarantee (4.4.1) to hold. However, the converse is
not true, since (4.4.1) does not imply the existence of common Lyapunov matrix to satisfy the above
inequalities.

This discussion leads to the definition of the mixed H2/H∞ control problem: Minimize γ2 subject
to the existence of X, Z2 satisfying ATX+XA XB1 CT

1
BT

1 X −γ1I DT
1

C1 D1 −γ1I

 < 0

D2 = 0,

(
ATX+XA XB2

BT
2 X −γ2I

)
< 0,

(
X CT

2
C2 Z2

)
> 0, trace(Z2) < γ2.

This problem is amenable to our general procedure. One proves as before that the corresponding
synthesis LMI’s are  A(v)T +A(v) B1(v) C1(v)

T

B1(v)
T −γ1I D1(v)

T

C1(v) D1(v) −γ1I

 < 0

D2(v) = 0,

(
A(v)T +A(v) B2(v)

B2(v)
T −γ2I

)
< 0,

(
X(v) C2(v)

T

C2(v) Z2

)
> 0, trace(Z2) < γ2,

and the controller construction remains unchanged.

Let us conclude this section with some important remarks.
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• After having solved the synthesis inequalities corresponding to the mixed problem for v and
Z2, one can construct a controller which satisfies (4.4.1) and which has a McMillan degree
(size of Ac) that is not larger than (equal to) the size of A.

• For the controller resulting from mixed synthesis one can perform an analysis with different
Lyapunov matrices X1 and X2 without any conservatism. In general, the actual H∞-norm of
T1 will be strictly smaller than γ1, and the H2-norm will be strictly smaller than the optimal
value obtained from solving the mixed problem. Judging a mixed controller should, hence,
rather be based on an additional non-conservative and direct analysis.

• Performing synthesis by searching for a common Lyapunov matrix introduces conservatism.
Little is known about how to estimate this conservatism a priori. However, the optimal value of
the mixed problem is always an upper bound of the optimal value of the actual multi-objective
problem.

• Starting from a mixed controller, it has been suggested in [36,37] how to compute sequences of
upper and lower bounds, on the basis of solving LMI problems, that approach the actual optimal
value. This allows to provide an a posteriori estimate of the conservatism that is introduced by
setting X1 equal to X2.

• If starting from different versions of the analysis inequalities (e.g. through scaling the Lyapunov
matrix), the artificial constraint X1 = X2 might lead to a different mixed control problem.
Therefore, it is recommended to choose those analysis tests that are expected to lead to Lyapunov
matrices which are close to each other. However, there is no general rule how to guarantee this
property.

• In view of the previous remark, let us sketch one possibility to reduce the conservatism in
mixed design. If we multiply the analysis inequalities for stability of A and for ‖T1‖∞ < γ1
by an arbitrary real parameter α > 0, we obtain

αX1 > 0,

 AT (αX1)+ (αX1)A (αX1)B1 αCT
1

BT
1 (αX1) −αγ1I αDT

1
αC1 αD1 −αγ1I

 < 0.

If we multiply the last row and the last column of the second inequality with 1
α

(what is
a congruence transformation) and if we introduce Y1 := αX1, we arrive at the following
equivalent version of the analysis inequality for the H∞-norm constraint:

Y1 > 0,

 ATY1 + Y1A Y1B1 CT
1

BT
1 Y1 −γ1αI DT

1
C1 D1 −γ1/αI

 < 0.

Performing mixed synthesis with this analysis inequality leads to optimal values of the mixed
H2/H∞ problem that depend on α. Each of these values form an upper bound on the actual
optimal value of the multi-objective problem such that the best bound is found by performing
a line-search over α > 0.
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• Contrary to previous approaches to the mixed problem, the one presented here does not require
identical input- or output-signals of the H∞ or H2 channel. In view of their interpretation
(uncertainty for H∞ and performance for H2), such a restriction is, in general, very unnatural.
However, due to this flexibility, it is even more crucial to suitably scale the Lyapunov matrices.

• We can incorporate with ease various other performance or robustness specifications (formu-
lated in terms of linear matrix inequalities) on other channels. Under the constraint of using
for all desired specifications the same Lyapunov matrix, the design of a mixed controller is
straightforward. Hence, one could conceivably consider a mixture ofH∞,H2, generalizedH2,
and peak-to-peak upper bound requirements on more than one channel. In its flexibility and
generality, this approach is unique; however, one should never forget the conservatism that is
involved.

• Using the same Lyapunov function might appear less restrictive if viewing the resulting pro-
cedure as a Lyapunov shaping technique. Indeed, one can start with the most important spec-
ification to be imposed on the controller. This amounts to solving a single-objective problem
without conservatism. Then one keeps the already achieved property as a constraint and sys-
tematically imposes other specifications on other channels of the system to exploit possible
additional freedom that is left in designing the controller. Hence, the Lyapunov function is
shaped to realize additional specifications.

• Finally, constraints that are not necessarily related to input- output-specifications can be incor-
porated as well. As a nice example we mention the possibility to place the eigenvalues of A
into an arbitrary LMI region {z : Q+Pz+PT z̄ < 0}. For that purpose one just has to include p11X(v)+ q11A(v)+ q11A(v)

T . . . p1kX(v)+ q1kA(v)+ qk1A(v)
T

...
. . .

...

pk1X(v)+ qk1A(v)+ q1kA(v)
T . . . pkkX(v)+ qkkA(v)+ qkkA(v)T

 < 0

in the set of synthesis LMI (see Chapter 2).

4.5 Elimination of parameters

The general procedure described in Section 4.2 leads to synthesis inequalities in the variables K , L,
M , N and X, Y as well as some auxiliary variables. For specific problems it is often possible to
eliminate some of these variables in order to reduce the computation time. For example, since K has
the same size as A, eliminating K for a system with McMillan degree 20 would save 400 variables.
In view of the fact that, in our experience, present-day solvers are practical for solving problems up
to about one thousand variables, parameter elimination might be of paramount importance to be able
to solve realistic design problems.

In general, one cannot eliminate any variable that appears in at least two synthesis inequalities. Hence,
in mixed design problems, parameter elimination is typically only possible under specific circum-
stances. In single-objective design problems one has to distinguish various information structures.
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In output-feedback design problems, it is in general not possible to eliminate X, Y but it might be
possible to eliminate some of the variables K , L, M , N if they only appear in one inequality. For
example, in quadratic performance problems one can eliminate all the variables K , L, M , N . In
state-feedback design, one can typically eliminate in addition X, and for estimation problems one
can eliminate Y .

To understand which variables can be eliminated and how this is performed, we turn to a discussion
of two topics that will be of relevance, namely the dualization of matrix inequalities and explicit
solvability tests for specifically structured LMI’s [9, 34].

4.5.1 Dualization

The synthesis inequalities for quadratic performance can be written in the form (4.2.9). The second
inequality has the structure(

I

M

)T (
Q S

S′ R

)(
I

M

)
< 0 and R ≥ 0. (4.5.1)

Let us re-formulate these conditions in geometric terms. For that purpose we abbreviate

P =
(
Q S

ST R

)
∈ R(k+l)×(k+l)

and observe that (4.5.1) is nothing but

P < 0 on im

(
I

M

)
and P ≥ 0 on im

(
0
I

)
.

Since the direct sum of im

(
I

M

)
and im

(
0
I

)
spans the whole R(k+l)×(k+l), we can apply the

following dualization lemma if P is non-singular.

Lemma 4.8 (Dualization Lemma) Let P be a non-singular symmetric matrix in Rn×n, and let U,
V be two complementary subspaces whose sum equals Rn. Then

xT Px < 0 for all x ∈ U \ {0} and xT Px ≥ 0 for all x ∈ V (4.5.2)

is equivalent to

xT P−1x > 0 for all x ∈ U⊥ \ {0} and xT P−1x ≤ 0 for all x ∈ V⊥. (4.5.3)

Proof. Since U ⊕ V = Rn is equivalent to U⊥ ⊕ V⊥ = Rn, it suffices to prove that (4.5.2)
implies (4.5.3); the converse implication follows by symmetry. Let us assume that (4.5.2) is true.
Moreover, let us assume that U and V have dimension k and l respectively. We infer from (4.5.2)
that P has at least k negative eigenvalues and at least l non-negative eigenvalues. Since k + l = n
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and since P is non-singular, we infer that P has exactly k negative and l positive eigenvalues. We
first prove that P−1 is positive definite on U⊥. We assume, to the contrary, that there exists a vector
y ∈ U⊥ \ {0} with yT P−1y ≥ 0. Define the non-zero vector z = P−1y. Then z is not contained in
U since, otherwise, we would conclude from (4.5.2) on the one hand zT P z < 0, and on the other
hand z⊥y = Pz what implies zT P z = 0. Therefore, the space Ue := span(z) +U has dimension
k + 1. Moreover, P is positive semi-definite on this space: for any x ∈ U we have

(z+ x)T P (z+ x) = yT P−1y + yT x + xT y + xT Px = yT P−1y + xT Px ≥ 0.

This implies that P has at least k + 1 non-negative eigenvalues, a contradiction to the already
established fact that P has exactly k positive eigenvalues and that 0 is not an eigenvalue of P .

Let us now prove that P−1 is negative semi-definite on V⊥. For that purpose we just observe that
P + εI satisfies

xT (P + εI )x < 0 for all x ∈ U \ {0} and xT (P + εI )x > 0 for all x ∈ V \ {0}

for all small ε > 0. Due to what has been already proved, this implies

xT (P + εI )−1x > 0 for all x ∈ U⊥ \ {0} and xT (P + εI )−1x < 0 for all x ∈ V⊥ \ {0}

for all small ε. Since P is non-singular, (P + εI )−1 converges to P−1 for ε → 0. After taking the
limit, we end up with

xT P−1x ≥ 0 for all x ∈ U⊥ \ {0} and xT P−1x ≤ 0 for all x ∈ V⊥ \ {0}.

Since we already know that the first inequality must be strict, the proof is finished.

Let us hence introduce

P−1 =
(
Q̃ S̃

S̃T R̃

)
∈ R(k+l)×(k+l)

and observe that

im

(
I

M

)⊥
= ker

(
I MT

) = im

( −MT

I

)
as well as im

(
0
I

)⊥
= im

(
I

0

)
.

Hence Lemma 4.8 implies that (4.5.1) is equivalent to( −MT

I

)T (
Q̃ S̃

S̃T R̃

)( −MT

I

)
> 0 and Q̃ ≤ 0. (4.5.4)

As an immediate consequence, we arrive at the following dual version of the quadratic performance
synthesis inequalities.
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Corollary 4.9 Let Pj :=
(
Qj Sj
STj Rj

)
be non-singular, and abbreviate P−1

j :=
(
Q̃j S̃j

S̃Tj R̃j

)
. Then


I 0

A(v) Bj (v)

0 I

Cj (v) Dj (v)


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
A(v) Bj (v)

0 I

Cj (v) Dj (v)

 < 0, Rj ≥ 0

is equivalent to
−A(v)T −C(v)T

I 0
−B(v)T −D(v)T

0 I


T 

0 I 0 0
I 0 0 0
0 0 Q̃j S̃j

0 0 S̃Tj R̃j



−A(v)T −C(v)T

I 0
−B(v)T −D(v)T

0 I

 > 0, Q̃j ≤ 0.

Remark. Any non-singular performance index Pj =
(
Qj Sj
STj Rj

)
can be inverted to P−1

j =(
Q̃j S̃j

S̃Tj R̃j

)
. Recall that we requiredPj to satisfyRj ≥ 0 since, otherwise, the synthesis inequalities

may not be convex. The above discussion reveals that any non-singular performance index has to
satisfy as well Q̃j ≤ 0 since, otherwise, we are sure that the synthesis inequalities are not feasible.
We stress this point since, in general, Rj ≥ 0 does not imply Q̃j ≤ 0. (Take e.g. Pj > 0 such that
P−1
j > 0.)

Similarly, we can dualize the H2-type synthesis inequalities as formulated in (4.3.4)-(4.3.5).

Corollary 4.10 For γj > 0, I 0
A(v) Bj (v)

0 I

T  0 I 0
I 0 0
0 0 −γj I

 I 0
A(v) Bj (v)

0 I

 < 0

if and only if  −A(v)T

−Bj (v)
T

I

T  0 I 0
I 0 0
0 0 − 1

γj
I

 −A(v)T

−Bj (v)
T

I

 > 0.

For X(v) > 0 and Zj > 0,(
I

Cj (v)

)T ( −X(v) 0
0 Z−1

j

)(
I

Cj (v)

)
< 0

if and only if ( −Cj (v)
T

I

)T ( −X(v)−1 0
0 Zj

)( −Cj (v)
T

I

)
> 0.
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Again, Lemma 4.2 allows to render the first and the second dual inequalities affine in γj and X(v)

respectively.

4.5.2 Special linear matrix inequalities

Let us now turn to specific linear matrix inequalities for which one can easily derive explicit solvability
tests.

We start by a trivial example that is cited for later reference.

Lemma 4.11 The inequality  P11 P12 P13
P21 P22 +X P23
P31 P32 P33

 < 0

in the symmetric unknown X has a solution if and only if(
P11 P13
P31 P33

)
< 0.

Proof. The direction ‘only if’ is obvious by cancelling the second row/column. To prove the converse
implication, we just need to observe that any X with

X < −P22 +
(
P11 P13

) ( P11 P13
P31 P33

)−1 (
P12
P32

)
< 0

(such as X = −αI for sufficiently large α > 0) is a solution (Schur).

Remark. This result extends to finding a common solution to a whole system of LMI’s, due to
the following simple fact: For finitely matrices Q1, . . . ,Qm, there exists an X with X < Qj ,
j = 1, . . . , m.

The first of three more advanced results in this vain is just a simple consequence of a Schur complement
argument and it can be viewed as a powerful variant of what is often called the technique of ‘completing
the squares’.

Lemma 4.12 (Projection Lemma) LetP be a symmetric matrix partitioned into three rows/columns
and consider the LMI  P11 P12 +XT P13

P21 +X P22 P23
P31 P32 P33

 < 0 (4.5.5)

in the unstructured matrix X. There exists a solution X of this LMI iff(
P11 P13
P31 P33

)
< 0 and

(
P22 P23
P32 P33

)
< 0. (4.5.6)
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If (4.5.6) hold, one particular solution is given by

X = PT
32P

−1
33 P31 − P21. (4.5.7)

Proof. If (4.5.5) has a solution then (4.5.6) just follow from (4.5.5) by canceling the first or second
block row/column.

Now suppose that (4.5.6) holds what implies P33 < 0. We observe that (4.5.5) is equivalent to (Schur
complement) (

P11 P12 +XT

P21 +X P22

)
−
(
P13
P23

)
P−1

33

(
P31 P32

)
< 0.

Due to (4.5.6), the diagonal blocks are negative definite. X defined in (4.5.7) just renders the off-
diagonal block zero such that it is a solution of the latter matrix inequality.

An even more powerful generalization is the so-called projection lemma.

Lemma 4.13 (Projection Lemma) For arbitrary A, B and a symmetric P , the LMI

ATXB + BTXT A+ P < 0 (4.5.8)

in the unstructured X has a solution if and only if

Ax = 0 or Bx = 0 imply xT Px < 0 or x = 0. (4.5.9)

If A⊥ and B⊥ denote arbitrary matrices whose columns form a basis of ker(A) and ker(B) respec-
tively, (4.5.9) is equivalent to

AT⊥PA⊥ < 0 and BT⊥PB⊥ < 0. (4.5.10)

We give a full proof of the Projection Lemma since it provides a scheme for constructing a solution
X if it exists. It also reveals that, in suitable coordinates, Lemma 4.13 reduces to Lemma 4.12 if the
kernels of A and B together span the whole space.

Proof. The proof of ‘only if’ is trivial. Indeed, let us assume that there exists some X with ATXB +
BTXT A + P < 0. Then Ax = 0 or Bx = 0 with x �= 0 imply the desired inequality 0 >

xT (AT XB + BTXT A+ P)x = xT Px.

For proving ‘if’, let S = (S1 S2 S3 S4) be a nonsingular matrix such that the columns of S3 span
ker(A)∩ ker(B), those of (S1 S3) span ker(A), and those of (S2 S3) span ker(B). Instead of (4.5.8),
we consider the equivalent inequality ST (4.5.8)S < 0 which reads as

(AS)T X(BS)+ (BS)T XT (AS)+ ST PS < 0. (4.5.11)

Now note thatAS andBS have the structure (0A2 0A4) and (B1 0 0 B4)where (A2 A4) and (B1 B4)

have full column rank respectively. The rank properties imply that the equation

(AS)T X(BS) =


0
AT2
0
AT4

X
(
B1 0 0 B4

) =


0 0 0 0
Z21 0 0 Z24
0 0 0 0
Z41 0 0 Z44


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has a solutionX for arbitraryZ21, Z24, Z41, Z44. WithQ := ST PS partitioned accordingly, (4.5.11)
hence reads as 

Q11 Q12 + ZT21 Q13 Q14 + ZT41
Q21 + Z21 Q22 Q23 Q24 + Z24

Q31 Q32 Q33 Q34

Q41 + Z41 Q42 + ZT24 Q43 Q44 + Z44 + ZT44

 < 0 (4.5.12)

with free blocks Z21, Z24, Z41, Z44. Since

ker(AS) = im


I 0
0 0
0 I

0 0

 and ker(BS) = im


0 0
I 0
0 I

0 0

 ,

the hypothesis (4.5.9) just amounts to the conditions(
Q11 Q13
Q31 Q33

)
< 0 and

(
Q22 Q23
Q32 Q33

)
< 0.

By Lemma 4.12, we can hence find a matrix Z21 which renders the marked 3 × 3 block in (4.5.12)
negative definite. The blocks Z41 and Z24 can be taken arbitrary. After having fixed Z21, Z41, Z24,
we can choose Z44 according to Lemma 4.11 such that the whole matrix on the left-hand side of
(4.5.12) is negative definite.

Remark. We can, of course, replace < everywhere by >. It is important to recall that the unknown
X is unstructured. If one requires X to have a certain structure (such as being symmetric), the tests,
if existing at all, are much more complicated. There is, however, a generally valid extension of
the Projection Lemma to block-triangular unknowns X [31]. Note that the results do not hold true
as formulated if just replacing the strict inequalities by non-strict inequalities (as it is sometimes
erroneously claimed in the literature)! Again, it is possible to provide a full generalization of the
Projection Lemma to non-strict inequalities.

Let

P =
(
Q S

ST R

)
with R ≥ 0 have the inverse P−1 =

(
Q̃ S̃

S̃T R̃

)
with Q̃ ≤ 0 (4.5.13)

and let us finally consider the quadratic inequality(
I

AT XB + C
)T

P

(
I

AT XB + C
)
< 0 (4.5.14)

in the unstructured unknown X. According to Lemma 4.8, we can dualize this inequality to( −BTXT A− C′
I

)T
P−1

( −BTXT A− C′
I

)
> 0. (4.5.15)

It is pretty straightforward to derive necessary conditions for the solvability of (4.5.14). Indeed, let
us assume that (4.5.14) holds for some X. If A⊥ and B⊥ denote basis matrices of ker(A) and ker(B)
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respectively, we infer(
I

AT XB + C
)
B⊥ =

(
I

C

)
B⊥ and

( −BTXT A− C′
I

)
A⊥ =

( −C′
I

)
A⊥.

Since BT⊥(4.5.14)B⊥ < 0 and AT⊥(4.5.15)A⊥ > 0, we arrive at the two easily verifiable inequalities

BT⊥
(
I

C

)T
P

(
I

C

)
B⊥ < 0 and AT⊥

( −CT
I

)T
P−1

( −CT
I

)
A⊥ > 0 (4.5.16)

which are necessary for a solution of (4.5.14) to exist. One can constructively prove that they are
sufficient [38].

Lemma 4.14 (Elimination Lemma) Under the hypotheses (4.5.13) on P , the inequality (4.5.14)
has a solution if and only if (4.5.16) hold true.

Proof. It remains to prove that (4.5.16) implies the existence of a solution of (4.5.14).

Let us first reveal that one can assume without loss of generality that R > 0 and Q̃ < 0. For that
purpose we need to have information about the inertia of P . Due to R ≥ 0, P and P−1 have size(R)
positive eigenvalues (since none of the eigenvalues can vanish). Similarly, Q̃ ≤ 0 implies that P−1

andP have size(Q̃) = size(Q) negative eigenvalues. Let us now consider (4.5.14) with the perturbed
data

Pε :=
(
Q S

ST R + εI
)

where ε > 0

is fixed sufficiently small such that (4.5.16) persist to hold for Pε , and such that Pε and P have the
same number of positive and negative eigenvalues. Trivially, the right-lower block of Pε is positive
definite. The Schur complement Q − S(R + εI )−1ST of this right-lower block must be negative
definite since Pε has size(Q) negative and size(R) positive eigenvalues. Hence the left-upper block
of P−1

ε which equals [Q − S(R + εI )−1ST ]−1 is negative definite as well. If the result is proved
with R > 0 and Q̃ < 0, we can conclude that (4.5.14) has a solution X for the perturbed data Pε .
Due to P0 ≤ Pε , the very same X also satisfies the original inequality for P0.

Let us hence assume from now on R > 0 and Q̃ < 0. We observe that the left-hand side of (4.5.14)
equals(

I

C

)T
P

(
I

C

)
+ (AT XB)T (ST + RC)+ (ST + RC)T (AT XB)+ (AT XB)T R(AT XB).

Hence (4.5.14) is equivalent to (Schur) (
I

C

)T
P

(
I

C

)
+ (AT XB)T (ST + RC)+ (ST + RC)T (AT XB) (AT XB)T

(AT XB) −R−1

 < 0

89

Polcz Peter
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or  (
I

C

)T
P

(
I

C

)
0

0 −R−1

+
+
(
A(ST + RC)T

A

)T
X
(
B 0

)+ ( BT

0

)
XT

(
A(ST + RC) A

)
< 0. (4.5.17)

The inequality (4.5.17) has the structure as required in the Projection Lemma. We need to show that

(
B 0

) ( x

y

)
= 0,

(
x

y

)
�= 0 (4.5.18)

or (
A(ST + RC) A

) ( x

y

)
= 0,

(
x

y

)
�= 0 (4.5.19)

imply

(
x

y

)T  (
I

C

)T
P

(
I

C

)
0

0 −I

(
x

y

)
= xT

(
I

C

)T
P

(
I

C

)
x − yT y < 0. (4.5.20)

In a first step we show that (4.5.17) and hence (4.5.14) have a solution if A = I . Let us assume
(4.5.18). Then (4.5.20) is trivial if x = 0. For x �= 0 we infer Bx = 0 and the first inequality in
(4.5.16) implies

xT
(
I

C

)T
P

(
I

C

)
x < 0

what shows that (4.5.20) is true. Let us now assume (4.5.19) with A = I . We infer x �= 0 and
y = −(ST + RC)x. The left-hand side of (4.5.20) is nothing but

xT
(
I

C

)T
P

(
I

C

)
x − xT (ST + RC)T R−1(ST + RC)x =

= xT
(
I

C

)T
P

(
I

C

)
x − xT

(
I

C

)T (
S

R

)
R−1 ( ST R

) ( I

C

)
x =

= xT
(
I

C

)T [
P −

(
SR−1ST S

ST R

)](
I

C

)
x = xT (Q− SR−1ST )x

what is indeed negative since Q̃−1 = Q − SR−1ST < 0 and x �= 0. We conclude that, for A = I ,
(4.5.17) and hence (

I

XB + C
)T

P

(
I

XB + C
)
< 0

have a solution.
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By symmetry –since one can apply the arguments provided above to the dual inequality (4.5.15)– we
can infer that (

I

AT X + C
)T

P

(
I

AT X + C
)
< 0

has a solution X. This implies that (4.5.17) has a solution for B = I . Therefore, with the Projection
Lemma, (4.5.19) implies (4.5.20) for a general A.

In summary, we have proved for general A and B that (4.5.18) or (4.5.19) imply (4.5.20). We can
infer the solvability of (4.5.17) or that of (4.5.14).

4.5.3 The quadratic performance problem

For the performance index

Pj =
(
Qj Sj
S′j Rj

)
, Rj ≥ 0 with inverse P−1

j =
(
Q̃j S̃j

S̃′j R̃j

)
, Q̃j ≤ 0, (4.5.21)

we have derived the following synthesis inequalities:

X(v) > 0,


I 0

A(v) Bj (v)

0 I

Cj (v) Dj (v)


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
A(v) Bj (v)

0 I

Cj (v) Dj (v)

 < 0. (4.5.22)

Due to the specific structure

(
A(v) Bj (v)

Cj (v) Dj (v)

)
=
 AY A Bj

0 XA XBj
CjY Cj Dj

+
 0 B

I 0
0 Ej

(
K L

M N

)(
I 0 0
0 C Fj

)
, (4.5.23)

it is straightforward to apply Lemma 4.14 to eliminate all the variables

(
K L

M N

)
. For that purpose

it suffices to compute basis matrices

Nj =
(
N1
j

N2
j

)
of ker

(
BT ET

j

)
and Oj =

(
O1
j

O2
j

)
of ker

(
C Fj

)
.

Corollary 4.15 For a performance index with (4.5.21), there exists a solution v of (4.5.22) if and
only if there exist symmetric X and Y that satisfy(

Y I

I X

)
> 0, (4.5.24)
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OT


I 0
A Bj
0 I

Cj Dj


T 

0 X 0 0
X 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
A Bj
0 I

Cj Dj

O < 0, (4.5.25)

NT


−AT −CTj
I 0
−BTj −DT

j

0 I


T 

0 Y 0 0
Y 0 0 0
0 0 Q̃j S̃j

0 0 S̃Tj R̃j



−AT −CTj
I 0
−BTj −DT

j

0 I

N > 0. (4.5.26)

Remark. Note that the columns of

(
B

Ej

)
indicate in how far the right-hand side of (4.1.1) can be

modified by control, and the rows of
(
C Fj

)
determine those functionals that provide information

about the system state and the disturbance that is available for control. Roughly speaking, the columns
ofNj or ofOj indicate what cannot be influenced by control or which information cannot be extracted
from the measured output. Let us hence compare (4.5.24)-(4.5.26) with the synthesis inequalities
that would be obtained for

ẋ

z1
...

zq

 =


A B1 · · · Bq
C1 D1 · · · D1q
...

...
. . .

...

Cq Dq1 · · · Dq




x

w1
...

wq

 (4.5.27)

without control input and measurement output. For this system we could choose N = I and O = I

to arrive at the synthesis inequalities (
Y I

I X

)
> 0, (4.5.28)


I 0
A Bj
0 I

Cj Dj


T 

0 X 0 0
X 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
A Bj
0 I

Cj Dj

 < 0, (4.5.29)


−AT −CTj
I 0
−BTj −DT

j

0 I


T 

0 Y 0 0
Y 0 0 0
0 0 Q̃j S̃j

0 0 S̃Tj R̃j



−AT −CTj
I 0
−BTj −DT

j

0 I

 > 0. (4.5.30)

Since there is no control and no measured output, these could be viewed as analysis inequalities for
(4.5.27). Hence we have very nicely displayed in how far controls or measurements do influence the
synthesis inequalities through Nj and Oj . Finally, we note that (4.5.28)-(4.5.30) are equivalent to
X > 0, (4.5.29) or to Y > 0, (4.5.30). Moreover, if dualizing X > 0, (4.5.29), we arrive at Y > 0,
(4.5.30) for Y := X−1.
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Proof of Corollary 4.15. The first inequality (4.5.24) is just X(v) > 0. The inequalities (4.5.25)-
(4.5.26) are obtained by simply applying Lemma 4.14 to the second inequality of (4.5.22), viewed

as a quadratic matrix inequality in the unknowns

(
K L

M N

)
. For that purpose we first observe that

ker

(
0 I 0
BT 0 ET

j

)
, ker

(
I 0 0
0 C Fj

)
have the basis matrices

 N1
j

0
N2
j

 ,

 0
O1
j

O2
j


respectively. Due to


I 0

A(v) Bj (v)

0 I

Cj (v) Dj (v)


 0
O1
j

O2
j

 =


I 0 0
0 I 0
AY A Bj
0 XA XBj
0 0 I

CjY Cj Dj


 0
O1
j

O2
j

 =


0 0
I 0
A Bj
XA XBj

0 I

Cj Dj

O,

the solvability condition that corresponds to the first inequality in (4.5.16) reads as

OT


0 0
I 0
A Bj
XA XBj

0 I

Cj Dj



T 

0 0 I 0 0 0
0 0 0 I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 Qj Sj
0 0 0 0 STj Rj




0 0
I 0
A Bj
XA XBj

0 I

Cj Dj

O < 0

what simplifies to

OT


I 0
XA XBj

0 I

Cj Dj


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
XA XBj

0 I

Cj Dj

O < 0.

This is clearly nothing but (4.5.25). The very same simple steps lead to (4.5.26). Indeed, we have
A(v)T Cj (v)

T

I 0
Bj (v)

T Dj (v)
T

0 I


 N1

j

0
N2
j

 =

=



−YAT 0 −YCTj
−AT −ATX −CTj
I 0 0
0 I 0
−BTj −XBTj −DT

j

0 0 I


 N1

j

0
N2
j

 =

−YAT −YCT1−AT −CT1
I 0
0 0
−BT1 −DT

1
0 I

N
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such that the solvability condition that corresponds to the second inequality in (4.5.16) is

NT


−YAT −YCT1−AT −CT1
I 0
0 0
−BT1 −DT

1
0 I



T 

0 0 I 0 0 0
0 0 0 I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 Q̃j S̃j

0 0 0 0 S̃Tj R̃j




−YAT −YCT1−AT −CT1
I 0
0 0
−BT1 −DT

1
0 I

N < 0

what simplifies to

NT


−YAT −YCT1
I 0
−BT1 −DT

1
0 I


T 

0 I 0 0
I 0 0 0
0 0 Q̃j S̃j

0 0 S̃Tj R̃j



−YAT −YCT1
I 0
−BT1 −DT

1
0 I

N < 0

and we arrive at (4.5.26).

Starting from the synthesis inequalities (4.5.22) in the variablesX, Y ,

(
K L

M N

)
, we have derived the

equivalent inequalities (4.5.24)-(4.5.26) in the variables X, Y only. Testing feasibility of these latter
inequalities can hence be accomplished much faster. This is particularly advantageous if optimizing
an additional parameter, such as minimizing the sup-optimality level γ in the H∞ problem.

To conclude this section, let us comment on how to compute the controller after having found solutions
X, Y of (4.5.24)-(4.5.26). One possibility is to explicitly solve the quadratic inequality (4.5.22) in(
K L

M N

)
along the lines of the proof of Lemma 4.14, and reconstruct the controller parameters as

earlier. One could as well proceed directly: Starting from X and Y , we can compute non-singular U
and V with UV T = I −XY , and determine X > 0 by solving the first equation in (4.2.10). Due to
(4.1.5), we can apply Lemma 4.14 directly to the analysis inequality

I 0
A Bj

0 I

Cj Dj


T 

0 X 0 0
X 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
A Bj

0 I

Cj Dj

 < 0

if viewing

(
Ac Bc
Cc Dc

)
as variables. It is not difficult (and you should provide the details!) to verify

the solvability conditions for this quadratic inequality, and to construct an explicit solution along the
lines of the proof of Lemma 4.14. Alternatively, one can transform the quadratic inequality to a linear
matrix inequality with Lemma 4.2, and apply the Projection Lemma to reconstruct the controller
parameters. For the latter step the LMI-Lab offers a standard routine. We conclude that there are
many basically equivalent alternative ways to compute a controller once one has determined X and
Y .
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4.5.4 H2-problems

If recalling (4.2.3), we observe that both inequalities in the H2-synthesis conditions (4.3.3) involve
the variables M and N , but only the first one(

A(v)T +A(v) Bj (v)

Bj (v)
T −γj I

)
< 0 (4.5.31)

is affected by K and L. This might suggest that the latter two variables can be eliminated in the
synthesis conditions. Since (4.5.31) is affine in

(
K L

)
, we can indeed apply the Projection Lemma

to eliminate these variables. It is not difficult to arrive at the following alternative synthesis conditions
for H2-type criteria.

Corollary 4.16 There exists a controller that renders (4.3.2) for some X, Zj satisfied iff there exist
X, Y , M , N , Zj with fj (Zj ) < γj , Dj + EjNFj = 0 and Y I (CjY + EjM)T

I X (Cj + EjNC)T
CjY + EjM Cj + EjNC Zj

 > 0,

OT

(
ATX +XA XBj

BTj X −γj I
)
O < 0,

(
(AY + BM)+ (AY + BM)T Bj + BNFj

(Bj + BNFj )T −γj I
)
< 0.

(4.5.32)

Proof. We only need to show that the elimination ofK and L in (4.5.31) leads to the two inequalities
(4.5.32). Let us recall

(
A(v) Bj (v)

) = (
AY A Bj
0 XA XBj

)
+
(

0 B

I 0

)(
K L

M N

)(
I 0 0
0 C Fj

)
=

=
(
AY + BM A+ BNC Bj + BNFj

0 XA XBj

)
+
(

0
I

) (
K L

) ( I 0 0
0 C Fj

)
.

Therefore, (4.5.31) is equivalent to AY + YAT A Bj
AT AT X +XA XBj

BTj BTj X −γj I

+ sym

 B

0
0

(
M N

) ( I 0 0
0 C Fj

)+
+ sym

 0
I

0

(
K L

) ( I 0 0
0 C Fj

) < 0

where sym (M) := M +MT is just an abbreviation to shorten the formulas. Now note that

ker
(

0 I 0
)
, ker

(
I 0 0
0 C Fj

)
have the basis matrices

 I 0
0 0
0 I

 ,

 0
O1
j

O2
j


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respectively. Therefore, the Projection Lemma leads to the two inequalities 0
O1
j

O2
j

T  AY + YAT A Bj
AT AT X +XA XBj

BTj BTj X −γj I

 0
O1
j

O2
j

 < 0

and (
AY + YAT Bj

BTj −γj I
)
+ sym

((
B

0

) (
M N

) ( I 0
0 Fj

))
< 0

that are easily rewritten to (4.5.32).

If it happens that Ej vanishes, we can also eliminate all variables

(
K L

M N

)
from the synthesis

inequalities. The corresponding results are obtained in a straightforward fashion and their proof is
left as an exercise.

Corollary 4.17 Suppose that Ej = 0. Then there exists a controller that renders (4.3.2) for some
X, Zj satisfied iff Dj = 0 and there exist X, Y Zj with fj (Zj ) < γj and Y I (CjY )

T

I X CTj
CjY Cj Zj

 > 0,

OT

(
ATX +XA XBj

BTj X −γj I
)
O < 0,

(
N̂ 0
0 I

)T (
AY + YAT Bj

BTj −γj I
)(

N̂ 0
0 I

)
< 0

where N̂ is a basis matrix of ker(B).

Remarks.

• Once the synthesis inequalities have been solved, the computation of
(
K L

)
or of

(
K L

M N

)
can be performed along the lines of the proof of the Projection Lemma.

• It was our main concern to perform the variable elimination with as little computations as
possible. They should be read as examples how one can proceed in specific circumstances,
and they can be easily extended to various other performance specifications. As an exercise,
the reader should eliminate variables in the peak-to-peak upper bound synthesis LMI’s.

4.6 State-feedback problems

The state-feedback problem is characterized by

y = x or
(
C F1 · · · Fq

) = (
I 0 · · · 0

)
.
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Then the formulas (4.2.3) read as

(
A(v) Bj (v)

Cj (v) Dj (v)

)
=
 AY + BM A+ BN Bj

K AX + L XBj
CjY + EjM Cj + EjN Dj

 .

Note that the variable L only appears in the (2, 2)-block, and that we can assign an arbitrary matrix
in this position by suitably choosing L. Therefore, by varying L, the (2, 2) block of(

A(v)T +A(v) Bj (v)

Bj (v) 0

)
=

=
 (AY + BM)+ (AY + BM)T (A+ BN)+KT Bj

K + (A+ BN)T (AX + L)+ (AX + L)T XBj

BTj BTj X 0


varies in the set of all symmetric matrices. This allows to apply Lemma 4.11 in order to eliminate L
in synthesis inequalities what leads to a drastic simplification.

Let us illustrate all this for the quadratic performance problem. The corresponding synthesis inequal-
ities (4.2.7) read as

(
Y I

I X

)
> 0,

 (AY + BM)+ (AY + BM)T (A+ BN)+KT Bj
K + (A+ BN)T (AX + L)+ (AX + L)T XBj

BTj BTj X 0

+
+
(

0 0 I

CjY + EjM Cj + EjN Dj

)T
Pj

(
0 0 I

CjY + EjM Cj + EjN Dj

)
< 0.

These imply, just by cancelling the second block row/column,

Y > 0,

(
(AY + BM)+ (AY + BM)T Bj

BTj 0

)
+

+
(

0 I

CjY + EjM Dj

)T
Pj

(
0 I

CjY + EjM Dj

)
< 0

or

Y > 0,


I 0

AY + BM Bj
0 I

CjY + EjM Dj


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
AY + BM Bj

0 I

CjY + EjM Dj

 < 0. (4.6.1)

This is a drastic simplification since only the variables Y andM do appear in the resulting inequalities.
It is no problem to reverse the arguments in order to show that the reduced inequalities are equivalent
to the full synthesis inequalities.
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However, proceeding in a different fashion leads to another fundamental insight: With solutions Y
and M of (4.6.1), one can in fact design a static controller which solves the quadratic performance
problem. Indeed, we just choose

Dc := MY−1

to infer that the static controller y = Dcu leads to a controlled system with the describing matrices(
A Bj

Cj Dj

)
=
(

A+ BDc Bj
Cj + EjDc Dj

)
=
(

(AY + BM)Y−1 Bj
(CjY + EjM)Y−1 Dj

)
.

We infer that (4.6.1) is identical to

Y > 0,


I 0

AY Bj

0 I

Cj Y Dj


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
AY Bj

0 I

Cj Y Dj

 < 0.

If we perform congruence transformations with Y−1 and

(
Y−1 0

0 I

)
, we arrive with X := Y−1 at

X > 0,


I 0

XA XBj

0 I

Cj Dj


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj
0 0 STj Rj




I 0
XA XBj

0 I

Cj Dj

 < 0.

Hence the static gain D indeed defines a controller which solves the quadratic performance problem.

Corollary 4.18 Under the state-feedback information structure, there exists a dynamic controller(
Ac Bc
Cc Dc

)
and some X which satisfy (4.2.1) iff there exist solutions Y and M of the inequalities

(4.6.1). If Y and M solve (4.6.1), the static state-feedback controller gain

Dc = MY−1

and the Lyapunov matrix X := Y−1 render (4.2.1) satisfied.

In literally the same fashion as for output-feedback control, we arrive at the following general pro-
cedure to proceed from analysis inequalities to synthesis inequalities, and to construct a static state-
feedback controller:

• Rewrite the analysis inequalities in the blocks X, XA, XBj , Cj , Dj in order to be able to
find a (formal) congruence transformation involving Y which leads to inequalities in the blocks
YTXY, YTXAY, YTXBj , CjY, Dj .

• Perform the substitutions

YTXY→ Y and

(
YTXAY YTXBj

CjY Dj

)
→

(
AY + BM Bj
CjY + EjM Dj

)
to arrive at matrix inequalities in the variables Y and M .
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4.6. STATE-FEEDBACK PROBLEMS

• After having solved the synthesis inequalities for Y and M , the static controller gain and the
Lyapunov matrix

D = MY−1 and X = Y−1

render the analysis inequalities satisfied.

As an illustration, starting form the analysis inequalities (4.3.2) for H2-type problems, the corre-
sponding state-feedback synthesis conditions read as(

(AY + BM)T + (AY + BM) Bj
BTj −γj I

)
< 0,(

Y (CjY + EjM)T

CjY + EjM Zj

)
> 0, fj (Zj ) < γj , Dj = 0.

All our previous remarks pertaining to the (more complicated) procedure for the output-feedback
information structure apply without modification.

In general we can conclude that dynamics in the controller do not offer any advantage over static
controllers for state-feedback problems. This is also true for mixed control problems. This statements
requires extra attention since our derivation was based on eliminating the variable L which might
occur in several matrix inequalities. At this point the remark after Lemma 4.11 comes into play:
This particular elimination result also applies to systems of matrix inequalities such that, indeed, the
occurrence of L is various inequalities will not harm the arguments.

As earlier, in the single-objective quadratic performance problem by state-feedback, it is possible to
eliminate the variable M in (4.6.1). Alternatively, one could as well exploit the particular structure
of the system description to simplify the conditions in Theorem 4.15. Both approaches lead to the
following result.

Corollary 4.19 For the state-feedback quadratic performance problem with index satisfying (4.5.21),
there exists dynamic controller and some X with (4.2.1) iff there exists a symmetric Y which solves

Y > 0, NT


−AT −CTj
I 0
−BTj −DT

j

0 I


T 

0 Y 0 0
Y 0 0 0
0 0 Q̃j S̃j

0 0 S̃Tj R̃j



−AT −CTj
I 0
−BTj −DT

j

0 I

N > 0. (4.6.2)

Remarks. All these results should be viewed as illustrations how to proceed for specific system
descriptions. Indeed, another popular choice is the so-called full information structure in which both
the state and the disturbance are measurable:

y =
(
x

w

)
.
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4.7. DISCRETE-TIME SYSTEMS

Similarly, one could consider the corresponding dual versions that are typically related to estimation
problems, such as e.g. 

B

E1
...

Eq

 =

I

0
...

0

 .

We have collected all auxiliary results that allow to handle these specific problems without any
complications.

4.7 Discrete-Time Systems

Everything what has been said so far can be easily extended to discrete time-design problems. This
is particularly surprising since, in the literature, discrete-time problem solutions often seem much
more involved and harder to master than their continuous-time counterparts.

Our general procedure to step from analysis to synthesis as well as the technique to recover the
controller need no change at all; in particular, the concrete formulas for the block substitutions do
not change. The elimination of transformed controller parameters proceeds in the same fashion on
the basis of the Projection Lemma or the Elimination Lemma and the specialized version thereof.

Only as a example we consider the problem discussed in [12]: the mixed H2/H∞ problem with
different disturbance inputs and controlled outputs in discrete-time.

It is well-known [12] that A has all its eigenvalues in the unit disk, that the discrete time H2-norm of

C1(zI −A)−1B1 +D1

is smaller than γ1, and that the discrete time H∞-norm of

C2(zI −A)−1B2 +D2

is smaller than γ2 iff there exist symmetric matrices X1, X2, and Z with trace(Z) < γ1 and

 X1 X1A X1B1

ATX1 X1 0
BT

1 X1 0 γ1I

 > 0,

 X1 0 CT
1

0 I DT
1

C1 D1 Z

 > 0,


X2 0 ATX2 CT

2
0 γ2I BT

2 X2 DT
2

X2A X2B2 X2 0
C2 D2 0 γ2I

 > 0.

(4.7.1)
Note that we have transformed these analysis LMI’s such that they are affine in the blocks that will
be transformed for synthesis.

The mixed problem consists of searching for a controller that renders these inequalities satisfied with
a common Lyapunov function X = X1 = X2. The solution is immediate: Perform congruence
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transformations of (4.7.1) with

diag(Y,Y, I ), diag(Y, I, I ), diag(Y, I,Y, I )

and read off the synthesis LMI’s using (4.2.3). After solving the synthesis LMI’s, we stress again that
the controller construction proceeds along the same steps as in Theorem 4.3. The inclusion of pole
constraints for arbitrary LMI regions (related, of course, to discrete time stability) and other criteria
poses no extra problems.

4.8 Exercises

Exercise 1

Derive an LMI solution of the H∞-problem for the system ẋ

z1
y

 =
 A B1 B

C1 D1 E

C F 0

 x

w1
u


with

C =
(
I

0

)
, F =

(
0
I

)
such that y =

(
x

w1

)
.

(This is the so-called full information problem.)

Exercise 2 (Nominal and robust estimation)

Consider the system  ẋ

z

y

 =
 A B1
C1 D1
C F

(
x

w

)
and inter-connect it with the estimator(

ẋc
ẑ

)
=
(
Ac Bc
Cc Dc

)(
xc
y

)
(4.8.1)

where both A and Ac are Hurwitz. The goal in optimal estimation is to design an estimator which
keeps z − ẑ as small as possible for all disturbances w in a certain class. Out of the multitude of
possibilities, we choose the L2-gain of w→ z− ẑ (for zero initial condition of both the system and
the estimator) as the measure of the estimation quality.

This leads to the following problem formulation: Given γ > 0, test whether there exists an estimator
which renders

sup
w∈L2, w �=0

‖z− ẑ‖2
‖w‖2 < γ (4.8.2)

satisfied. If yes, reveal how to design an estimator that leads to this property.
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1. Show that the estimation problem is a specialization of the general output-feedbackH∞-design
problem.

2. Due to the specific structure of the open-loop system, show that there exists a linearizing
transformation of the estimator parameters which does not involve any matrices that describe
the open-loop system.

Hint: To find the transformation, proceed as in the proof of Theorem 4.3 with the factorization

YTX = Z where YT =
(
I Y−1V

I 0

)
, Z =

(
Y−1 0
X U

)
,

and consider as before the blocks YTXAY, YTXB, CY.

3. Now assume that the system is affected by time-varying uncertain parameters as ẋ

z

y

 =
 A(L(t)) B1(L(t))

C1(L(t)) D1(L(t))

C(L(t)) F (L(t))

(
x

w

)

where  A(L) B1(L)

C1(L) D1(L)

C(L) F(L)

 is affine in L and L(t) ∈ co{L1, ..., LN }.

Derive LMI conditions for the existence of an estimator that guarantees (4.8.2) for all uncer-
tainties, and show how to actually compute such an estimator if the LMI’s are feasible.

Hint: Recall what we have discussed for the state-feedback problem in Section 7.1.3.

4. Suppose that the uncertainty enters rationally, and that it has been pulled out to arrive at the
LFT representation

ẋ

z1
z

y

 =


A B1 B2
C1 D1 D12
C2 D21 D2
C F1 F2


 x

w1
w

 , w1(t) = L(t)z1(t), L(t) ∈ co{L1, ..., LN }

of the uncertain system. Derive synthesis inequalities with full-block scalings that guarantee
the existence of an estimator that guarantees (4.8.2) for all uncertainties and reveal how to
actually compute such an estimator if the LMI’s are feasible. What happens if D1 = 0 such
that the uncertainty enters affinely?

Hint: The results should be formulated analogously to what we have done in Section 7.1.2.
There are two possibilities to proceed: You can either just use the transformation (4.2.10) to
obtain synthesis inequalities that can be rendered convex by an additional congruence trans-
formation, or you can employ the alternative parameter transformation as derived in part 2 of
this exercise to directly obtain a convex test.
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Exercise 3

This is a simulation exercise that involves the synthesis of an active controller for the suspension
system in Exercise 4 of Chapter 2. We consider the rear wheel of a tractor-trailer combination as is
depicted in Figure 4.2. Herem1 represents tire, wheel and rear axle mass,m2 denotes a fraction of the

Figure 4.2: Active suspension system

semitrailer mass. The deflection variables qi are properly scaled so that q2−q1 = 0 and q1−q0 = 0
in steady state. The system is modeled by the state space equations

ẋ = Ax + B
(
q0
F

)
z = Cx +D

(
q0
F

)
where

A =


0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

− b1+b2
m1

b2
m1

k2
m2

− k2
m2

b2
m2

− b2
m2

 ; B =


b1
m1

0
0 0

k1
m1
− b1

m1

b1+b2
m1

− 1
m1

b1b2
m1m2

1
m2



C =


1 0 0 0
0 0 0 0
k2
m2
− k2
m2

b2
m2
− b2
m2−1 1 0 0

 ; D =


−1 0
0 1
b1b2
m1m2

1
m2

0 0

 .

Here, x = col(q1, q2, q̇1 − b1q0/m1, q̇2) and z = col(q1 − q0, F, q̈2, q2 − q1) define the state and
the to-be-controlled output, respectively. The control input is the force F , the exogenous input is the
road profile q0.

Let the physical parameters be specified as in Table 2.1 in Chapter 2 and let b1 = 1.7 × 103. The
aim of the exercise is to design an active suspension control system that generates the force F as a
(causal) function of the measured variable y = col(q̈2, q2 − q1).

The main objective of the controller design is to achieve low levels of acceleration throughout the
vehicle (q̈2), bounded suspension deflection (q2 − q1 and q1 − q0) and bounded dynamic tire force
(F ).

103



4.8. EXERCISES

1. Let the road profile be represented by q0 = Wq0 q̃0 where q̃0 ∈ L2 is equalized in frequency
and Wq0 is the transfer function

Wq0(s) =
0.01

0.4s + 1

reflecting the quality of the road when the vehicle drives at constant speed. Define the to-be-
controlled output z̃ = Wzz where Wz is a weighting matrix with transfer function

Wz(s) =


200 0 0 0

0 0.1 0 0
0 0 0.0318s+0.4

3.16×10−4s2+0.0314s+1
0

0 0 0 100

 .

The weight on the chassis acceleration reflects the human sensitivity to vertical accelerations.
Use the routines ltisys, smult and sdiag (from the LMI toolbox) to implement the
generalized plant

P :
(
q̃0
F

)
�→

(
z̃

y

)
and synthesize with the routine hinflmi a controller which minimizes the H∞ norm of the
closed-loop transfer function T : q̃0 �→ z̃.

2. Construct with this controller the closed-loop system which maps q0 to z (not q̃0 to z̃!) and
validate the controlled system by plotting the four frequency responses of the closed-loop
system and the four responses to a step with amplitude 0.2 (meter). (See the routines slft,
ssub and splot). What are your conclusions about the behavior of this active suspension
system?

3. Partition the output z of the system into

z =
(
z1
z2

)
; z1 =

(
q1 − q0
F

)
; z2 =

(
q̈2

q2 − q1

)
.

and let the weights on the signal components be as in the first part of this exercise. Let Ti ,
i = 1, 2 be the transfer function mapping q̃0 �→ z̃i . We wish to obtain insight in the achievable
trade-offs between upper bounds of ‖T1‖∞ and ‖T2‖2. To do this,

(a) Calculate the minimal achievable H∞ norm of T1.

(b) Calculate the minimal achievable H2 norm of T2.

(c) Calculate the minimal achievableH2 norm of T2 subject to the bound ‖T1‖∞ < γ1 where
γ1 takes some1 values in the interval [0.15, 0.30].

Make a plot of the Pareto optimal performances, i.e, plot the minimal achievable H2 norm of
T2 as function of γ1. (See the routine hinfmix for details).

1Slightly depending on your patience and the length of your coffee breaks, I suggest about 5.
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Chapter 5

Systems with parametric uncertainty

5.1 Parametric uncertainty descriptions

5.1.1 Polytopic differential systems

In Definition 1.6 of Chapter 1 we introduced the notion of a convex combination of a finite set of
points. This notion gets considerable relevance in the context of dynamical systems if ‘points’become
systems. Consider a time-varying dynamical system

dx

dt
(t) = A(t)x(t)+ B(t)w(t)
z(t) = C(t)x(t)+D(t)w(t)

with input w, output z and state x. Suppose that its system matrix

S(t) :=
(
A(t) B(t)

C(t) D(t)

)
is a time varying object which for any time instant t ∈ R can be written as a convex combination of
the n system matrices S1, . . . , Sn. This means that there exist functions αj : R → [0, 1] such that
for any time instant t ∈ R we have that

S(t) =
n∑

j=1

αj (t)Sj

where
∑n

j=1 αj (t) = 1 and

Sj =
(
Aj Bj
Cj Dj

)
, j = 1, . . . , n
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are constant system matrices of equal dimension. In particular, this implies that the system matrices
S(t), t ∈ R belong to the convex hull of S1, . . . , Sn, i.e.,

S(t) ∈ co(S1, . . . , Sn), t ∈ R.

Such models are called polytopic linear differential inclusions and arise in a wide variety of modeling
problems.

The LMI toolbox in Matlab provides routines to represent such models and to perform time simu-
lations with models of this type. See the routines

ltisys to convert a state space model to a system matrix
ltiss to convert a system matrix to a state space model
sinfo to extract inquiries about system matrices
splot to plot characteristic responses of systems
psys to define a polytopic model
psinfo to extract inquiries about polytopic models
pdsimul to simulate time responses of polytopic models.

See the help information of these routines for more specific details on their usage.

5.1.2 Affine parameter dependent systems

Models of physical systems are often expressed in terms of state space systems in which the compo-
nents of the state variable represent a physical quantity. In these models uncertainty about specific
parameters is therefore often reflected as uncertainty in specific entries of the state space matrices
A,B,C,D. Let p = (p1, . . . , pn) denote the parameter vector which expresses the uncertain quan-
tities in the system and suppose that this parameter vector belongs to some subset P ⊂ Rn. Then
the uncertain model can be thought of as being parametrized by p ∈ P through its state space
representation

(
ẋ

z

)
=
(
A(p) B(p)

C(p) D(p)

)(
x

w

)
(5.1.1)

One way to think of equations of this sort is to view them as a set of linear time-invariant systems as
parametrized by p ∈ P . However, if p is time, then (5.1.1) defines a linear time-varying dynamical
system and it can therefore also be viewed as such. If components of p are time varying and coincide
with state components then (5.1.1) is better viewed as a non-linear system.

Of particular interest will be those systems in which the system matrices affinely depend on p. This
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means that

A(p) = A0 + p1A1 + . . .+ pnAn
B(p) = B0 + p1B1 + . . .+ pnBn
C(p) = C0 + p1C1 + . . .+ pnCn
D(p) = D0 + p1D1 + . . .+ pnDn

or, written in a more compact form

S(p) = S0 + p1S1 + . . .+ pnSn
where

S(p) =
(
A(p) B(p)

C(p) D(p)

)
is the system matrix associated with (5.1.1). We call these models affine parameter dependent models.

In Matlab affine parameter dependent systems are represented with the routines psys and pvec.
As an example, for n = 2 and a parameter box

P := {(p1, p2) | p1 ∈ [pmin
1 , pmax

1 ], p2 ∈ [pmin
2 , pmax

2 ]}
the syntax is

affsys = psys( p, [s0, s1, s2] );
p = pvec( ’box’, [p1min p1max ; p2min p2max]);

where p is the parameter vector whose j -th component ranges between pmin
j and pmax

j . See also the
routines

pdsimul for time simulations of affine parameter models
aff2pol to convert an affine model to an equivalent polytopic model.
pvinfo to inquire about the parameter vector.

5.2 Robust stability for autonomous systems

An important issue in the design of control systems involves the question as to what extent the
stability and performance of the controlled system is robust against perturbations and uncertainties
in the parameters of the system. In this section we consider the linear system defined by

ẋ = A(δ)x (5.2.1)

where the state matrixA(δ) is a function of a real valued parameter vector δ = col(δ1, . . . , δk) ∈ Rk .
Let X = Rn be the state space of this system. If you like, you can think of this (autonomous) system
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as a feedback interconnection of a plant and a controller. We will analyze the robust stability of the
equilibrium point x∗ = 0 of this system. More precisely, we analyze to what extent the equilibrium
point x∗ = 0 is asymptotically stable when δ varies in a prescribed set, sayL, of uncertain parameters.

There are two particular cases of this robust stability problem that are of special interest.

1. the parameter vector δ is a fixed but unknown element of a parameter set L ⊆ Rk .

2. the parameter vector δ is a time varying function δ : R→ Rk which belongs to some set L of
functions which map R to Rk . The differential equation (5.2.1) is then to be interpreted in the
sense that dx

dt
(t) = A(δ(t))x(t).

The first case typically appears in models in which the physical parameters are fixed but only ap-
proximately known up to some accuracy. Note that for these parameters (5.2.1) defines a linear
time-invariant system. The second case involves time-varying uncertain parameters. For this case
one can in addition distinguish between the situations where L consists of one element only (known
time varying perturbations) and the situation where L is a higher dimensional set of time functions
(arbitrary time varying perturbations). Robust stability against time-varying perturbations is generally
a more demanding requirement for the system than robust stability against time-invariant parameter
uncertainties. This, because 1 is obviously a special case of 2. We will mainly consider the general
case of time-varying parametric uncertainties in the sequel.

Remark 5.1 We emphasize that in the case of constant uncertain parameters, the system ẋ = A(δ)x

is asymptotically stable if and only if the eigenvalues of A(δ) lie in the open left-half complex plane
for all admissible perturbations. However, such a test for stability does not hold for time varying
systems. In particular, for time-varying perturbations it is not true that the asymptotic stability of
ẋ(t) = A(δ(t))x(t) is equivalent to the condition that the (time-varying) eigenvalues λ(A(δ(t)))
belong to the stability region C− for all admissible perturbations δ(·).

5.2.1 Quadratic stability

A sufficient condition for x∗ = 0 to be an asymptotically stable equilibrium point of (5.2.1) is the
existence of a quadratic Lyapunov function

V (x) = x�Kx

with K = K� > 0 such that

V̇ = dV (x(t))

dt
< 0

along state trajectories x of (5.2.1) that originate in a neighborhood of the equilibrium x∗ = 0.

Definition 5.2 (Quadratic stability) The system (5.2.1) is said to be quadratically stable for per-
turbations L if there exists a matrix K = K� > 0 such that

A(δ(t))�K +KA(δ(t)) < 0
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for all perturbations δ ∈ L.

Interpretation 5.3 If the system (5.2.1) is quadratically stable for perturbations L then V (x) =
x�Kx is a quadratic Lyapunov function for (5.2.1) for all δ ∈ L. See Chapter 3 for details on
Lyapunov functions. By the Lyapunov theorem (Proposition 3.3 in Chapter 3), the existence of
a quadratic Lyapunov function implies that the equilibrium point x∗ = 0 is asymptotically stable.
Quadratic stability for perturbationsL is therefore equivalent to the existence of a quadratic Lyapunov
function V (x) = x�Kx, K > 0 such that

dV (x(t))

dt
= x�[A(δ(t))�K +KA(δ(t))]x < 0

for all δ ∈ L.

Note that in general quadratic stability of the system for an uncertainty class L places an infinite
number of constraints on the symmetric matrixK . It is the purpose of this section to make additional
assumptions on the way the uncertainty enters the system, so as to convert the robust stability problem
into a numerically tractable problem.

5.2.2 Quadratic stability of affine models

Suppose that the state matrix A(δ) is an affine function of the parameter vector δ. That is, suppose
that there exist real matrices A0, . . . Ak all of dimension n× n such that

A(δ(t)) = A0 + δ1(t)A1 + . . .+ δk(t)Ak
for all δ ∈ L. This is referred to as an affine parameter dependent model. Note that these do not
impose restrictions on the rate of changes in the parameters, i.e., arbitrary fast time variations in the
parameters are allowed.

Suppose that the uncertain parameters δj (t), j = 1, . . . , k, t ∈ R assume their values in an interval
[δj , δ̄j ], i.e.,

δj (t) ∈ [δj , δ̄j ].
This means that the uncertainty of each independent parameter is assumed to be bounded between
two extremal values. Define the set of corners of the uncertainty region as

L0 := {δ =
(
δ1, . . . , δk

) | δj ∈ {δj , δ̄j } j = 1, . . . , k} (5.2.2)

and observe that this set consists of a finite number of elements. In particular, we observe that in this
case the uncertainty set L equals the convex hull of L0, that is, L = co(L0).

Proposition 5.4 If (5.2.1) is an affine parameter dependent model where L = co(L0), then it is
quadratically stable if and only if there exists K = K� > 0 such that

A(δ)�K +KA(δ) < 0

for all δ ∈ L0.
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Proof. The proof of this result is an application of Proposition 1.19 in Chapter 1. Indeed, fix x ∈ Rn

and consider the mapping fx : L→ R defined by

fx(δ) := x�[A(δ(t))�K +KA(δ(t))]x.
The domain L of this mapping is a convex set and by definition L = co(L0). Further, since A(δ) is
an affine function of δ it follows that fx(δ) is a convex function of δ. In particular, Proposition 1.19
(Chapter 3) yields that fx(δ) < 0 for all δ ∈ L if and only if fx(δ) < 0 for all δ ∈ L0. Since x is
arbitrary it follows that

A(δ(t))�K +KA(δ(t)) < 0, δ ∈ L
if and only if

A(δ(t))�K +KA(δ(t)) < 0, δ ∈ L0

which yields the result.

Obviously, the importance of this result lies in the fact that quadratic stability can be concluded from
a finite test of matrix inequalities whenever L0 consists of a finite number of elements. In that case,
the condition stated in Proposition 5.4 is a feasibility test of a (finite) system of LMI’s.

5.2.3 Quadratic stability of polytopic models

A second case of interest amounts to considering uncertainty defined by convex combinations of the
form

A(δ(t)) = α1(t)A1 + αk(t)Ak (5.2.3)

where αj (t) ≥ 0 and
∑k

j=1 αj (t) = 1 for all t ∈ R. Here, A1, . . . , Ak are fixed real matrices of
dimension n × n and the αj are to be interpreted as coefficients of a convex decomposition of the
uncertain time-varying matrix A(δ(t)) over the set of vertices (A1, . . . , Ak), that is for all δ ∈ L and
t ∈ R we assume the existence of (time-varying) coefficients αj (t) ≥ 0 with

∑k
j=1 αj (t) = 1 such

that (5.2.3) holds. We refer to such a model as a polytopic model. The state evolution matrix of a
polytopic model is therefore equivalently specified as

A(δ(t)) ∈ co(A1, . . . , Ak)

for all time-varying perturbations δ ∈ L. In particular, these polytopic models do not impose restric-
tions on the rate of changes in the parameters, i.e., arbitrarily fast time variations in the parameters are
allowed. The main result concerning quadratic stabilization of a class of uncertain polytopic models
is as follows.

Proposition 5.5 If (5.2.1) is a polytopic parameter dependent model whereA(δ(t)) ∈ co(A1, . . . , Ak)

for all δ ∈ L then it is quadratically stable if and only if there exists K > 0 such that

A�j K +KAj < 0

for all j = 1, . . . , k.
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Instead of proving Proposition 5.5 it is more useful to understand the relation between Proposition 5.4
and Proposition 5.5. In fact, the class of affine models as introduced in the previous subsection can
be converted to a class of polytopic models. To see this, suppose that the map A : L→ Rn×n with

L := {(δ1, . . . , δk
) | δj ∈ [δj , δ̄j ], j = 1, . . . , k} (5.2.4)

is affine. Let L0 be the set of corners as defined in (5.2.2). Then L0 has 2k elements and since
L = co(L0) we have

A(co(L0)) = A(L) = {A(δ) | δ ∈ L} = co{A(δ) | δ ∈ L0} = co(A(L0)).

The ‘corner elements’ δ ∈ L0 in the parameter space are mapped by A onto a set of vertices A(δ),
δ ∈ L0 of a polytopic model. In other words, the affine model ẋ = A(δ)x with δ ∈ L = co(L0) can
equivalently be viewed as a polytopic model where A(δ) ∈ co(A(L0)).

5.3 Parameter dependent Lyapunov functions

The main disadvantage in searching for one quadratic Lyapunov function for a class of uncertain
models is the conservatism of the test to prove stability of a class of models. Indeed, the test of
quadratic stability does not discriminate between systems that have slow time-varying parameters
and systems whose dynamical characteristics quickly vary in time. To reduce conservatism of the
quadratic stability test we will consider quadratic Lyapunov functions for the system (5.2.1) which
are parameter dependent, i.e., Lyapunov functions V : X ×L→ R of the form

V (x, δ) := x�K(δ)x

where the Lyapunov matrix K(δ) is allowed to dependent on the uncertain parameter δ. More
specifically, we will be interested in Lyapunov functions that are affine in the parameter δ, i.e.,

K(δ) = K0 + δ1K1 + . . .+ δkKk

where K0, . . . , Kk are real matrices of dimension n× n and δ = col(δ1, . . . , δk). Clearly, with

K1 = K2 = . . . = Kk = 0

we are back to the case of parameter independent quadratic Lyapunov functions as discussed in the
previous section.

Definition 5.6 (Affine quadratic stability) The system (5.2.1) is called affinely quadratically stable
if there exists matrices K0, . . . , Kk such that

K(δ) := K0 + δ1K1 + . . . δkKk > 0 (5.3.1a)

A(δ)�K(δ)+K(δ)A(δ)+ dK(δ)

dt
< 0 (5.3.1b)

for all δ ∈ L.
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Interpretation 5.7 The affine function K(δ) which satisfies (5.3.1) for all δ ∈ L defines a quadratic
Lyapunov function

V (x, δ) = x�K(δ)x

for the system (5.2.1). Indeed, from (5.3.1) we infer that V (x, δ) > 0 for all x �= 0 and

dV (x(t))

dt
= x�

(
A(δ)�K(δ)+K(δ)A(δ)dK(δ)

dt

)
x < 0

for all non-zero x so that the equilibrium point x∗ = 0 is (globally) asymptotically stable if the
conditions (5.3.1) are satisfied.

Remark 5.8 As in the previous section, we emphasize that the conditions (5.3.1) impose in general
an infinite number of constraints on the matrices K0, . . . , Kk .

Given a system (5.2.1) with a setL of uncertain parameters the affine quadratic stabilization problem
therefore amounts to finding matrices K0, . . . Kk such that the conditions (5.3.1) are satisfied. In
solving this problem we will distinguish between the two cases of time-invariant and time-varying
uncertainty descriptions as introduced in section 5.2.

5.3.1 Time-invariant uncertainties

If the uncertainty set L ⊂ Rk contains constant uncertain parameters then obviously the Lyapunov
matrix K(δ) does not vary in time, so that for any δ ∈ L we have that

dK(δ)

dt
= 0

in (5.3.1b). We can therefore guarantee affine quadratic stability of the system ẋ = A(δ)x with δ ∈ L
if we can find matrices K0, . . . , Kk such that (5.3.1a) and

A(δ)�K(δ)+K(δ)A(δ) < 0

hold for all δ ∈ L. Let the uncertainty set L again be a convex set as defined in (5.2.4) and let L0 be
the corresponding set of vertices as defined in (5.2.2). Note that the expression

L(δ) := A(δ)�K(δ)+K(δ)A(δ)
is in general not affine in δ not even whenA is an affine mapping. As a consequence, for fixed x ∈ Rn,
the function fx : L→ R defined by

fx(δ) := x�L(δ)x (5.3.2)

is in general not convex so that the negativity of the function fx atL is not equivalent to its negativity
at the vertices L0 of L.
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To achieve that fx is a convex function (for any x ∈ Rn) we will impose additional constraints.
Suppose that both the system matrix A(δ) and the Lyapunov matrix K(δ) are affine in δ. Expanding
L(δ) then yields

L(δ) = [A0 +
k∑

j=1

δjAj ]�[K0 +
k∑

j=1

δjKj ] + [K0 +
k∑

j=1

δjKj ][A0 +
k∑

j=1

δjAj ]

= A�0 K0 +K0A0 +
k∑

j=1

δj [A�j K0 +K0Aj + A�0 Kj +KjA0]

+
k∑

j=1

j−1∑
i=1

δiδj [A�i Kj +KjAi + A�j Ki +KiAj ] +
k∑

j=1

δ2
j [A�j Kj +KjAj ].

Now, let x ∈ Rn be fixed and consider the function fx as defined in (5.3.2). Then for any δ ∈ L this
function takes the form

fx(δ) = c0 +
k∑

j=1

δj cj +
k∑

j=1

j−1∑
i=1

δiδj cij +
k∑

j=1

δ2
j dj

where c0, cj , cij and dj are constants. A sufficient condition for the implication

{fx(δ) < 0 for all δ ∈ L0} ⇒ {fx(δ) < 0 for all δ ∈ L}
is that fx(δ1, . . . , δj , . . . , δk) is convex in each of its arguments δj , j = 1, . . . , k. This is the case
when

dj = ∂2fx

∂δ2
j

(δ) = x�[A�j Kj +KjAj ]x ≥ 0

for j = 1, . . . , k. Since x is arbitrary, we obtain that

A�j Kj +KjAj ≥ 0, j = 1, . . . , k

is a sufficient condition to infer the negativity of fx over the uncertainty set L from the negativity of
fx at the vertices L0 of L. This leads to the following main result.

Proposition 5.9 If (5.2.1) is an affine parameter dependent model and L ⊂ Rk is the uncertainty
set defined in (5.2.4) then the system ẋ = A(δ)x, δ ∈ L is affinely quadratically stable if there exist
real matrices K0, . . . , Kk such that

A(δ)�K(δ)+K(δ)A(δ) < 0 for all δ ∈ L0 (5.3.3a)

K(δ) > 0 for all δ ∈ L0 (5.3.3b)

A�j Kj +KjAj ≥ 0 for j = 1, . . . , k (5.3.3c)

Here, A(δ) = A0 +∑k
j=1 δjAj and K(δ) = K0 +∑k

j=1 δjKj . Moreover, in that case V (x, δ) :=
x�K(δ)x is a quadratic parameter-dependent Lyapunov function of the system.
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Proof. It suffices to prove that (5.3.3) implies (5.3.1) for all δ ∈ L. Let x be a non-zero fixed but
arbitrary element of Rn. Since K(δ) is affine in δ, the mapping

δ→ x�K(δ)x

with δ ∈ L is convex. Consequently, x�[K(δ)−I ]x is larger than zero for all δ ∈ L if it is larger than
zero for all δ ∈ L0. As x is arbitrary, this yields that (5.3.1a) holds for all δ ∈ L whenever (5.3.3b)
holds. Since for time-invariant perturbations dK(δ)/dt = 0 it now suffices to prove that (5.3.3a)
and (5.3.3c) imply that (5.3.1b) holds for all δ ∈ L. This however, we showed in the arguments
preceding the proposition.

Interpretation 5.10 Proposition 5.9 reduces the problem to verify affine quadratic stability of the
system (5.2.1) to a feasibility problem of a (finite) set of linear matrix inequalities. The latter problem
is a numerically tractable one and is readily implemented in the LMI toolbox.

5.3.2 Time varying uncertainties

We conclude this section with a result on robust stability of the system (5.2.1) for time-varying
parameters. Let the uncertainty set L be defined as

L := {
(δ1, . . . , δk) | where for j = 1 . . . , k : δj : R→ R is differentiable and for all t ∈ R,

δj (t) ∈ [δj , δ̄j ], and δ̇j (t) ∈ [λj , λ̄j ]
}
. (5.3.4)

This means that we assume the uncertain parameters to have bounded variation and bounded rate of
variation. We further introduce the vertex sets

L0 :=
{
(δ1, . . . , δk) | δj ∈ {δj , δ̄j }

}
P0 :=

{
(λ1, . . . , λk) | λj ∈ {λj , λ̄j }

}
.

ThusL0 represents the vertices of the convex hull in which the uncertain parameters take their values,
whereas P0 is a set of vertices whose convex hull represents the admissible rates of variation of the
parameters.

Remark 5.11 There are two extreme cases of uncertainty sets (5.3.4) worth mentioning. Firstly, if
the rate of variation of the uncertain parameter δj is set to zero, δj represents a constant, time-invariant
perturbation as treated in the previous section. If all perturbations are known to be time-invariant
then λj = λ̄j = 0 for j = 1, . . . , k in which case P0 becomes a singleton. Secondly, arbitrarily fast
perturbations of δj are obtained by putting λj = −∞ and λ̄j = ∞.

] The reason for considering this type of uncertainty sets lies in the fact that the last term in the
left-hand side of (5.3.1b) can be evaluated exactly whenever the Lyapunov matrix K(δ) is affine in
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δ. Specifically, if K(δ) is affine in δ we infer that

dK(δ)

dt
= δ̇1K1 + . . .+ δ̇kKk = K(δ̇)−K0

which is an affine function in δ̇. The main result is now as follows.

Proposition 5.12 If (5.2.1) is an affine parameter dependent model and L is the uncertainty set as
defined in (5.3.4) then the system ẋ = A(δ)x, δ ∈ L is affinely quadratically stable if there exist real
symmetric matrices K0, . . . , Kk such that

A(δ)�K(δ)+K(δ)A(δ)+K(λ) < K0 for all δ ∈ L0 and λ ∈ P0 (5.3.5a)

K(δ) > I for all δ ∈ L0 (5.3.5b)

A�i Ki +KiAi ≥ 0 for i = 1, . . . , k (5.3.5c)

Here, A(δ) = A0 +∑k
j=1 δjAj and K(δ) = K0 +∑k

j=1 δjKj . Moreover, in that case V (x, δ) :=
x�K(δ)x is a quadratic parameter-dependent Lyapunov function of the system.

Proof. The proof of this proposition is basically a generalization of the proof of Proposition 5.9 to
the time-varying case. First fix λ ∈ Rk . Then a similar argument as in the proof of Proposition 5.9
yields that (5.3.5) implies

K(δ) > 0

A(δ)�K(δ)+K(δ)A(δ)+K(λ)−K0 < 0

for all δ ∈ L. Since K(λ) is affine in λ and this last inequality holds for any λ ∈ P0 we conclude
from the definition of L that (5.3.5) implies

K(δ) > 0

A(δ)�K(δ)+K(δ)A(δ)+K(δ̇)−K0 < 0

for all δ ∈ L. Now use that K(δ̇) − K0 = dK(δ)/dt to conclude that (5.3.1) holds for all δ ∈ L
which implies the affine quadratic stability of the system.

Interpretation 5.13 Proposition 5.12 reduces the problem to verify affine quadratic stability of the
system ẋ(t) = A(δ(t))x(t) with time-varying perturbations (5.3.4) to a feasibility test of a finite set
of LMI’s.

Remark 5.14 It is interesting to compare the numerical complexity of the conditions of Proposi-
tion 5.9 with the conditions mentioned in Proposition 5.12. If the uncertainty vector δ is k-dimensional
then the vertex set L0 has dimension 2k so that the verification of conditions (5.3.3) requires a feasi-
bility test of

2k + 2k + k
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linear matrix inequalities. In this case, also the vertex set P0 has dimension 2k which implies that
(5.3.5) requires a feasibility test of

22k + 2k + k = 4k + 2k + k

linear matrix inequalities.

5.3.3 Some software aspects

In Matlab both affine and polytopic models are implemented with the routine psys. With k = 2
the syntax is

• affmodel = psys( pv, [S0, S1, S2] ) for the specification of affine models and

• polmodel = psys( [S1, S2] ) for the specification of polytopic models.

Here, pv is a parameter vector which is supposed to be specified by the routine pvec, i.e.,

pv = pvec(’box’, [d1min d1max; d2min d2max]);

implements the ranges of the uncertain parameters. S0, S1 and S2 are system matrices which are
supposed to be defined by expressions of the form

S0 = ltisys(A0, B0, C0, D0, E0);
S1 = ltisys(A1, B1, C1, D1, E1);
S2 = ltisys(A2, B2, C2, D2, E2);

where (Aj , Bj , Cj ,Dj ,Ej ) define the state space parameters of the model1

Ej ẋ = Ajx + Bjw; z = Cjx +Djw. (5.3.6)

Remark 5.15 The presence of the E matrix in the system representations of the LMI toolbox can be
pretty disturbing. In particular, an affine combination of models of the form (5.3.6) with j = 0, . . . , k
results in a model

Eẋ = Ax + Bw; z = Cx +Dw
1The matrixEj in the state space descriptions facilitates the handling of descriptor systems in the LMI toolbox. By default

the E-entries are put to the identity matrix if you omit the last argument.
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where

E = E0 +
k∑

j=1

δjEj ;

A = A0 +
k∑

j=1

δjAj ; B = B0 +
k∑

j=1

δjBj

C = C0 +
k∑

j=1

δjCj ; D = D0 +
k∑

j=1

δjDj .

IfE is supposed to be independent of parameter variations then you need to explicitly setE1 = . . . =
Ek = 0.

Information concerning the implemented models and parameter vectors can be retrieved via the
routines psinfo and pvinfo, respectively. The routine

aff2pol

converts affine models to polytopic ones. The routine

pdsimul

simulates time responses of polytopic models and the routine

quadstab

tests the quadratic stability of the affine or polytopic models. With model denoting either the affine
system affmodel or the polytopic system polmodel, the syntax is

• quadstab(model) to verify the quadratic stability of model

• [t,K] = quadstab(model) to calculate a quadratic Lyapunov function V (x) = x�Kx
for the class of models specified in model.

Parameter dependent Lyapunov functions can be calculated with the procedure pdlstab. For k = 2
the syntax is

[t,Q0,Q1,Q2]=pdlstab(affmodel)
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where affmodel is as an affine model as specified above. This results in the parameter dependent
function

Q(δ) := Q0 + δ1Q1 + δ2Q2

which defines the Lyapunov function

V (x, δ) := x�Q(δ)−1x

for the uncertain system affmodel. Note that the LMI toolbox therefore computes the inverses of
our Lyapunov function K(δ). For more details on the software we refer to the corresponding help
files in the LMI toolbox.

5.4 Exercises

Exercise 1

Give a proof of Proposition 5.5.

Exercise 2

Time-invariant perturbations and arbitrary fast perturbations can be viewed as two extreme cases of
time-varying uncertainty sets of the type (5.3.4). (See Remark 5.11). These two extreme manifesta-
tions of time-varying perturbations reduce Proposition 5.12 to two special cases.

1. Show that the result of Proposition 5.9 is obtained as a special case of Proposition 5.12 if

λj = λ̄j = 0; j = 1, . . . , k.

2. Show that if

λj = −∞, λ̄j = ∞; j = 1, . . . , k.

then the matrices K0, . . . , Kk satisfying the conditions of Proposition 5.12 necessarily satisfy
K1 = . . . = Kk = 0.

The latter property implies that with arbitrary fast perturbations the only affine parameter-dependent
Lyapunov matrices K(δ) = K0 +∑k

j=1 δjKj are the constant (parameter-independent) ones. It is
in this sense that Propostion 5.12 reduces to Proposition 5.4 for arbitrarily fast perturbations.
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Exercise 3

Reconsider the suspension system of Exercise 3 in Chapter 4. Suppose that the road profile q0 = 0
and the active suspension force F = 0. Let k̄ = 50000 and b̄ = 5000. The suspension damping is a
time-varying uncertain quantity with

b2(t) ∈ [50× 103 − b̄, 50× 103 + b̄], t ≥ 0 (5.4.1)

and the suspension stiffness is a time-varying uncertainty parameter with

k2(t) ∈ [500× 103 − k̄, 500× 103 + k̄], t ≥ 0. (5.4.2)

Let

δ =
(
b2
k2

)
be the vector containing the uncertain physical parameters.

1. Let x = col(q1, q2, q̇1, q̇2) denote the state of this system and write this system in the form
(5.2.1). Verify whether A(δ) is affine in the uncertainty parameter δ.

2. Use Proposition 5.4 to verify whether this system is quadratically stable. If so, give a quadratic
Lyapunov function for this system.

3. Calculate vertex matrices A1, . . . , Ak such that

A(δ) ∈ co(A1, . . . , Ak)

for all δ satisfying the specifications.

4. Suppose that b2 and k2 are time-varying and that their rates of variation satisfy

|ḃ2| ≤ β (5.4.3a)

|k̇2| ≤ κ (5.4.3b)

where β = 1 and κ = 3.7. Use Proposition 5.12 to verify whether there exists a parameter
dependent Lyapunov function that proves affine quadratic stability of the uncertain system. If
so, give such a Lyapunov function.

Exercise 4

In Exercise 5 of Chapter 3 we considered the batch chemical reactor where the series reaction

A
k1−−−−→ B

k2−−−−→ C

takes place. k1 and k2 are the kinetic rate constants of the conversions from product A to B and from
product B to product C, respectively. We will be interested in the concentration CB of product B.
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5.4. EXERCISES

1. Show thatCB satisfies the differential equation C̈B+ (k1+k2)ĊB+k1k2CB = 0 and represent
this system in state space form with state x = col(CA,CB).

2. Show that the state space system is of the form (5.2.1) where A is an affine function of the
kinetic rate constants.

3. Verify whether this system is quadratically stable in view of jointly uncertain kinetic constants
k1 and k2 in the range [.1, 1]. If so, calculate a Lyapunov function for the uncertain system.

4. At time t = 0 the reactor is injected with an initial concentration CA0 = 10 (mol/liter) of
reactant A while the concentrations CB(0) = CC(0) = 0. Plot the time evolution of the
concentration CB of reactant B if

k1(t) = 1− 0.9 exp(−t); k2(t) = 0.1+ 0.9 exp(−t)
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Chapter 6

Analysis of input-output behavior

6.1 Basic notions

The main concern in control theory is to study how signals are processed by dynamical systems and
how this processing can be influenced to achieve a certain desired behavior.

For that purpose one has to specify the signals (time series, trajectories) which are of interest. This
is done by deciding on the set of values which the signals can take (such as Rn) and on the time set
on which they are considered (such as the full time axis R, the half axis [0,∞) or the corresponding
discrete time versions Z and N).

A dynamical system is then nothing but a mapping that assigns to a certain input signal an output
signal. Very often, such a mapping is defined by a differential equation with a fixed initial condition
or by an integral equation, such that one considers systems or mappings with a specific description
or representation.

The first purpose of this section is to discuss stability properties of systems in the general setting. In
a second step we specify the system representations and investigate in how far one can obtain refined
results which are amenable to computational techniques.

Note that we take a specialized point of view by considering a system as a mapping of signals. It
is not very difficult to extend our results to a more general setting by viewing a system as a subset
of signals or, in the modern language, as a behavior. Note that this point of view has been adopted
also in the older literature on input-output stability where systems are relations instead of mappings.
Obviously, if there is no clear cause-effect between signals, this latter viewpoint is more appropriate.

To be concrete let us now specify the signal class. We denote by Ln the set of all mappings x :
[0,∞)→ Rn that are Lebesgue-measurable. Without bothering too much about the exact definition,

121



6.1. BASIC NOTIONS

one should recall that all piece-wise continuous signals are contained in Ln.

For any x ∈ Ln one can calculate the integral in

‖x‖2 := 2

√∫ ∞
0
‖x(t)‖2 dt

of the signal x; ‖x‖2 is either finite or infinite. If we collect all signals with a finite value, we arrive
at the space

Ln2 := {x ∈ Ln : ‖x‖2 <∞}.
It can be shown that Ln2 is a linear space, that ‖.‖2 is a norm on Ln2, and that Ln2 is complete.
Mathematically, Ln2 is a Banach space. ‖x‖2 is often called the energy of the signal x.

Remark. If the number of components n of the underlying signals is understood from the context or
irrelevant, we simply write L2 instead of Ln2.

There is an additional structure. Indeed, define the bilinear form

〈x, y〉 =
∫ ∞

0
x(t)T y(t) dt

on Ln2 × Ln2. Bilinearity just means that 〈., y〉 is linear for each y ∈ Ln2 and 〈x, .〉 is linear for each
x ∈ Ln2. It is not difficult to see that 〈., .〉 defines an inner product. Moreover, the norm on Ln2 results
from this inner product as ‖x‖22 = 〈x, x〉. Therefore, Ln2 is in fact a Hilbert space.

For any x ∈ Ln2 one can calculate the Fourier transform x̂ which is a function mapping the imaginary
axis C0 into Cn such that ∫ ∞

−∞
x̂(iω)∗x̂(iω) dω is finite.

Indeed, a fundamental results in the theory of the Fourier transformation on L2-spaces, the so-called
Parseval theorem, states that∫ ∞

0
x(t)T y(t) dt = 1

2π

∫ ∞
−∞

x̂(iω)∗ŷ(iω) dω.

(Note that the Fourier transform x̂ has, in fact, a unique continuation into C0∪C+ that is analytic in C+.
Hence, x̂ is not just an element ofL2(C

0,Cn) but even of the subspaceH2(C
+,Cn), one of the Hardy

spaces. Indeed, one has L2(C
0,Cn) = H2(C

−,Cn) + H2(C
+,Cn), the sum on the right is direct,

and the two spaces are orthogonal to each other. This corresponds via the Payley-Wiener theorem to
the orthogonal direct sum decomposition L2(R,C

n) = L2((−∞, 0],Cn) + L2([0,∞),Cn). This
is only mentioned for clarification and not required later. The beautiful mathematical background is
excellently exposed in [29].)

Stability of systems will be, roughly speaking, related to the property that it maps any signal in L2
into a signal that is also contained inL2. Since we also need to deal with unstable systems, we cannot
confine ourselves to signals with finite L2-norm. Hence we introduce a larger class of signals that
have finite energy over finite intervals only.
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For that purpose it is convenient to introduce for each T ≥ 0 the so-called truncation operator PT :
It assigns to any signal x ∈ Ln the signal PT x that is identical to x on [0, T ] and that vanishes
identically on (T ,∞):

PT : Ln→ Ln, (PT x)(t) :=
{
x(t) for t ∈ [0, T ]

0 for t ∈ (T ,∞)
Note that Ln is a linear space and that PT is a linear operator on that space with the property
PT PT = PT . Hence PT is a projection.

Now it is easy to define the space Ln2e. It just consists of all signals x ∈ Ln such that PT x has finite
energy for all T ≥ 0:

Ln2e := {x ∈ Ln : PT x ∈ Ln2 for all T ≥ 0}.
Hence any x ∈ Ln2e has the property that

‖PT x‖2 =
∫ T

0
‖x(t)‖2 dt

is finite for every T . (This is nothing but an integrability condition.) Note that ‖PT x‖2 does not
decrease if T increases. Therefore, ‖PT x‖2 viewed as a function of T either stays bounded for
T → ∞, such that it converges, or it is unbounded, such that it diverges to ∞. We conclude for
x ∈ L2e: ‖PT x‖2 is bounded (i.e. there exists a K such that ‖PT x‖2 ≤ K for all T ≥ 0) iff x is
contained in L2. Moreover,

x ∈ Ln2 implies ‖x‖2 = lim
T→∞‖PT x‖2.

A dynamical system S is a mapping
S : Lk2e → Ll2e.

The system S is causal if

PT S(u) = PT S(PT u) for all T ≥ 0, u ∈ Lk2e.
It is easily seen that PT S = PT SPT is equivalent to the following more intuitive fact: If u1 and u2
are two input signals that are identical on [0, T ], PT u1 = PT u2, then Su1 and Su2 are also identical
on [0, T ], PT S(u1) = PT S(u2). In other words, the future values of the inputs do not have an effect
on the past outputs. This matches the intuitive notion of causality.

Our main interest in this abstract setting is to characterize invertibility and stability of a system.
Among the many possibilities to define stability of a system, two concepts have turned out to be of
prominent importance: the finite gain and finite incremental gain property of a system.

Definition 6.1 The L2-gain of the system S : Lk2e → Ll2e is defined as

‖S‖2 := sup{‖PT S(u)‖2‖PT u‖2 | u ∈ Lk2e, T ≥ 0, ‖PT u‖2 �= 0} =
= inf{γ ∈ R | ∀u ∈ Lk2e, T ≥ 0 : ‖PT S(u)‖2 ≤ γ ‖PT u‖2}.
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If ‖S‖2 <∞, S is said to have finite L2-gain.

(Why does the equality in the definition of ‖S‖2 hold?) Clearly, S has finite L2-gain iff there exists
a real γ > 0 such that

‖PT S(u)‖2 ≤ γ ‖PT u‖2 for all T ≥ 0, u ∈ Lk2e. (6.1.1)

If S has finite L2-gain, we conclude

‖S(u)‖2 ≤ γ ‖u‖2 for all u ∈ Lk2. (6.1.2)

Hence, if the input has finite energy, then the output has finite energy and the output energy is bounded
by a constant times the input energy. If S is causal, the converse is true: then (6.1.2) implies (6.1.1).
Indeed, causality implies ‖PT S(u)‖2 = ‖PT S(PT u)‖2 ≤ ‖S(PT u)‖2 and (6.1.2) shows (since PT u
is in Lk2) that ‖S(PT u)‖2 ≤ γ ‖PT u‖2. Combining both inequalities gives (6.1.1).

If S is causal, we hence infer

‖S‖2 = sup
u∈L2, ‖u‖2>0

‖S(u)‖2
‖u‖2 .

The L2-gain of S is the worst amplification of the system if measuring the size of the input- and
output-signals by their L2-norm.

For nonlinear systems it is often more relevant to investigate how the increment S(u1)−S(u2) relates
to the increment of the input signals u1 − u2. Indeed, one wishes to have the outputs close to each
other if the inputs are close what amounts to a certain continuity property. We arrive at the notion of
incremental L2-gain.

Definition 6.2 The incremental L2-gain of the system S : Lk2e → Ll2e is defined as

‖S‖2i := sup{‖PT S(u1)− PT S(u2)‖2
‖PT u1 − PT u2‖2 | u1, u2 ∈ Lk2e, T ≥ 0, ‖PT u1 − PT u2‖2 �= 0} =

= inf{γ ∈ R | ∀u1, u2 ∈ Lk2e, T ≥ 0 : ‖PT S(u1)− PT S(u2)‖2 ≤ γ ‖PT u1 − PT u2‖2}.
If ‖S‖2i <∞, S is said to have finite incremental L2-gain.

Similarly as before, the system S has finite incremental L2-gain if there exists a real γ > 0 such that

‖PT S(u1)− PT S(u2)‖2 ≤ γ ‖PT u1 − PT u2‖2 for all T ≥ 0, u1, u2 ∈ Lk2e. (6.1.3)

This reveals
‖S(u1)− S(u2)‖2 ≤ γ ‖u1 − u2‖2 for all u1, u2 ∈ Lk2. (6.1.4)

If S is causal, (6.1.4) implies (6.1.3). Moreover, for causal S, we have

‖S‖2i = sup
u1,u2∈L2, ‖u1−u2‖2>0

‖S(u1)− S(u2)‖2
‖u1 − u2‖2 .
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If S is linear, it is obvious that

‖S‖2 = ‖S‖2i

and, hence, S has finite L2-gain iff it has finite incremental L2-gain. Only for nonlinear systems, the
two notions are different. Even for nonlinear S, on can related both concepts if S(0) = 0; then one
has

‖S‖2 ≤ ‖S‖2i;

hence S has finite L2-gain if it has finite incremental L2-gain. The converse is, in general, not true.
(Construct an example!)

In the remainder, stability of S will be mostly related to the property that S has finite L2-gain or finite
incremental L2-gain.

All these concepts can be extended in literally the same fashion to all Lp-spaces for 1 ≤ p ≤ ∞. Let
us briefly comment on p = ∞ since it will emerge later. The space Ln∞ is constructed on the basis of

‖x‖∞ = ess supt≥0 ‖x(t)‖ for x ∈ Ln.

(We don’t discuss the exact definition of the essential supremum. For piece-wise continuous and
right-continuous signals x ∈ Ln, the essential supremum is nothing but supt≥0 ‖x(t)‖.) Contrary to
what is often done in the literature, we use the Euclidean norm ‖x(t)‖2 = x(t)T x(t) to measure the
size of the real vector x(t) ∈ Rn. Now Ln∞ is defined as

Ln∞ := {x ∈ Ln | ‖x‖∞ <∞.}

It is well-known that Ln∞ with the norm ‖.‖∞ defines a Banach space. The space Ln∞e and the
L∞-gain or incremental L∞-gain ‖S‖∞ or ‖S‖∞i for a system S : Lk∞e → Ll∞e are defined literally
as before, and similar properties hold true.

Let us mention a few modifications or generalizations in various respects. As said before, the extension
to all Lp-spaces for 1 ≤ p ≤ ∞ is straightforward. The time-axis can be chosen as all nonnegative
integers to discuss discrete-time systems. A mixture of continuous- and discrete-time allows to
consider hybrid systems or systems with jumps. Finally, the set on which the signals take their values
can be an arbitrary normed space; this allows to discuss infinite dimensional systems.

In addition, the stability concept used here is one out of a multitude of possibilities. Often, it is only
required that S mapsL2 intoL2 without necessarily having a finiteL2-gain. Indeed, the theory can be
extended to general designer chosen stability properties that only obey certain (technical) axiomatic
hypotheses. We just include these remarks to stress that we somehow artificially confine ourselves
to pretty specific cases for reasons of space.
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Figure 6.1: Uncertainty feedback configuration

6.2 Robust input-output stability

6.2.1 A specific feedback interconnection

In robust control, one encounters systems that are affected by uncertainties (parametric variations,
unmodeled dynamics). In order to study the effects of uncertainties, one has to start with a structure
that captures how variations in the uncertainties affect the system to be investigated. Although one
could think of a broad range of such structures, the technique of ‘pulling out the uncertainties’ allows
to reduce many of these variants to one common setup that is represented in Figure 6.1.

Here,M is viewed as the nominal model andL captures the (varying) uncertainties. Both the nominal
system and the uncertainty are interconnected via feedback. M is usually viewed as a fixed system,
whereas L is allowed to vary in a certain class �.

Typical examples include the case of linear time-invariant systems that are affected by additive or
multiplicative uncertainties. If looking at a large interconnection of such small uncertain components,
one arrives at structured uncertainties as they are considered in µ-theory. The set � should hence
be seen as capturing both the nature of the uncertainty (linear/nonlinear, time-invariant/time-varying,
static/dynamic), their size (bounds on norm, gain or incremental gain) and their structure (block-
diagonal, full-block). We will not repeat how to pull out the uncertainties in specific feedback
interconnections what should have been presented in a basic course on robust control.

Having specified M and the class �, one of the central tasks is to characterize whether the feedback
interconnection of the stable systems M and L remains stable for all L ∈ �. Let us now be more
specific by introducing the mathematical setup.

Here are the standing hypotheses.
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6.2. ROBUST INPUT-OUTPUT STABILITY

Assumption 6.3 The mapping

M : Lk2e → Ll2e is causal, of finite L2-gain, and linear.

The uncertainty set � is a set of systems

L : Ll2e → Lk2e that are causal and of finite L2-gain.

Moreover, it is star-shaped with star center 0:

L ∈ � =⇒ τL ∈ � for all τ ∈ [0, 1].

Note that the third property implies 0 ∈ �; this is consistent with viewing L as an uncertainty where
L = 0 is related to the unperturbed or nominal system. Recall that τ → τL just defines a line in
the set of all causal and stable systems connecting 0 with L what justifies the terminology that � is
star-shaped with center 0.

Let us finally stress that linearity of M is not crucial at all for the results to follow; they can be easily
extended with minor variations to nonlinear systems M .

For any L ∈ �, we investigate the feedback interconnection in Figure 6.1 that is defined by the
relations (

I −L
M −I

)(
w

z

)
:=

(
w

Mw

)
−
(
L(z)

z

)
=
(
w0
z0

)
. (6.2.1)

Here, the signals

(
w0
z0

)
are viewed as external inputs or disturbances, and

(
w

z

)
constitutes the

response of the interconnection.

A first important property of the feedback interconnection is well-posedness: Does there exists for
each w0, z0 a unique response w, z satisfying (6.2.1) such that the mapping(

w0
z0

)
→

(
w

z

)
(6.2.2)

is causal?

Secondly, one is interested in the stability of the feedback interconnection: If the interconnection
is well-posed, does the mapping (6.2.2) have finite L2-gain or finite incremental L2-gain? If the
interconnection is stable for all L ∈ �, it is said to be robustly stable.

Thirdly, one might look at uniform robust stability: The interconnection is well-posed and robustly
stable, and the L2-gain or the incremental L2-gain of the mapping (6.2.2) is bounded by a constant
for all L ∈ �. (The latter property just means that the (incremental) L2-gain is uniformly bounded
in L ∈ �.)

It simplifies notations if we introduce the abbreviations

Xe = Lk+l2e , X = Lk+l2 , IM(L) :=
(
I −L
M −I

)
.
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Consequently, any signal x ∈ Xe is partitioned as x =
(
w

z

)
and we note that the system IM(L)

captures both the subsystems M and L and the specific interconnection structure that we are con-
sidering. (M and L are asymmetrically entering the notation IM(L) in order to stress the fact M is
fixed whereas L is allowed to vary in �.)

Recall that the loop is required to have a a unique response x to any external input x0: For each
x0 ∈ Xe there exists a unique x ∈ Xe with IM(L)(x) = x0. Mathematically, this simply amounts to
the mapping IM(L) : Xe → Xe having an inverse IM(L)

−1. If this inverse is, in addition, causal,
IM(L) is said to be well-posed.

Definition 6.4 IM(L) : Xe → Xe is well-posed if it has a causal inverse.

Well-posedness can be often assured by standard results about the existence of solutions of differential
equations. However, we will also provide simple explicit conditions on M and � that imply well-
posedness.

If we impose a certain stability property on M and L, the composed system IM(L) shares this
stability property, whereas this is usually not true for the inverse IM(L)

−1. In stability theory, it
is hence of fundamental interest to find additional conditions to guarantee that this inverse indeed
shares its stability properties with M , L, and IM(L).

In these notes we obtain sufficient conditions for the following facts:

• Under the hypothesis that IM(L)
−1 exists and is causal, we characterize that there exists a c

with ‖IM(L)−1‖ ≤ c for all L ∈ �; in particular, any IM(L)
−1 then has finite L2-gain.

• If all systems in � have finite incremental L2-gain, we characterize that IM(L) does have a
causal inverse and that there exists a c with ‖IM(L)−1‖2i ≤ c for all L ∈ �; in particular,
any IM(L)

−1 has a finite incremental L2-gain.

It is important to observe the difference in these two characterizations: In the first scenario one has
to assume that the interconnection is well-posed, whereas in the second situation one can conclude
this property.

Our main goal is to summarize many of the results that are available in the literature in two basic
theorems that are related to the two differing hypotheses and conclusions sketched above. Let us first
turn to a very simple auxiliary observation that simplifies the proofs.

6.2.2 An elementary auxiliary result

Suppose W and Z are arbitrary subset of the normed space X. Our goal is to characterize that

‖w‖2 + ‖z‖2
‖w − z‖2

128



6.2. ROBUST INPUT-OUTPUT STABILITY

remains bounded for all w ∈ W , z ∈ Z such that w �= z. This implies that W and Z can have at
most the vector 0 in common, and that the squared distance of any two vectors is at least as large as
a constant times the sum of the squared norms of these vectors. If W and Z are subspaces, there are
very close relations to the gap or angle of these subspaces.

The desired characterization is provided in terms of a mapping ? : X → R that is quadratically
continuous [24].

Definition 6.5 ? : X→ R is quadratically continuous if for every δ > 0 there exists a σδ > 0 with

|?(x1)−?(x2)| ≤ σδ‖x1 − x2‖2 + δ‖x2‖2 for all x1, x2 ∈ X.

As a typical important example, let 〈., .〉 : X×X→ R be any biadditive form that is bounded: there
exists a σ > 0 such that

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉, 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉, |〈x, y〉| ≤ σ‖x‖‖y‖. (6.2.3)

Then ?(x) := 〈x, x〉 is quadratically continuous. Indeed, we have

|?(x + y)−?(x)| − δ‖x‖2 = |〈y, y〉 + 〈x, y〉 + 〈y, x〉| − δ‖x‖2 ≤
≤ σ‖y‖2 + 2σ‖x‖‖y‖ − δ‖x‖2 ≤ σδ‖y‖2

with σδ := max{σ + 2σ t − δt2 : t ∈ R} such that σ + 2σ ‖x‖‖y‖ − δ ‖x‖
2

‖y‖2 ≤ σδ for ‖y‖ �= 0.

Lemma 6.6 Suppose ? : X→ R is quadratically continuous. If

?(z) ≥ 0 for all z ∈ Z
and if there exists an ε > 0 such that

?(w) ≤ −ε‖w‖2 for all w ∈ W,
then one can find a c > 0 (that only depends on ? and ε) with

‖w‖2 + ‖z‖2 ≤ c2‖w − z‖2 for all w ∈ W, z ∈ Z. (6.2.4)

Proof. The proof is trivial: We have 1
2ε‖w‖2 ≤ ?(z)−?(w)− 1

2ε‖w‖2 ≤ σε/2‖z−w‖2 and hence

‖w‖2 ≤ σε/2

ε/2
‖z− w‖2.

In addition, we infer

‖z‖2 ≤ (‖z− w‖ + ‖w‖)2 ≤ 2(‖z− w‖2 + ‖w‖2) ≤ 2(1+ σε/2

ε/2
)‖z− w‖2.
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Hence (6.2.4) holds with c =
√

2+ 3σε/2
ε/2 .

Note that the choice of the square of the norms in all these definitions is completely arbitrary and
only made for later, more concrete, applications. One can replace ‖.‖2 everywhere by α(‖.‖) where
α : [0,∞)→ [0,∞) is any function that is monotone and for which there exists a constant α0 > 0
with α(t1 + t2) ≤ α0(α(t1)+ α(t2)). The proof remains unchanged.

6.2.3 An abstract stability characterization

In this section we assume that IM(L) is well-posed for all L ∈ �. Hence, IM(L)
−1 exists and is

causal. We intend to get criteria that this inverse admits a uniform bound on its L2-gain. It is not
difficult to provide an abstract criterion on the basis of Lemma 6.6.

Theorem 6.7 Let ? : Lk+l2 → R be quadratically continuous. Suppose that for all L ∈ �

IM(L) is well-posed and ?

(
L(z)

z

)
≥ 0 for all z ∈ Ll2. (6.2.5)

If there exists an ε > 0 with

?

(
w

Mw

)
≤ −ε‖w‖22 for all w ∈ Lk2, (6.2.6)

there exists a constant c such that ‖IM(L)−1‖2 ≤ c for all L ∈ �.

Proof. Fix anyL ∈ �. Recall that all τL are also contained in � if τ ∈ [0, 1]. For any such τ define

W := {
(

w

Mw

)
: w ∈ Lk2}, Z := {

(
τL(z)

z

)
: z ∈ Ll2}.

Due to ‖
(

w

Mw

)
‖22 ≤ (1+ ‖M‖22)‖w‖22 we have −ε‖w‖22 ≤ − ε

1+‖M‖22
‖
(

w

Mw

)
‖22 what allows

to apply Lemma 6.6. Then (6.2.4) implies

‖
(

w

Mw

)
‖22 + ‖

(
τL(z)

z

)
‖22 ≤ c2‖

(
w

Mw

)
−
(
τL(z)

z

)
‖22

for all w ∈ Lk2 and z ∈ Ll2. Since the left-hand side bounds ‖
(
w

z

)
‖22 from above, we arrive at

‖x‖2 ≤ c‖IM(τL)(x)‖2 for all x ∈ X. (6.2.7)

If we pick x0 ∈ X and we know that x = IM(τL)
−1(x0) is contained in X (and not only in Xe), we

can conclude
‖IM(τL)−1(x0)‖2 ≤ c‖x0‖2. (6.2.8)
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Consequently, if IM(τL)
−1 has finite L2-gain (such that it maps any vector x0 ∈ X into a vector

x ∈ X), we infer (6.2.8) for all x0 ∈ X. This implies that the L2-gain of IM(τL)
−1 is bounded by

the constant c:
‖IM(τL)−1‖2 ≤ c.

Note that c only depends on ?, ε, ‖M‖2; it is independent of the particular L or τ !

Let us now prove the following statement:

‖IM(τ0L)
−1‖2 <∞ =⇒ ‖IM(τL)−1‖2 ≤ c for |τ − τ0| < 1

c‖L‖2 , τ ∈ [0, 1]. (6.2.9)

Indeed, if IM(τ0L)
−1 has finite L2-gain, we get ‖IM(τ0L)

−1‖2 ≤ c. Let us now take any x0 ∈ X
and set x = IM(τL)

−1(x0). We infer

IM(τ0L)(x) =
(

0 (τ − τ0)L

0 0

)
(x)+ IM(τL)(x) =

(
0 (τ − τ0)L

0 0

)
(x)− x0.

This leads to

‖PT x‖2 = ‖PT IM(τ0L)
−1[

(
0 (τ − τ0)L

0 0

)
(PT x)− PT x0]‖2 ≤

≤ c‖
(

0 (τ − τ0)L

0 0

)
(PT x)‖2 + c‖PT x0‖2 ≤

≤ c|τ − τ0| ‖L‖ ‖PT x‖2 + c‖PT x0‖2
and hence

(1− c|τ − τ0|‖L‖2)‖PT x‖2 ≤ c‖PT x0‖2 ≤ c‖x0‖2.
Since the factor on the left is positive for all τ that satisfy the hypothesis in (6.2.9), we infer that
‖PT x‖2 is bounded what implies x ∈ X. As argued above, we obtain (6.2.8), and since x0 was
arbitrary, we get ‖IM(τL)−1‖2 ≤ c.
Let us now set δj := min{1, j/(2c‖L‖2)} such that δj ∈ [0, 1] and |δj − δj−1| < 1/(c‖L‖2). For
δ0 = 0, we have ‖IM(δ0L)

−1‖2 <∞ such that ‖IM(δ1L)
−1‖2 ≤ c. In this way we can successively

conclude that ‖IM(δjL)−1‖2 ≤ c for all j . Since δj = 1 for some j , the proof is finished.

Theorem 6.7 is applied as follows. For the given system M and for the set of uncertainties �, one
tries to find a quadratically continuous ? that guarantees (6.2.5) and (6.2.6). Then we can conclude
that IM(L)

−1 admits a uniform bound on its L2-gain. In more concrete situation, we will later see
how the search of such a mapping ? can be performed by solving an LMI problem.

However, one can also change the viewpoint: Given a quadratically continuous mapping?, define the
class of uncertainties � as those that satisfy (6.2.5). Then all systems that have the property (6.2.6)
cannot be destabilized by this class of uncertainties. Classical small-gain and passivity theorems fall
in this class as will be discussed Section 6.3.

Remarks.
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• To characterize that IM(L)
−1 has finite L2-gain for a fixedL requires the stronger hypotheses

?(PT

(
L(z)

z

)
) ≥ 0 for all z ∈ Ll2e, T ≥ 0

and, with some ε > 0,

?(PT

(
w

Mw

)
) ≤ −ε‖PT w‖2 for all w ∈ Lk2e, T ≥ 0.

This result is very easy to prove and, in fact, closer to what is usually found in the literature.

• The proof of the theorem proceeds via a homotopy argument: TheL2-gain of IM(0)−1 is finite.
Then one proves that IM(L)−1 has finiteL2-gain by showing that the gain ‖IM(τL)−1‖2 stays
below a constant c and, hence, does not blow up if τ varies from 0 to 1.

The line [0, 1] , τ → τL can be replaced without difficulty by any continuous curve γ :
[0, 1] → � connecting 0 and L as γ (0) = 0, γ (1) = L. Hence, instead of being star-shaped,
it suffices to require that � contains 0 and is path-wise connected.

Note that all this is very similar to proving the usual Nyquist-based stability results for LTI
systems.

6.2.4 A characterization of well-posedness and stability

In the last section we required IM(L) to have a causal inverse. In this section we intend to get rid of
this hypothesis. As a price to be paid, we have to assume that all L have finite incremental L2-gain,

and we have to replace the second condition in (6.2.5) on

(
L(z)

z

)
by the same on the increment(

L(z1)

z2

)
−
(
L(z2)

z2

)
. (If M is nonlinear, the same holds for (6.2.6) what is not pursued here.)

Instead of a bound on the L2-gain of IM(L)
−1 we then obtain a bound on the incremental L2-gain

of this mapping.

If bothM andL are linear but otherwise still general, both criteria coincide. Hence, only for nonlinear
uncertainties L we require a stronger hypotheses to get to the desired stronger conclusions.

Technically, we exploit the fact that X = L2 is a Banach space and we apply Banach’s fixed point
theorem to derive well-posedness.

Theorem 6.8 Let ? : Lk+l2 → R be quadratically continuous. Suppose that all L ∈ � have finite
incremental L2-gain and satisfy

?

(
L(z1)−L(z2)

z1 − z2

)
≥ 0 for all z1, z2 ∈ Ll2. (6.2.10)

If there exists an ε > 0 with (6.2.6), then IM(L) does have a causal inverse and there exists a
constant c with ‖IM(L)−1‖2i ≤ c for all L ∈ �.
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Proof. Similarly as in the proof of Theorem 6.7 we pick L ∈ �, τ ∈ [0, 1] and define W :=
{
(

w

Mw

)
: w ∈ Lk2}, Z := {

(
τL(z1)− τL(z2)

z1 − z2

)
: z1, z2 ∈ Ll2}. Again, we can apply Lemma

6.6 and to infer from (6.2.4) that

‖
(

w

Mw

)
‖22 + ‖

(
τL(z1)− τL(z2)

z1 − z2

)
‖22 ≤ c2‖

(
w

Mw

)
−
(
τL(z1)− τL(z2)

z1 − z2

)
‖22

for all w ∈ Lk2 and z1, z2 ∈ Ll2. This relation leads to

‖x1 − x2‖22 ≤ c2‖IM(τL)(x1)− IM(τL)(x2)‖22 for all x1, x2 ∈ X.

Let us temporarily assume that IM(τ0L) : X→ Xwith τ0 ∈ [0, 1] has an inverse. Then we conclude

‖IM(τ0L)
−1(y1)− IM(τ0L)

−1(y2)‖22 ≤ c2‖y1 − y2‖22 for all y1, y2 ∈ X. (6.2.11)

It is essential to observe that c on the right does does neither depend on L nor on τ !

Now we take another τ ∈ [0, 1] that is close (we will specify how close) to τ0. To verify that
IM(τL) : X → X has an inverse amounts to checking that for all y ∈ X there is a unique x ∈ X
satisfying IM(τL)(x) = y. Let us now bring in the mapping of which we know that it has an inverse;
we rewrite the equation to

IM(τL)(x)− IM(τ0L)(x)+ IM(τ0L)(x) = y.

This is easily rearranged to the fixed-point equation

x = IM(τ0L)
−1(y − IM(τL)(x)+ IM(τ0L)(x)). (6.2.12)

Let us abbreviate

F(x) := IM(τ0L)
−1(y − IM(τL)(x)+ IM(τ0L)(x)).

Note that F maps X into X. We have reduced the original problem to the question of whether there
exists a unique x ∈ X with F(x) = x, i.e., whether F has a unique fixed point inX. IfX is a Banach
space, and if there exists a f < 1 with

‖F(x1)− F(x2)‖2 ≤ f ‖x1 − x2‖ for all x1, x2 ∈ X, (6.2.13)

Banach’s fixed point theorem leads to the desired conclusion; it is then guaranteed that F indeed has
exactly one fixed point. In our case, X is Banach. The only thing to be assured is (6.2.13). Using
(6.2.11), we arrive at

‖F(x1)− F(x2)‖22 ≤
≤ c2‖[y − IM(τL)(x1)+ IM(τ0L)(x1)] − [y − IM(τL)(x2)+ IM(τ0L)(x2)]‖22 ≤
≤ c2‖[IM(τ0L)(x1)− IM(τL)(x1)] + [IM(τ0L)(x2)− IM(τL)(x2)]‖22 ≤

≤ c2‖
(

0 (τ − τ0)L

0 0

)
(x1)+

(
0 (τ − τ0)L

0 0

)
(x2)‖22 ≤ c2|τ − τ0|2‖L(z1)−L(z2)‖22 ≤

≤ c2|τ − τ0|2‖L‖22i‖z1 − z2‖22 ≤ c2|τ − τ0|2‖L‖22i‖x1 − x2‖22.
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Hence

|τ0 − τ | < 1

c‖L‖2i
implies (6.2.13) with f = c2|τ − τ0|2‖L‖22i < 1. Then F has a unique fixed point in X. Therefore,
IM(τL) : X→ X has an inverse that satisfies, a posteriori, (6.2.11).

Obviously, IM(0) : X → X does have an inverse. Therefore, we can successively conclude that
IM(τjL) : X→ X has an inverse satisfying (6.2.8) for τj = min{1, j/(2c‖L‖2i )}, j = 0, 1, 2, . . .,
and hence also for τ = 1.

So far, we have shown that IM(L) : X→ X has the inverse IM(L)
−1 : X→ X with bound c on its

incrementalL2-gain. It is a simple exercise to prove that the causal mapping IM(L) : Xe → Xe then
also has a causal inverse IM(L)

−1 : Xe → Xe with the same bound c on its incremental L2-gain.

Even if dealing with nonlinear uncertainties L, they often have the property L(0) = 0. Then we
infer that IM(L)(0) = 0 such that the same must hold for its inverse. Therefore, we have

‖IM(L)−1‖2 ≤ ‖IM(L)−1‖2i
and Theorem 6.8 also provides a bound on the L2-gain of the inverse.

Since Theorem 6.8 also guarantees the existence of the inverse of IM(L) and, therefore (Exercise
1), also of I −ML, we will mainly build in the sequel on this result under under the additional

Assumption 6.9 All L ∈ � have finite incremental L2-gain and satisfy L(0) = 0.

We stress again that these properties are trivially satisfied if the uncertainties are linear.

6.3 Small-gain and passivity tests

As an illustration, let us consider for a symmetric matrix R the bilinear mapping

〈x, y〉 =
∫ ∞

0
x(t)T Ry(t) dt (6.3.1)

onLk+l2 . Since this mapping satisfies (6.2.3),?(x) := 〈x, x〉 is quadratically continuous. We assume
R to be partitioned as

R =
(
Q S

ST R

)
∈ R(k+l)×(k+l) (6.3.2)

according to the size of the signals w and z.

Let us make the specific choice

R =
( −I 0

0 I

)
, ?

(
w

z

)
=
∫ ∞

0
z(t)T z(t)− w(t)T w(t) dt.
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Obviously, the set of all causal uncertainties that satisfy (6.2.5) is given by all

causal L : L2e → L2e with ‖L‖2 ≤ 1. (6.3.3)

We immediately arrive at the following classical small L2-gain result.

Corollary 6.10 Suppose that, for all L with (6.3.3), IM(L) has a causal inverse. If ‖M‖2 < 1,
there exists a c such that ‖IM(L)−1‖2 ≤ c for all L as in (6.3.3).

Similarly, the set of all causal uncertainties with (6.2.10) is nothing but all

causal L : L2e → L2e with ‖L‖2i ≤ 1. (6.3.4)

This leads us to the following standard small incremental L2-gain result.

Corollary 6.11 Suppose that ‖M‖2 < 1. Then IM(L) has a causal inverse, and there exists a c
with ‖IM(L)−1‖2i ≤ c for all L satisfying (6.3.4).

The choice

R =
(

0 1
2I

1
2I 0

)
, ?

(
w

z

)
=
∫ ∞

0
z(t)T w(t) dt (6.3.5)

leads to the standard passivity tests for robust stability.

Corollary 6.12 Suppose there exists an ε > 0 with∫ ∞
0

w(t)T (Mw)(t) dt ≤ −ε‖w‖22.

• Let IM(L) have a causal inverse for all causal L : L2e → L2e with∫ ∞
0

z(t)T L(z)(t) dt ≥ 0.

Then there exists a c such that ‖IM(L)−1‖2 ≤ c holds for all these uncertainties.

• The mapping IM(L) has a causal inverse, and there exists a c with ‖IM(L)−1‖2i ≤ c for all
causal uncertainties L : L2e → L2e that satisfy∫ ∞

0
[z1(t)− z2(t)]T [L(z1)(t)−L(z2)(t)] dt ≥ 0.

We have obtain with ease four classical results that are usually formulated and proved independently.
Even better, the approach taken here allows much further reaching generalizations that can only be
partially addressed in these notes.
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Remark. The small-gain theorem for Lp spaces can be recovered with the mapping

?

(
w

z

)
=
∫ ∞

0
‖z(t)‖p − ‖w(t)‖p dt

and with α(t) = tp instead of α(t) = t2 in Section 6.2.2. The details are only variations of what has
been presented and can be left as an exercise.

6.4 Integral quadratic constraints

6.4.1 Stability tests with integral quadratic constraints

In this section we assume that the uncertainties L are general but that z = Mw is defined with a
proper stable rational matrix M̂ as

ẑ(iω) = M̂(iω)ŵ(iω), iω ∈ C0.

Recall that x̂ denotes the Fourier transform of the signal x ∈ L2.

Instead of general quadratically continuous mappings, let us consider so-called integral quadratic
forms. Suppose R : iω → R(iω) is any (measurable) mapping that assigns to every iω ∈ C0 a
Hermitian matrix R(iω) of dimension (k + l)× (k + l) that is bounded:

‖R(iω)‖ ≤ p for all iω ∈ C0.

(Note that we will consider in most cases mappings that are defined with a rational matrix valued
function R(s); then it is just required that this rational matrix is Hermitian on the imaginary axis,
and that it has neither a pole in C0 nor at infinity such that it is proper.)

For any x, y ∈ Lk+l2 we can define with their Fourier transforms x̂, ŷ the mapping

〈x, y〉 :=
∫ ∞
−∞

x̂(iω)∗R(iω)ŷ(iω) dω

which satisfies (6.2.3) with bound σ = p.

Condition (6.2.6) then amounts to∫ ∞
−∞

ŵ(iω)∗
(

I

M̂(iω)

)∗
R(iω)

(
I

M̂(iω)

)
ŵ(iω) dω ≤ − ε

2π

∫ ∞
−∞

ŵ(iω)∗ŵ(iω) dω

for all w ∈ Lk2. This is obviously implied by the frequency domain inequality (FDI)(
I

M̂(iω)

)∗
R(iω)

(
I

M̂(iω)

)
≤ − ε

2π
I for all iω ∈ C0.

It is not required for our arguments and not difficult to see that the converse holds as well; both
characterization are in fact equivalent.
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Lemma 6.13 Suppose R is a (measurable) bounded Hermitian valued mapping on C0. Then the
following two statements are equivalent:

•
∫ ∞
−∞

x̂(iω)∗R(iω)̂x(iω) dω ≤ −α
∫ ∞
−∞

x̂(iω)∗x̂(iω) dω for all x ∈ L2.

• R(iω) ≤ −αI for all iω ∈ C0.

The reason for this re-formulation: the frequency domain inequality is easier to check.

Now we get as immediate corollaries to Theorems 6.7 and 6.8 the following stability results using
integral quadratic constraints (IQC’s).

Theorem 6.14 Suppose that, for all L ∈ �, IM(L) is well-posed and that∫ ∞
−∞

(
L̂(z)(iω)

ẑ(iω)

)∗
R(iω)

(
L̂(z)(iω)

ẑ(iω)

)
dω ≥ 0 for all z ∈ Ll2. (6.4.1)

If there exists an ε > 0 with(
I

M̂(iω)

)∗
R(iω)

(
I

M̂(iω)

)
≤ −εI for all ω ∈ R, (6.4.2)

then the L2-gain of I−1
M (L) is bounded uniformly in L ∈ �.

Theorem 6.15 Suppose that any L ∈ � has finite incremental L2-gain and satisfies∫ ∞
−∞

(
L̂(z1)(iω)− L̂(z2)(iω)

ẑ1(iω)− ẑ2(iω)

)∗
R(iω)

(
L̂(z1)(iω)− L̂(z2)(iω)

ẑ1(iω)− ẑ2(iω)

)
dω ≥ 0 (6.4.3)

for all z1, z2 ∈ Ll2. If there exists an ε > 0 with (6.4.2), then IM(L) is well-posed, and the incremental
L2-gain of its inverse is uniformly bounded in L ∈ �.

Remarks.

• One should read L̂(z)(iω) correctly: Take z, let it pass through L to get the signal L(z),
take its Fourier transform L̂(z), and evaluate this Fourier transform at iω to obtain L̂(z)(iω).
Therefore, the signal z with power distribution ẑ is mapped into the signal L(z) with power
distribution L̂(z). (In general, of course, there is no nice operation - such as the multiplication
by a transfer matrix - that maps ẑ directly into L̂(z). However, since we only transform signals,
no complication arises.)

The inequality (6.4.1) defined via R hence restricts how the power distribution of z can and
cannot be rearranged in L̂(z); (6.4.1) could be called a power distribution constraint. The
constraint (6.4.3) admits the same interpretation for increments.
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• In principal, the inequality (6.4.2) is easy to verify: one just needs to plot the largest eigenvalue
of the left-hand side over frequency and read of the maximum that this curve takes. This could
be viewed as a generalization of plotting the largest singular values of a certain transfer matrix
to apply the small-gain theorem.

If R is real-rational and proper, the Kalman-Yakubovich-Popov Lemma allows to reduce this
condition to the solvability of a linear matrix inequality; this is the reason why IQC’s play such
prominent role in the LMI approach to robust control. We will elaborate on these points in
Section 6.6.

6.4.2 The philosophy for applying IQC’s

So far we have considered one quadratically continuous mapping ? and one IQC to characterize
stability. For small-gain and passivity conditions, this was sufficient to arrive at standard stability
results. However, if one has a more detailed picture about the uncertainty, one can often find more
than one IQC that are satisfied by the uncertainties.

For the purpose of illustration let us look at a simple example. Consider the structured nonlinear
uncertainties L : Ll2e → Lk2e that are defined for fixed partitions

z =
 z1

...

zm

 , w =
 w1

...

wm


(where the signals zj and wj can have different sizes) with the causal mappings Lj : L2e → L2e,
Lj(0) = 0, as

w = L(z), L(

 z1

...

zm

) =
 L1(z

1)
...

Lm(z
m)

 .

Furthermore, it is assumed that ‖Lj‖2i ≤ 1 such that, as well, ‖Lj‖2 ≤ 1.

Note that the set of all these uncertainties is star-shaped. Due to ‖L‖2i ≤ 1, the incremental small-
gain theorem applies. Then ‖M̂‖∞ < 1 implies that IM(L)

−1 exists, is causal, and uniformly
incrementally bounded. However, this also holds for the much larger class of all uncertaintiesLwith
‖L‖2i ≤ 1, even if they do not have the specific structure considered here.

Hence we should find more IQC’s that provide a way to capture this structure. Motivated byµ-theory,
we consider the IQC’s defined with the constant matrices R given as

R =
(
Q S

ST R

)
, S = 0, Q = diag(−r1I, . . . ,−rmI), R = diag(r1I, . . . , rmI), rj > 0 (6.4.4)

where the sizes of the identity blocks in Q and R correspond to the sizes of the signals wj and zj
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respectively. We infer∫ ∞
0

(
L(z1)(t)−L(z2)(t)

z1(t)− z2(t)

)T
R

(
L(z1)(t)−L(z2)(t)

z1(t)− z2(t)

)
dt =

=
∫ ∞

0

m∑
j=1

−rj‖Lj(z1)(t)−Lj(z2)(t)‖2 + rj‖z1(t)− z2(t)‖2 dt =

=
m∑
j=1

∫ ∞
0

rj [‖z1(t)− z2(t)‖2 − ‖Lj(z1)(t)−Lj(z2)(t)‖2] dt ≥ 0

such that the incremental IQC’s (6.4.3) hold for all uncertainties and for all R.

We have found a whole family of IQC’s for our class of uncertainties, parameterized by the numbers
rj . If we just find among these infinitely many IQC’s one for which, in addition, the FDI (6.4.2)
holds, we conclude exactly the same stability properties of IM(L) as before.

Again, we stress that all IQC’s (6.4.3) must be satisfied by the uncertainties, but only for one IQC we
need to assure (6.4.2)! Hence, the more IQC’s we find for the uncertainties, the more freedom we
have if trying to fulfill the FDI and the better the chances are to verify robust stability.

Let us now have a more detailed look at (6.4.2) for the specific scalings (6.4.4). The inequality simply
reads as

M̂(iω)∗RM̂(iω)− R < 0 for all ω ∈ R ∪ {∞}. (6.4.5)

(Since we have replaced ≤ −εI by < 0, we have to include ω = ∞ in the condition. Why?) The
goal is to find some R (structured as in (6.4.4)) that satisfies this FDI. It will turn out that the search
for R can be cast into an LMI problem.

In order to relate to µ-theory, re-parameterize

R = DTD

withD in the same class asR. Then M̂(iω)∗DTDM̂(iω)−DTD < 0 is equivalent to‖DM̂(iω)D−1‖ <
1 if ‖.‖ denotes the maximal singular value for complex matrices. Therefore, (6.4.5) is nothing but

‖DM̂D−1‖∞ < 1 (6.4.6)

which is a scaled H∞ condition. Such conditions - possibly with frequency dependent scalings D
- appear in µ-theory. Note, however, that the conclusions made in µ-theory are usually only valid
for linear time-invariant uncertainties that admit a Fourier transform with suitable properties. Our
conclusions hold for a much larger class of uncertainties since our proof was not based on a Nyquist
type argument in the frequency domain.

We have shown that we can replace ‖M̂‖∞ < 1 by the scaled small-gain condition (6.4.6) to come
to the same robust stability conclusions. The scalings D capture the knowledge about the structure
of the uncertainties and provide us extra freedom to satisfy (6.4.5). Hence, the scalings reduce the
conservatism that is involved in the simple but rough condition ‖M̂‖∞ < 1.
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Let us introduce a terminology: We will call the matrices R that define the IQC’s scalings or
multipliers. The first name is motivated by the above mentioned relation to µ-theory. The second
name reminds of the relation to classical multipliers that have been used in loop transformation
arguments.

The example reveals the philosophy in applying the robust stability results discussed here: Try to find
as many multipliersR as possible such that the IQC’s (6.4.1) (or (6.4.3)) hold for the considered class
of uncertainties. Then find, among all these multipliers, one that also satisfies the FDI (6.4.2). If this
is possible, one can conclude (existence and) uniform boundedness of the (incremental) L2-gain of
IM(L)

−1.

A simple trick often allows to increase the number of multipliers. Indeed, if R1, . . . ,Rk are multi-
pliers that satisfy (6.4.1) (or (6.4.3)), the same is true of all

k∑
j=1

τjRj if τj ≥ 0. (6.4.7)

One can hence easily construct out of finitely many multipliers an infinite family of multipliers
parameterized by τj . The same trick applies to an infinite set of multipliers. (Those familiar with
the corresponding concepts will recognize that we just need to take the convex conic hull; any set of
multipliers can, therefore, always assumed to be a convex cone.)

Finding multipliers such that a specific class of uncertainties satisfies the corresponding IQC is
not really supported by theory; this is indeed the hard part in concrete applications. For suitable
parameterizations of the family of considered multipliers (such as (6.4.7) or more general versions),
the second step of finding one multiplier that also renders the FDI (6.4.2) satisfied will turn out to be
an LMI problem.

6.4.3 Examples of IQC’s

In what follows we provide a non-exhaustive list of uncertainties and suitable multipliers. We recall
that one needs to always verify Assumption 6.3, in particular star-shapeness with center 0, in order
to apply Theorem 6.7, Theorem 6.8 or their IQC counterparts.

• The structured nonlinear uncertainties

L(

 z1

...

zm

) =
 L1(z

1)
...

Lm(z
m)

 (6.4.8)

with causal Lj that satisfy ‖Lj‖2 ≤ 1 or ‖Lj‖2i ≤ 1 fulfill (6.4.1) or (6.4.3) for the class of
multipliers

� := {
(
Q 0
0 R

)
, Q = diag(−r1I, . . . ,−rmI), R = diag(r1I, . . . , rmI) > 0}. (6.4.9)
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• In (6.4.8) we can confine the attention to linear causal mappings Lj only. Beautiful results by
Shamma and Megretsky [18, 40] show that, then, the resulting scaled H∞-condition (6.4.2) is
not only sufficient for robust stability (as we have proved) but even necessary (what is harder
to show).

• We can specialize further and use (6.4.9) also for the block-diagonal time-varying parametric
uncertainties

wj(t) = Lj(t)z
j (t)

with (measurable) matrix valued functions satisfying

‖Lj(t)‖ ≤ 1 for all t ≥ 0.

Equivalently, we have

w(t) = L(t)z(t), L(t) = diag(L1(t), . . . , Lm(t)), ‖L(t)‖ ≤ 1 for t ≥ 0.

In this case, for anyR in the class (6.4.9), the uncertainties even satisfy the quadratic constraint(
L(t)

I

)T
R

(
L(t)

I

)
≥ 0. (6.4.10)

(We will see in Section 6.7 that this implies exponential stability.) The quadratic constraint still
holds if using a time-varying multiplier. Let P : [0,∞)→ � be (measurable and essentially)
bounded. Note that P(t) admits exactly the same structure as the constant multipliers above.
For any such time-varying scaling we infer(

L(t)

I

)T
P (t)

(
L(t)

I

)
≥ 0 for all t ≥ 0.

With the quadratically continuous mapping (why?)

?(x) :=
∫ ∞

0
x(t)T P (t)x(t) dt

on Lk+l2 , we infer (6.2.10) by linearity. Hence, if there exists an ε > 0 with∫ ∞
0

(
w(t)

M(w)(t)

)T
P (t)

(
w(t)

M(w)(t)

)
dt ≤ −ε‖w‖22, (6.4.11)

we can apply the more abstract Theorem 6.8 to infer that IM(L)
−1 exists and has a uniformly

bounded L2-gain. Again, (6.4.11) amounts to a scaled small-gain condition with time-varying
scalings. If M can be described by

ẋ = A(t)x + B(t)w, z = C(t)x +D(t)w, x(0) = 0,

where ẋ = A(t)x is exponentially stable, the validity of (6.4.11) can be characterized by a
differential linear matrix inequality.
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• The so-called repeated structured uncertainties are defined as

w(t) = L(t)z(t), L(t) = diag(δ1(t)I, . . . , δm(t)I ), |δj (t)| ≤ 1 for t ≥ 0.

Here the blocks on the diagonal of L(t) are repeated scalar valued functions. If we choose the
multipliers R in the partition (6.3.2) as

R = diag(R1, . . . , Rm) > 0, Q = −R, S = diag(S1, . . . , Sm), Sj + STj = 0,

we infer(
L(t)

I

)T
R

(
L(t)

I

)
=

m∑
j=1

−δj (t)2Rj + δj (t)(Sj + STj )+Rj =
m∑
j=1

(1− δj (t)2)Rj ≥ 0.

Again, we have found a class of multipliers for which (6.4.1) or (6.4.3) hold, and we could
generalize to time-varying scalings.

• Note that there exists a δ(t) with |δ(t)| ≤ 1 and w(t) = δ(t)z(t) iff w(t)w(t)T ≤ z(t)z(t)T .
This leads to the notion of structured repeated nonlinear uncertainties. They are defined as in
(6.4.8) where the diagonal maps Lj satisfy∫ ∞

0
Lj(z

j )(t)Lj (z
j )(t)T dt ≤

∫ ∞
0

zj (t)zj (t)T dt.

The same scalings as in the previous item can be used to infer (6.4.1). If we ask the property
to hold for the increments, we obtain (6.4.3). Then we arrive at robust stability results against
repeated nonlinear uncertainties.

• In the above examples we have used for parametric uncertainties and the corresponding non-
linear uncertainties the same class of scalings. However, for parametric uncertainties, one can
work with a class of scalings that is only indirectly described but larger than that considered
so far; since this results in more IQC’s, it reduces the conservatism in the stability results.

Let us assume that the uncertainty is defined as

w(t) = L(t)z(t)

where (the measurable) L : [0,∞)→ Rk×l satisfies

L(t) ∈ co{L1, ..., LN } for all t ≥ 0.

Here,Lj are fixed matrices which generate the convex hull that defines the set of values which
can be taken by the time-varying uncertainties; these generators capture the structure and the
size of the parametric uncertainty. Obviously, the repeated diagonal structure is a special case
of this more general setup (Why?). The goal is to define the scalings in order to assure (6.4.10).
We just ask the condition (6.4.10) to hold at the generators of the convex hull:(

Lj

I

)T
R

(
Lj

I

)
≥ 0 for all j = 1, . . . , N. (6.4.12)
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If we impose an additional constraint on R such that these finitely many inequalities imply
(6.4.10), we are done. The simplest possible condition is to require the left-upper block of R
being negative definite; this leads to the class

� := {R =
(
Q S

ST R

)
: Q < 0,

(
Lj

I

)T
R

(
Lj

I

)
> for j = 1, . . . , N}.

A very simple convexity argument reveals that any R ∈ � indeed satisfies (6.4.10). Instead of
what we have done previously, the multipliers are now only indirectly described. Since we have
strengthened the non-strict inequality to a strict inequality, however, one can easily implement
this indirect description as constraints in an LMI solver. That allows to reduce, again, the
search for a multiplier satisfying (6.4.1) to an LMI problem. As a considerable advantage of
this latter technique we observe that we do not need to bother at all about the specific structure
of the uncertainties and theoretically derive the corresponding structure of the multipliers - the
numerical algorithm does the job for us.

6.5 Guaranteeing robust performance

So far we have considered robust stability. However, the techniques presented so far allow a simple
extension to provide sufficient conditions for robust performance.

6.5.1 An abstract condition for robust performance

Let us consider the uncertain system in Figure 6.2 where the blocks M and L ∈ � satisfy the
Assumptions 6.3 and 6.9.

As indicated we assume that M is partitioned as(
zu
zp

)
=
(
Muu Mup

Mpu Mpp

)(
wu
wp

)
. (6.5.1)

The signalswu and zu form the uncertainty channelwu→ zu andwp → zp denotes the performance
channel. The reason for this terminology is simple. The uncertain system is described by (6.5.1) and
by closing the upper loop with any uncertainty L ∈ � as

wu = L(zu). (6.5.2)

This leads to zu = MuuL(zu) + Mupwp. If I − MuuL has a causal inverse, we arrive at zu =
(I −MuuL)

−1(Mupwp). The perturbed system hence admits the description

zp = Mppwp +MpuL(I −MuuL)
−1(Mupwp). (6.5.3)

The performance specification under considerations is then specified in terms of the channelwp → zp.
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L

✛

✲
z

wu

M

✛✛
wpzp

zu

Figure 6.2: Uncertain System with Performance Channel

As a typical performance specification, the L2-gain from wp to zp should not exceed one (or any
other number what can be always brought back to one by scaling); this specification amounts to∫ ∞

0
zp(t)

T zp(t) dt ≤
∫ ∞

0
wp(t)

T wp(t) dt for all wp ∈ L2.

For technical reasons (to arrive at necessary and sufficient conditions) one often tries to characterize
that the L2-gain is strictly smaller than one. Contrary to what is often stated in the literature, we
cannot just replace the≤ by< in the above inequality! (Why?) The correct formulation is as follows:
there exists an ε > 0 such that∫ ∞

0
zp(t)

T zp(t)− wp(t)T wp(t) dt ≤ −ε
∫ ∞

0
wp(t)

T wp(t) dt for all wp ∈ L2.

Similarly, alternative performance specifications are passivity∫ ∞
0

zp(t)
T wp(t) dt ≤ 0 for all wp ∈ L2

or strict passivity: there exists an ε > 0 with∫ ∞
0

zp(t)
T wp(t) dt ≤ −ε

∫ ∞
0

wp(t)
T wp(t) dt for all wp ∈ L2.

These cases are easily seen to be specialization of the following general performance specification:
there exists an ε > 0 such that

?p

(
wp
zp

)
≤ −ε‖wp‖22 for all wp ∈ L2. (6.5.4)
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L+

+✛

✲

❄

✻

✲

✛

z

wu w0

z0

−

M

✛✛
wpzp

zu

Figure 6.3: Setup for Robust Performance

Here, ?p is an arbitrary mapping

?p : L2 ,
(
wp
zp

)
→ ?p

(
wp
zp

)
∈ R satisfying ?p

(
0
zp

)
≥ 0. (6.5.5)

(The second condition is of technical nature - it is required in the proof of the next theorem.)

The goal is to characterize robust stability and robust performance. For the precise definition of
robust stability, we need to introduce (as earlier) the auxiliary signals w0 and z0 as in Figure 6.3.

The interconnection (6.2) is said to be uniformly robustly stable if the relations(
zu
zp

)
= M

(
wu
wp

)
, wu = L(z)+ w0, z = zu − z0

that correspond to Figure 6.3 define, for each L ∈ �, a causal mapping

L2e ,
 w0

z0
wp

→
 wu

z

zp

 ∈ L2e,

and if the incremental L2-gain of this mapping is bounded uniformly in L ∈ �.

Since M and L have finite (incremental) L2-gain, it is very simple to verify that robust stability is
equivalent to IMuu(L) or (Exercise 1) I −MuuL having a causal inverse whose incremental L2-gain
is bounded uniformly in L ∈ �.
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Theorem 6.16 Suppose ? : L2 → L2 is quadratically continuous and that all L ∈ � satisfy
(6.2.10). Moreover, suppose there exists an ε > 0 such that

?

(
wu

Muuwu +Mupwp

)
+?p

(
wp

Mpuwu +Mppwp

)
≤ −ε(‖wu‖22 + ‖wp‖22) (6.5.6)

for all wu ∈ L2, wp ∈ L2. Then I − MuuL has a causal inverse whose incremental L2-gain is
bounded uniformly in L ∈ �, and the uncertain system (6.5.3) satisfies (6.5.4).

Proof. The proof is extremely simple. We can set wp = 0 to infer by the second property in (6.5.5)
from (6.5.6) that

?

(
wu

Muuwu

)
≤ −ε‖wu‖22

for allwu ∈ L2. Hence we can apply Theorem 6.8 to conclude that IMuu(L) or, equivalently (Exercise
1), I −MuuL have causal inverses with uniformly bounded incremental L2-gain.

Note that, in particular, the uncertain system system (6.5.3) then defines a mapping with uniformly
bounded incremental L2-gain. Even more, for any wp ∈ L2, we use wu = L(zu) and (6.2.10) to
infer

?

(
wu

Muuwu +Mupwp

)
= ?

(
wu
zu

)
= ?

(
L(zu)

zu

)
≥ 0

(where we require Assumption 6.9). Then (6.5.6) leads to (6.5.4).

It is straightforward to generalize Theorem 6.7 along the same lines. One needs to assume that
IMuu(L) or I −MuuL have a causal inverses, and one can work with the weaker hypothesis (6.2.5)
to conclude in a similar fashion robust stability and robust performance. The details can be left to the
reader and are omitted.

6.5.2 Guaranteeing robust quadratic performance with IQC’s

After this abstract motivating introduction, we turn our attention to the case that (6.5.1) is described
by a finite dimensional stable LTI system; the corresponding transfer matrix is again denoted as M̂ .

Let us look at the quadratic performance index

?p

(
wp
zp

)
:=

∫ ∞
0

(
wp(t)

zp(t)

)T
Pp

(
wp(t)

zp(t)

)
dt

where Pp is a fixed symmetric matrix that satisfies

Pp =
(
Qp Sp
STp Rp

)
, Rp ≥ 0 (6.5.7)

to guarantee (6.5.5).
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If ? is defined by an IQC based on R, (6.5.6) amounts to∫ ∞
−∞

( ∗
∗
)∗

R(iω)

(
ŵu(iω)

M̂uu(iω)ŵu(iω)+ M̂up(iω)ŵp(iω)

)
dω+

+
∫ ∞
−∞

( ∗
∗
)
Pp

(
ŵp(iω)

M̂pu(iω)ŵu(iω)+ M̂pp(iω)ŵp(iω)

)
dω ≤

≤ − ε

2π

∫ ∞
−∞

(
ŵu(iω)

ŵp(iω)

)∗ (
ŵu(iω)

ŵp(iω)

)
dω.

We can apply Lemma 6.13 to arrive at the equivalent condition(
I 0
M̂uu M̂up

)∗
R

(
I 0
M̂uu M̂up

)
+
(

0 I

M̂pu M̂pp

)∗
Pp

(
0 I

M̂pu M̂pp

)
≤ − ε

2π
I (6.5.8)

on C0. Again, this amounts to a simple frequency domain condition for which we provide an
alternative formula in the following result.

Theorem 6.17 Suppose that any L ∈ � satisfies the incremental IQC (6.4.3) for the multiplier

R =
(
Q S

S∗ R

)
. Moreover, suppose there exists an ε > 0 with


I 0
0 I

M̂uu M̂up

M̂pu M̂pp


∗

Q 0 S 0
0 Qp 0 Sp
S∗ 0 R 0
0 STp 0 Rp




I 0
0 I

M̂uu M̂up

M̂pu M̂pp

 ≤ − ε

2π
I on C0. (6.5.9)

Then the interconnection (6.2) is robustly stable, and for any wp ∈ L2 one has∫ ∞
0

(
wp(t)

zp(t)

)T
Pp

(
wp(t)

zp(t)

)
dt ≤ −ε‖wp‖22.

6.5.3 Guaranteeing robust H2 performance with IQC’s

For a strictly proper stable rational matrix M̂ , the squared H2-norm is defined as

‖M̂‖22 =
1

2π

∫ ∞
−∞

trace(M̂(iω)∗M̂(iω)) dω.

We have mentioned that there are many interpretations and motivations why to consider this norm in
design problems. Therefore, there are different manners to define the robust H2 analysis problem.

In these notes we concentrate on one of these possible generalizations. For that purpose we charac-
terize ‖M̂‖2 < γ by requiring the existence of a symmetric matrix Q such that

1

2π

∫ ∞
−∞

M̂(iω)∗M̂(iω) dω < Q, trace(Q) < γ 2.
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The first of these two inequalities admits a simple signal based interpretation; indeed it is equivalent
to ∫ ∞

0
z(t)T z(t) dt − wTQw ≤ −ε‖w‖2

for all real vectors w and ẑ(iω) = M̂(iω)w. (Why?)

We intend to generalize this characterization to uncertain systems that are again described using a
linear mapping (

zu
zp

)
=
(
Muu Mup

Mpu Mpp

)(
wu
wp

)
(6.5.10)

that takes
wu ∈ Lku2e, wp ∈ Rkp into zu ∈ Llu2e, zp ∈ Llp2e.

We assume that Muu, Mup are causal and of finite L2-gain, and that Mup, Mpp have finite gain as
mappings from Rkp to L2; this means that there exists a constant m with

‖
(
Mupwp
Mppwp

)
‖2 ≤ m‖wp‖ for all wp ∈ Rkp .

(The theory presented so far does not directly encompass this case since we considered time-signals
as inputs. Although one could easily extend the setup - by simply admitting the time-set {0} for some
components of the signals, - we view, instead, Mupwp and Mppwp as L2 disturbances and directly
apply the techniques developed up to now.)

Robust stability is defined analogously as earlier, and the uncertainty system is said to have a robust
H2-level γ > 0 if there exists a symmetric Q with

trace(Q) < γ 2 (6.5.11)

such that, for some ε > 0,

−wT
pQwp +

∫ ∞
0

zp(t)
T zp(t) dt ≤ −ε‖wp‖2 for all wp ∈ Rkp . (6.5.12)

It is now straightforward to arrive at the following IQC test for robust H2 performance.

Theorem 6.18 Suppose that every L ∈ � satisfies (6.4.3) and that Q is a symmetric matrix. More-
over, suppose there exists an ε > 0 such that∫ ∞
−∞

(
ŵu(iω)

ẑu(iω)

)∗
R(iω)

(
ŵu(iω)

ẑu(iω)

)
+ ẑp(iω)∗̂zp(iω) dω −wT

pQwp ≤ −
ε

2π
(‖wu‖22 + ‖wp‖2)

(6.5.13)
for all wu ∈ Lku2 , wp ∈ Rkp and the corresponding outputs as defined in (6.5.10). Then I −MuuL

has a causal inverse with uniformly bounded incremental L2-gain, and the uncertain system (6.5.3)
satisfies (6.5.12).
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Proof. As for robust quadratic performance, the proof is a simple exercise and left to the reader.

In a concrete test we have to view Q as an extra variable (besides R) with (6.5.11) in order to satisfy
(6.5.13). Hence Q can be viewed as a varying performance multiplier.

All this can be applied ifM is an LTI system; then it is defined with real rational proper stable matrices
M̂uu, M̂pu, M̂up, M̂pp where M̂up(∞) = 0, M̂pp(∞) = 0, as(

ẑu(iω)

ẑp(iω)

)
=
(
M̂uu(iω) M̂up(iω)

M̂pu(iω) M̂pp(iω)

)(
ŵu(iω)

wp

)
.

Remarks.

• Obviously, our robust H2 property is an immediate extension of robust quadratic performance

if equipping the space Rkp ×Lku2 with the norm
√
‖wp‖2 + ‖wu‖22 and defining the quadratic

form ?p : Rkp × Llp2 → R as

?p

(
wp
zp

)
= −wT

pQwp +
∫ ∞

0
zp(t)

T zp(t) dt.

As earlier, one can also consider a general mapping ?p that satisfies ?p

(
0
zp

)
≥ 0.

• SupposeM is LTI. Paganini [21] has observed that theH2-norm can be approximated by the gain
of the underlying system for a certain class of finite power signals that approximate white noise.
He shows that this concept can be then extended to uncertain systems similarly as done here,
and derives necessary and sufficient conditions for robust H2-performance against arbitrarily
fast and arbitrarily slow time-varying uncertainties (similarly as Shamma [40], Megretsky [18],
Poolla, Tikku [23] did for the robustL2-gain problem). The conditions of [21] can be extended
to the more general setting considered here and then read as follows: There exists an ε > 0
and a measurable Hermitian valued N on C0

1

2π

∫ ∞
−∞

trace(N(iω)) dω < γ 2

such that
I 0
0 I

Muu Mup

Mpu Mpp


∗

Q 0 S 0
0 −N 0 0
S∗ 0 R 0
0 0 0 I




I 0
0 I

Muu Mup

Mpu Mpp

 ≤ ( − ε
2π I 0
0 0

)
on C0,

where R is again partitioned as in Theorem 6.17. (Note that the latter inequality implies
M∗ppMpp ≤ N such that N is positive semi-definite. If the (2,2) block of the matrix on the
right-hand side was negative definite, the L2(C

0)-norm of N could not be finite!) Again, the
proof of sufficiency of these conditions is straightforward and left to the reader.

• In the robust quadratic performance problem, one can view Pp as an extra parameter that varies
in a certain given class of matrices. D’Andrea [4] has worked out interesting variations of the
H∞-performance criterion that are amenable to this technique.
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6.6 IQC’s in the state-space

Let us now look at multipliersR that are real-rational. Then we can assumeR to be given in a specific
form.

Lemma 6.19 If R is real rational and bounded on C0, there exists a P and a real rational proper
stable O with

R(iω) = O(iω)∗PO(iω).

Proof. SinceR is bounded, it is proper and there exists some α > 0 such thatR(iω)+αI > 0 for all
ω ∈ R∪{∞}. Hence there exists a proper stable rational matrix T withR(iω)+αI = T (iω)∗T (iω).

This implies R(iω) =
(
T (iω)

I

)∗ (
I 0
0 −αI

)(
T (iω)

I

)
.

The IQC∫ ∞
−∞

(
ŵ(iω)

ẑ(iω)

)∗
R(iω)

(
ŵ(iω)

ẑ(iω)

)
dω =

∫ ∞
−∞

(
ŵ(iω)

ẑ(iω)

)∗
O(iω)∗PO(iω)

(
ŵ(iω)

ẑ(iω)

)
dω ≥ 0

can, therefore, be rewritten as a static quadratic constraint∫ ∞
0

zO(t)
T P zO(t) dt ≥ 0 (6.6.1)

on the output of

zO = O

(
w

z

)
. (6.6.2)

The system O can be interpreted as a filter which encompasses the dynamics in the multiplier R.
Non-dynamic multipliers are simply obtained with O = I such that the only possibly freedom is left
in P . With a minimal realization

O =
[
AO BO
CO DO

]
,

we arrive at yet another parameterization of the multiplier R in the state-space. Indeed, the system
(6.6.2) now admits the description(

ẋO
zO

)
=
(
AO
CO

)
xO +

(
BO
DO

)(
w

z

)
, xO(0) = 0.

6.6.1 Robust stability

In order to apply Theorems 6.15 or 6.14 to guarantee robust stability, we need to check the FDI(
I

M̂

)∗
R(iω)

(
I

M̂

)
= [O

(
I

M̂

)
]∗P [O

(
I

M̂

)
] < 0 on C0 ∪ {∞}. (6.6.3)

150



6.6. IQC’S IN THE STATE-SPACE

For a state-space characterization, we choose a realization of(
w

z

)
=
(
I

M̂

)
w

as

ẋ = Ax + Bw,
(
w

z

)
= Cx +Dw

such that A is Hurwitz. (Note that C and D have a specific structure due to the fact that the first
component of the output equals the input w.) Then we infer

O

(
I

M̂

)
=
 A 0 B

BOC AO BOD

DOC CO DOD

 = [
Ã B̃

C̃ D̃

]
.

The Kalman-Yakubovich-Popov Lemma reveals that the FDI (6.6.3) is equivalent to the solvability
of a linear matrix inequality.

Lemma 6.20 The FDI (6.6.3) holds iff there exists a symmetric solution X of the LMI(
ÃT X +XÃ XB̃

B̃T X 0

)
+ ( C̃ D̃

)T
P
(
C̃ D̃

)
< 0.

6.6.2 Robust quadratic performance

The FDI (6.5.8) that characterizes robust quadratic performance is treated similarly. Indeed, it is
equivalent to(

0 I

M̂uu M̂up

)∗
O∗PO

(
0 I

M̂uu M̂up

)
+
(

0 I

M̂pu M̂pp

)∗
Pp

(
0 I

M̂pu M̂pp

)
< 0 (6.6.4)

on C0 ∪ {∞}.
Introduce the minimal realization

(
I 0
M̂uu M̂up

)
(

0 I

M̂pu M̂pp

)
 =

 A Bu Bp
Cu Duu Dup

Cp Dpu Dpp

 (6.6.5)

with an A that is Hurwitz to arrive at O

(
I 0
M̂uu M̂up

)
(

0 I

M̂pu M̂pp

)
 =


A 0 Bu Bp

BOCu AO BODuu BODup

DOCu CO DODuu DODup

Cp 0 Dpu Dpp

 =
 Ã B̃u B̃p

C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

 .
(6.6.6)
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Again, the Kalman-Yakubovich-Popov Lemma allows to characterize this FDI in terms of the solv-
ability of an LMI.

Lemma 6.21 The FDI (6.6.4) holds iff there exits an X satisfying ÃT X +XÃ XB̃u XB̃p

B̃Tu X 0 0
B̃Tp X 0 0

+ ( C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)T (
P 0
0 Pp

)(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)
< 0.

6.6.3 Robust H2 performance

For robust H2 performance we have to guarantee (6.5.13). We introduce the realization (6.6.5) (with
stable A) and recall that M̂up and M̂pp are strictly proper such that Dup = 0 and Dpp = 0. This
implies D̃up = 0 and D̃pp = 0 for the realization (6.6.6) that incorporates the dynamics of the
multiplier. Let us introduce the abbreviation

Pp :=
(

0 0
0 I

)
such that

zTp zp =
(
wp
zp

)T
Pp

(
wp
zp

)
.

Then (6.5.13) is equivalent to the existence of some ε > 0 with∫ ∞
0

(
z̃u(t)

z̃p(t)

)T (
P 0
0 Pp

)(
z̃u(t)

z̃p(t)

)
dt − wT

pQwp ≤ −ε(‖wu‖22 + ‖wp‖2) (6.6.7)

for all wu ∈ Lku2 , wp ∈ Rkp and for the output of ẋ

z̃u
z̃p

 =
 Ã B̃u

C̃O D̃Ou

C̃p D̃pu

(
x

wu

)
, x(0) = B̃pwp. (6.6.8)

Again, by the Kalman-Yakubovich-Popov Lemma, this condition turns out to be equivalent to the
solvability of an LMI.

Lemma 6.22 The conditions (6.5.13) for robustH2-performance holds iff there exists anX satisfying

B̃TP XB̃p < Q,

(
ÃT X +XÃ XB̃u

B̃Tu X 0

)
+
(
C̃O D̃Ou

C̃p D̃pu

)T (
P 0
0 Pp

)(
C̃O D̃Ou

C̃p D̃pu

)
< 0.

One should compare with robust quadratic performance.
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6.7 A summary and extensions

In this section we intend to merge robust quadratic performance and the robust H2 specification into
one result. Furthermore, we summarize the required hypotheses, we provide alternative proofs based
on Lyapunov arguments whenever possible, and we discuss the consequences of strengthening the
IQC hypotheses on the uncertainties.

With a set � of systems L : Ll2e → Lk2e that are causal and of finite L2-gain, we consider the
uncertain system ẋ

zu
zp

 =
 A Bu Bp
Cu Duu Dup

Cp Dpu Dpp

 x

wu
wp

 , x(0) = x0, wu = L(zu), L ∈ �. (6.7.1)

Pp is the performance index matrix that satisfies(
0
I

)T
Pp

(
0
I

)
≥ 0. (6.7.2)

The dynamics of the considered IQC is given as(
ẋO
zO

)
=
(
AO
CO

)
xO +

(
BO
DO

)(
w

z

)
, xO(0) = 0 (6.7.3)

and P is the index matrix of the IQC.

Let us now interconnect (6.7.1) with (6.7.2) as(
w

z

)
=
(
wu
zu

)
. (6.7.4)

The dynamics of the resulting system admits the state-space description


ẋ

ẋO
zO(
wp
zp

)
 =



A 0 Bu Bp

BO

(
0
Cu

)
AO BO

(
I

Duu

)
BO

(
0
Dup

)
DO

(
0
Cu

)
CO DO

(
I

Duu

)
DO

(
0
Dup

)
(

0
Cp

)
0

(
0
Dpu

) (
I

Dpp

)


︸ ︷︷ ︸

Ã B̃u B̃p

C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp




x

xO
wu
wp

 . (6.7.5)
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Finally, suppose that the symmetric matrix X satisfies the LMI(
I 0 0
Ã B̃u B̃p

)T (
0 X

X 0

)(
I 0 0
Ã B̃u B̃p

)
+

+
(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)T (
P 0
0 Pp

)(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)
< 0. (6.7.6)

Note that the first term in this LMI just equals ÃT X +XÃ XB̃u XB̃p

B̃Tu X 0 0
B̃Tp X 0 0


but the formula given above is slightly more illustrative for our purposes.

This list of ingredients is motivated by the discussion in Section 6.6. At this point we have not yet
specified the exact relation of the uncertainties and the IQC dynamics what will be done in the next
subsections. We first proceed with some preparatory remarks.

For some small ε > 0, we can replace the matrixPp in (6.7.6) byPp+εI and the right-hand side 0 by
−εI without violating the LMI (6.7.6). For any trajectory of (6.7.5), we right-multiply the resulting
inequality with 

(
x(t)

xO(t)

)
wu(t)

wp(t)


and left-multiply with its transpose. We obtain

d

dt

(
x(t)

xO(t)

)T
X

(
x(t)

xO(t)

)
+ zO(t)T P zO(t)+

(
wp(t)

zp(t)

)T
(Pp + εI )

(
wp(t)

zp(t)

)
≤

≤ −ε‖
(

x(t)

xO(t)

)
‖2 − ε‖

(
wu(t)

wp(t)

)
‖2 for all t ≥ 0 (6.7.7)

and, after integration on [0, T ],(
x(T )

xO(T )

)T
X

(
x(T )

xO(T )

)
−
(

x(0)
xO(0)

)T
X

(
x(0)
xO(0)

)
+

+
∫ T

0
zO(t)

T P zO(t) dt +
∫ T

0

(
wp(t)

zp(t)

)T
(Pp + εI )

(
wp(t)

zp(t)

)
dt ≤

≤ −ε
∫ T

0
‖
(

x(t)

xO(t)

)
‖2 + ‖

(
wu(t)

wp(t)

)
‖2 dt for all T ≥ 0. (6.7.8)

We further exploit (6.7.2) to find a δ > 0 with(
δI 0
0 0

)
+ (Pp + εI ) > 0

154



6.7. A SUMMARY AND EXTENSIONS

(why?) such that we can conclude

−
(
wp(t)

zp(t)

)T
(Pp + εI )

(
wp(t)

zp(t)

)
≤ δ‖wp(t)‖2. (6.7.9)

All new (Lyapunov based) arguments in this section are based on these three relations.

6.7.1 Well-posedness with soft incremental IQC’s

We assume that A and AO are Hurwitz and that � is star-shaped with star center 0. Moreover, for
each L ∈ � and z1, z2 ∈ L2, the output of (6.7.3) for(

w

z

)
=
(
L(z1)−L(z2)

z1 − z2

)
satisfies ∫ ∞

0
zO(t)

T P zO(t) dt ≥ 0. (6.7.10)

Then a suitable adaption of the proof of Theorem 6.8 reveals that the solvability of (6.7.6) implies

Well-posedness: For each x0 ∈ Rn and wp ∈ L2e, the system (6.7.1) admits a unique response
x,wu ∈ L2e.

Recall that this proof heavily relies on the fact that L2 is a Banach space. However, for all the
remaining statements in this section, this property will not be exploited. Hence, one could e.g.
guarantee well-posedness by standard results on the existence of solutions of differential equations
(such as Lipschitz conditions plus linear boundedness properties) that are derived by other techniques.
It is then no problem to adapt the considered class of signals - such as to the set of piece-wise continuous
(and continuous/piecewise continuously differentiable x) or continuous signals of finite energy - to
the result that has been applied. Hence, the ‘smoothness’ properties of the trajectories is mainly
dictated by those results that are available to show well-posedness. Once well-posedness has been
established (by whatsoever technique), one can often restrict the attention to signal subspaces that
are technically easier to handle.

Let us mention a situation in which well-posedness is easy to verify. Suppose that the uncertainty
w = L(z) is described by an LTI system

ẋL = ALxL + BLz,
(
w

z

)
=
(
CL
0

)
xL +

(
DL

I

)
z, xL(0) = 0.

Then (6.7.1) is well-posed if (
I DL

Duu I

)
is nonsingular. (6.7.11)

(Why?)
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The soft IQC condition on L now reads as (6.7.10) on the output of

 ẋL
ẋO
zO

 =


AL 0 BL

BO

(
CL
0

)
AO BO

(
DL

I

)
DO

(
CL
0

)
CO DO

(
DL

I

)

 xL
xO
z

 ,

(
xL
xO

)
(0) = 0.

On the one hand, taking the resulting FDI at ω = ∞ reveals

[DO

(
DL

I

)
]T PDO

(
DL

I

)
≥ 0. (6.7.12)

On the other hand, (6.7.6) implies

0 >

(
D̃Ou

D̃pu

)T (
P 0
0 Pp

)(
D̃Ou

D̃pu

)
=

= [DO

(
I

Duu

)
]T P [DO

(
I

Duu

)
] +

(
0
Dpu

)T
Pp

(
0
Dpu

)
.

Due to (6.7.2), we infer

[DO

(
I

Duu

)
]T P [DO

(
I

Duu

)
] < 0. (6.7.13)

The two inequalities (6.7.12) and (6.7.13) imply that(
DO

(
I

Duu

)
DO

(
DL

I

) )
has full column rank what leads to well-posedness (6.7.11).

Similar arguments apply for time-varying uncertainties if one can assure (6.7.12) to hold. Note that
we used a frequency domain argument to infer (6.7.12) from the soft IQC; this argument breaks down
for time-varying uncertainties.

From now on we assume that well-posedness has been verified.

6.7.2 Soft IQC’s

Again, suppose A and AO are Hurwitz, that the LMI (6.7.6) holds, and that � is star-shaped with
center 0. For each L ∈ � and for any z,w ∈ L2 such that w = L(z), the output of (6.7.3) satisfies
(6.7.10). Similarly as Theorem 6.7 one proves

Robust Stability: For all x0 ∈ Rn and wp ∈ L2, the unique system response of (6.7.1) satisfies
x,wu ∈ L2.
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For the remaining properties of uniform robust stability and robust performance we provide indepen-
dent (very elementary) proofs.

Uniform Robust Stability: There exist constants K1, K2 such that for every x0 ∈ Rn and every
wp ∈ L2

‖x‖22 + ‖wu‖22 ≤ K1‖wp‖22 +K2‖x0‖2 and lim
t→∞ x(t) = 0.

We could add (after possibly modifying K1, K2) ‖zu‖22, ‖zp‖22 and ‖xO‖22, ‖zO‖22 on the left-hand
side and the inequality still remains true. (Why?)

Proof. For x0 ∈ Rn, wp ∈ L2, we conclude for the unique system response that wu, x ∈ L2 and
hence (with the system’s differential equation and since L2 is a linear space) ẋ, zu, zp ∈ L2; this
implies limt→∞ x(t) = 0. For the interconnection of (6.7.1) and (6.7.3) according to (6.7.4), we
infer (

ẋO
zO

)
=
(
AO
CO

)
xO +

(
BO
DO

)(
L(zu)

zu

)
, xO(0) = 0.

Since AO is stable, we infer xO, ẋO, zO ∈ L2 and limt→∞ xO(t) = 0. Moreover, (6.7.10) holds
true. If we take the limit T →∞ in (6.7.8), and if we combine with (6.7.10), we get∫ ∞

0

(
wp(t)

zp(t)

)T
(Pp + εI )

(
wp(t)

zp(t)

)
dt ≤

≤
(
x0
0

)T
X

(
x0
0

)
− ε

∫ ∞
0
‖
(

x(t)

xO(t)

)
‖2 + ‖

(
wu(t)

wp(t)

)
‖2 dt. (6.7.14)

Exploiting (6.7.9) leads, as required, to

ε

∫ ∞
0
‖
(

x(t)

xO(t)

)
‖2 + ‖

(
wu(t)

wp(t)

)
‖2 dt ≤ δ

∫ ∞
0
‖wp(t)‖2 dt +

(
x(0)

0

)T
X

(
x(0)

0

)
.

Robust Performance: The system is (uniformly) robustly stable, and for all x0 ∈ R and wp ∈ L2
one has ∫ ∞

0

(
wp(t)

zp(t)

)T
Pp

(
wp(t)

zp(t)

)
dt ≤

(
x0
0

)T
X

(
x0
0

)
.

Proof. This immediately follows from (6.7.14).

For some given symmetricQ ∈ Rn×n and some subspace X of Rn, we can impose the extra constraint(
I

0

)T
X

(
I

0

)
< Q on X

to infer ∫ ∞
0

(
wp(t)

zp(t)

)T
Pp

(
wp(t)

zp(t)

)
dt ≤ xT0 Qx0

for every wp ∈ L2 and every x0 ∈ X; this reveals that we have indeed merged the previous robust
H2 and robust quadratic performance specification into one result.
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6.7.3 Hard IQC’s

Recall that we assume well-posedness of (6.7.1). Suppose that, for each L ∈ � and z,w ∈ L2e with
w = L(z), the output of (6.7.3) satisfies∫ T

0
zO(t)

T P zO(t) dt ≥ 0 for all T ≥ 0. (6.7.15)

We say that L satisfies a hard IQC. In addition, we include the hypothesis that the LMI (6.7.6) has a
solution

X > 0.

Remark. Note that the set � is not necessarily star-shaped; it can even be just a singleton. Moreover,
note that A and AO are not necessarily stable. Whether positivity of X implies or is implied by the
stability of A, AO depends on the specific matrices P and Pp, and no general claim is possible.

Now we can provide a direct proof of robust stability and we can strengthen the uniform robust
stability and robust performance conclusions.

Robust Stability: For x0 ∈ Rn, wp ∈ L2, the unique response of (6.7.1) satisfies x,wu ∈ L2.

Proof. The proof is directly based on (6.7.8) and (6.7.9). Indeed, we infer from (6.7.8) that(
x(T )

xO(T )

)T
X

(
x(T )

xO(T )

)
+
∫ T

0

(
wp(t)

zp(t)

)T
(Pp + εI )

(
wp(t)

zp(t)

)
dt ≤

≤
(
x0
0

)T
X

(
x0
0

)
− ε

∫ T

0
‖
(

x(t)

xO(t)

)
‖2 + ‖

(
wu(t)

wp(t)

)
‖2 dt (6.7.16)

and combining with (6.7.9) gives(
x(T )

xO(T )

)T
X

(
x(T )

xO(T )

)
+ ε

∫ T

0
‖
(

x(t)

xO(t)

)
‖2 + ‖

(
wu(t)

wp(t)

)
‖2 dt ≤

≤
(
x0
0

)T
X

(
x0
0

)
+ δ

∫ T

0
‖wp(t)‖2 dt (6.7.17)

for all T ≥ 0. Since the right-hand side is bounded for T →∞, we infer the same (due to X > 0)
for

∫ T
0 ‖x(t)‖2 dt ,

∫ T
0 ‖xO(t)‖2 dt , and

∫ T
0 ‖wu(t)‖2 dt ; this shows x, xO,wu ∈ L2.

Uniform Robust Stability: The system is robustly stable, and there exist constantsK1,K2 such that
for every x0 ∈ Rn and every wp ∈ L2

‖x(T )‖2 +
∫ T

0
‖x(t)‖2 + ‖wu(t)‖2 dt ≤ K1

∫ T

0
‖wp(t)‖2 dt +K2‖x0‖2 for all T ≥ 0

and limt→∞ x(t) = 0.Again we could add (for possibly other constants)
∫ T

0 ‖zu(t)‖2 + ‖zp(t)‖2 +
‖xO(t)‖2 + ‖zO(t)‖2 dt and ‖xO(T )‖ on the left-hand side. (Why?)
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Proof. This is immediate from (6.7.17).

Robust Performance: The system is (uniformly) robustly stable, and for all x0 ∈ R and wp ∈ L2
one has(

x(T )

xO(T )

)T
X

(
x(T )

xO(T )

)
+
∫ T

0

(
wp(t)

zp(t)

)T
Pp

(
wp(t)

zp(t)

)
dt ≤

≤
(
x0
0

)T
X

(
x0
0

)
for all T ≥ 0.

Proof. Immediate with (6.7.16).

6.7.4 QC’s

Again, we assume well-posedness of (6.7.1). Furthermore, suppose that for each L ∈ � and w, z ∈
L2e with w = L(z), the output of (6.7.3) satisfies

zO(t)
T P zO(t) ≥ 0 for all t ≥ 0. (6.7.18)

This is a quadratic constraint (QC) in time. Moreover, let us suppose that the LMI (6.7.6) has the
solution X > 0.

Note that this QC implies the hard IQC (6.7.15) such that all conclusions from the previous subsection
are still true. However, due to the constraint point-wise in time, we can now argue directly with (6.7.7);
this leads to uniform exponential stability.

Uniform Exponential Stability: There exist constants α > 0, K3, K4 such that

‖x(T )‖2 ≤ K3‖x(t0)‖2e−α(T−t0) +K4

∫ T

t0

‖wp(t)‖22 dt for all T ≥ t0 ≥ 0.

Ifwp = 0, this implies that the system state x(T ) converges exponentially to zero for T →∞. Since
the constants K3 and α do not depend on the specific L, the exponential stability is uniform in the
uncertainty.

Proof. Let us introduce the abbreviations

v(t) :=
(

x(t)

xO(t)

)T
X

(
x(t)

xO(t)

)
, α := ε

λmin(X)
> 0.

Then (6.7.7) clearly implies

d

dt
v(t)+ αv(t)+

(
wp(t)

zp(t)

)T
(Pp + εI )

(
wp(t)

zp(t)

)
≤ 0 for all t ≥ 0.
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Combining with (6.7.9) gives

d

dt
v(t)+ αv(t) ≤ δ‖wp(t)‖2 for all t ≥ 0.

For any t0 ≥ 0 we conclude

v(T ) ≤ v(t0)e−α(T−t0) + δ
∫ T

t0

e−α(T−t)‖wp(t)‖2 dt.

We conclude that there exist constants K3, K4 such that

‖x(T )‖2 ≤ K3‖x(t0)‖2e−α(T−t0) +K4

∫ T

0
‖wp(t)‖22 dt.

Remarks.

• Typical examples for the latter results to apply are time-varying parametric uncertainties, static
non-linearities, or non-linearities defined by differential equations. Often, mild Lipschitz-type
conditions suffice to guarantee that (6.7.1) has a solution for each initial condition and for each
disturbance. Usually, such solutions are only given locally in time. (Recall that nonlinear
differential equations can have a finite escape time.) The stability results for hard IQC’s or
QC’s might allow, however, to exclude e.g. a finite escape time such that solutions can be
extended to the whole interval [0,∞). Hence, apart from stability, also certain aspects of
well-posedness could be shown with the arguments that we presented in this section.

• Further weakening the IQC’s. We have assumed the hard IQC’s or the QC’s to hold for all
w, z ∈ L2e with w = L(z). However, it is obvious that all proofs given in this section only
required them to be satisfied if, in addition, (6.7.4) holds for some trajectory of the uncertain
system (6.7.1).

• We include two exercises about the multi-variable circle criterion and the Popov criterion that
reveal the subtleties discussed here and, nevertheless, allow to re-prove classical results in
a straightforward manner without the need for technical hypotheses that often occur in the
literature [13].

6.8 Other performance specifications in the state-space

In this section we want to clarify how to extend the results to other performance criteria different
from robust quadratic orH2-performance. As a rule, all those criteria that can be formulated in terms
of a quadratic Lyapunov function on the system extended with the IQC dynamics can be considered.
In [2, Chapter 5 and 6] one finds many variations of these criteria which are not listed since, after an
understanding of the basic IQC principle, all these results can be easily derived not only for polytopic
and LFT parametric uncertainties, but they can be effectively extended to much larger classes of
uncertainties described by dynamic IQC’s.
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We just confine ourselves to the generalized H2 and peak-to-peak upper bound specifications; we
employ the same setup as in Section 6.7.

6.8.1 Robust generalized H2-performance

Let us define

Pp1 =
( −I 0

0 0

)
and Pp2 =

(
0 0
0 I

)
with a partition according to those of the rows of C̃p in (6.7.5). (This choice will be motivated by
the considerations to follow). Suppose that X > 0 satisfies

(
I 0 0
Ã B̃u B̃p

)T (
0 X

X 0

)(
I 0 0
Ã B̃u B̃p

)
+

+
(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)T (
P 0
0 γPp1

)(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)
< 0 (6.8.1)

and (
C̃p D̃pu D̃pp

)T 1

γ
Pp2

(
C̃p D̃pu D̃pp

) ≤ ( I 0 0
)T
X
(
I 0 0

)
. (6.8.2)

Then the conclusions about well-posedness and robust stability remain unchanged.

If the uncertainty satisfies the hard IQC as in Section 6.7.3, we infer for x(0) = 0 and xO(0) = 0
from (6.7.8) by ∫ T

0

(
wp(t)

zp(t)

)T
Pp1

(
wp(t)

zp(t)

)
dt =

∫ T

0
wp(t)

T wp(t) dt

(what motivates the definition of Pp1) that(
x(T )

xO(T )

)T
X

(
x(T )

xO(T )

)
≤ (γ − ε)

∫ T

0
wp(t)

T wp(t) dt for all T ≥ 0.

Hence, we have (
x(T )

xO(T )

)T
X

(
x(T )

xO(T )

)
≤ (γ − ε)‖wp‖22 for all T ≥ 0

such that the state-trajectory is caught in an ellipsoid defined by X. The second inequality implies

1

γ

(
wp(t)

zp(t)

)T
Pp2

(
wp(t)

zp(t)

)
= 1

γ
zp(t)

T zp(t) ≤
(

x(t)

xO(t)

)T
X

(
x(t)

xO(t)

)
for all t ≥ 0
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(what motivates the choice of Pp2.) With theL∞-norm definition ‖zp‖∞ = supt≥0 ‖zp(t)‖, we infer
by combining both inequalities that

‖zp‖2∞ ≤ γ (γ − ε)‖wp‖22.
Hence, the gain of wp , L2 → zp ∈ L∞ is robustly strictly smaller than γ .

Due to Pp2 ≥ 0, we note that (6.8.2) is equivalent to the relations

Pp2D̃pu = 0, Pp2D̃pp = 0,
1

γ
C̃Tp Pp2C̃p < X.

Hence, the non-strict inequality (6.8.2) indeed comprises certain strict properness conditions that are
required to render the gain wp , L2 → zp ∈ L∞ finite.

Suppose we know (as for parametric perturbations) that the uncertainties even satisfy a QC as in
Section 6.7.4 for the indices P1 and P2. Then we can replace (6.8.2) by(

C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)T (
P2 0
0 1

γ
Pp2

)(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)
≤ ( I 0 0

)T
X
(
I 0 0

)
(6.8.3)

and, still, infer that the generalized H2-gain is robustly smaller than γ .

Note that we have used different multipliers P1 and P2 in both inequalities (what will be relevant if
searching for suitable multipliers in a whole family as discussed in Section 6.9.) The extra multiplier
P2 leads to extra freedom to render the inequality satisfied; hence it reduces conservatism. Contrary
to what we could conclude previously, the inequality does not necessarily lead to D̃pu = 0, D̃pp = 0
but, still, it implies that the gain wp , L2 → zp ∈ L∞ is finite. Hence, (6.8.3) allows a more
complicated dependence on the uncertainties at the expense of a non-strict inequality that cannot be
easily re-formulated to a strict one.

Remark. The presented techniques do not apply for soft IQC’s. In addition, it might be more suitable
to look at uncertainties L that map L∞ causally into L2; the abstract theory developed earlier can be
easily extended to cope with such situations.

6.8.2 Robust bound on peak-to-peak gain

Let us assume that the class of uncertainties � consists of causal mappings L : L∞e → L∞e of
finite L∞-gain. We assume that, for each L ∈ �, the perturbed system (6.7.1) is

well-posed: For each x0 ∈ Rn and wp ∈ L∞e, the system (6.7.1) admits a unique response x,wu ∈
L∞e.

Let us now assume that for any zu ∈ L∞e and any L ∈ �, the QC (6.7.18) holds for wu = L(zu)

and for P = P1, P = P2 (similarly as in Section 6.7.4).
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Let X, λ > 0, µ ∈ R satisfy the inequalities

X > 0,

(
I 0 0
Ã B̃u B̃p

)T (
λX X

X 0

)(
I 0 0
Ã B̃u B̃p

)
+

+
(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)T (
P 0
0 µPp1

)(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)
< 0

and(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)T (
P2 0
0 1

γ
Pp2

)(
C̃O D̃Ou D̃Op

C̃p D̃pu D̃pp

)
≤

≤
(
I 0 0
0 0 I

)T (
λX 0
0 (γ − µ)I

)(
I 0 0
0 0 I

)
. (6.8.4)

This leads to uniform exponential stability, for every wp ∈ L∞

x(T ) ≤ λmax(X)

λmin(X)
e−λT x(0)+ µ

λmin(X)λ
sup

t∈[0,T ]
wp(t)

T wp(t),

and to the robust peak-to-peak norm bound γ : for every wp ∈ L∞
‖zp‖∞ ≤ γ ‖wp‖∞.

Proof. Again, set

v(t) :=
(

x(t)

xO(t)

)T
X

(
x(t)

xO(t)

)
.

Then the first inequality shows

d

dt
v(t)+ λv(t) ≤ µwp(t)T wp(t) for all t ≥ 0

and hence
v(T ) ≤ e−λT )v(0)+ µ

λ
sup

t∈[0,T ]
wp(t)

T wp(t) for all T ≥ 0.

This clearly implies the statement on robust stability. Moreover, x(0) = 0 reveals

λv(T ) ≤ µ‖wp‖2∞ for all T ≥ 0.

Now we exploit (6.8.4) to infer

1

γ
‖zp(t)‖2 ≤ λv(t)+ (γ − µ)‖wp(t)‖2 for all t ≥ 0.

Combining both inequalities implies

zp(t)
T zp(t) ≤ γ 2‖wp‖2∞
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what reveals that γ is a bound on the peak-to-peak gain of L∞ , wp → zp ∈ L∞.

Remark. The above inequalities imply well-posedness if A, AO are Hurwitz, if all L ∈ � are of
finite incrementalL∞-gain, if � is star-shaped with star center 0, and if eachL ∈ � satisfies (6.7.10)
for all z1, z2 ∈ L∞ and z = z1 − z2, w = L(z1) − L(z2). The proof is based Banach’s fixed
point theorem that exploits the completeness of L∞ and just requires a slight modification of that of
Theorem 6.8.

Remark. As for the generalized H2 norm, we can reduce (6.8.4) to a strict inequality with algebraic
constraints if setting P2 = 0; we can replace (6.8.4) equivalently by

Pp2D̃pu = 0,
1

γ

(
C̃p D̃pp

)T
Pp2

(
C̃p D̃pp

)
<

(
λX 0
0 (γ − µ)I

)
.

6.9 Multiple IQC’s in the state-space

Although most of the results provided so far have been given for one IQC, it is always important to
keep in mind that one usually considers a whole family of IQC’s that is parameterized in a suitable
fashion.

In the latter sections we have considered IQC’s that are described by a dynamical part (6.7.3) defined
through AO , BO , CO , DO , and an index matrix P . In principle, all of these parameters could be
varied in specific classes to describe a set of IQC’s. However, the final task is to find one of these
parameters and an X (possibly with X > 0) such that the LMI (6.7.6) is satisfied. Hence we will
prefer those parameterizations for which the search forX and a suitable IQC turns out to be a standard
LMI problem.

Obvious cases include those where the dynamic part of the IQC is fixed and only the quadratic index
varies in a class P . If this class P is described by infinitely many LMI’s, a semi-infinite LMI problem
results; although convex, such problems cannot be directly handled with existing software. However,
if the set P is described by finitely LMI’s, standard software can be used to search forX and a suitable
multiplier.

As a simple example, suppose that

Rj(s) = Cj (sI − Aj)−1Bj +Dj

(Aj Hurwitz) are finitely many rational multipliers. Searching in the set of all multipliers parame-
terized as (6.4.7) with τj > 0 has indeed the form as just described. (Derive the dynamics and the
class of indices P .)
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6.10 Parametric uncertainties

In this final section we would like to briefly return to the situation that L in (6.7.1) is time-varying
parametric and can vary arbitrarily fast.

6.10.1 LFT representations

The set of values of the parametric uncertainties is assumed to be given by finitely many generating
points

�g = {L1, ..., LN }
as

�c = co �g = co{L1, ..., LN }.
We assume 0 ∈ �c. The set of uncertainties is given by all curves L(t) defined on [0,∞) and taking
their values in �c:

� := {L | L : [0,∞)→ �c is continuous}.
Note that any L ∈ � acts in (6.7.1) as a multiplication operator

w(t) = L(t)z(t).

If, for L ∈ �, (
I L(t)

Duu I

)
is nonsingular for all t ≥ 0,

the uncertain system (6.7.1) admits the alternative representation(
ẋ

zp

)
=
((

A Bp
Cp Dpp

)
+
(

Bu
Dpu

)
L(t)(I −DuuL(t))

−1 ( Cu Dup

))( x

wp

)
, x(0) = x0.

This motivates to define the functions(
AL BL
CL DL

)
:=

(
A+ BuL(I −DuuL)

−1Cu Bp + BpL(I −DuuL)
−1Dup

Cp +DpuL(I −DuuL)
−1Cu Dpp +DpuL(I −DuuL)

−1Dup

)
.

Note that these functions are rational in the elements of L, and they are affine if Duu = 0. However,
we are interested in this function only on the set �c. Depending on the structure of the matrices in �c

and on Duu, it might happen that det(I −DuuL) vanishes identically on �c. Even if not vanishing
identically, this function can have zeros on the set �c. We call the LFT well-posed, if

det(I −DuuL) �= 0 for all L ∈ �c. (6.10.1)

Then (I − DuuL)
−1 and AL, BL, CL, DL are well-defined rational functions that are continuous

on the set �c. (Continuity even implies that these functions are smooth. In fact, the essence is that
they don’t have poles on this set.)

165



6.10. PARAMETRIC UNCERTAINTIES

If the well-posedness condition (6.10.1) holds, we arrive at the alternative LFT description(
ẋ

zp

)
=
(
AL(t) BL(t)
CL(t) DL(t)

)(
x

wp

)
, x(0) = x0

of the uncertain system (6.7.1).

Let us recall the following converse fact fromµ-theory: Suppose F(δ),G(δ),H(δ), J (δ) are rational
functions of δ = (

δ1 · · · δm
)

that are continuous on the parameter box

δc := {δ = (δ1, ..., δm) | δj ∈ [−1, 1]}.

(As usual, we can shift and re-scale the uncertainties to such they take their values in [−1, 1] without
without loss of generality.) Then there exist matrices A Bu Bp

Cu Duu Dup

Cp Dpu Dpp


and nonnegative integers

d1, ..., dm

such that, with

L(δ) = diag(δ1Id1 , ..., δmIdm), (6.10.2)

we have the following two properties:

det(I −DuuL(δ)) �= 0 and

(
AL(δ) BL(δ)
CL(δ) DL(δ)

)
=
(
F(δ) G(δ)

H(δ) J (δ)

)
on δc.

Consequently, we can summarize:

• On every set �c where det(I −DuuL) does not vanish, AL, BL, CL, DL define continuous
rational functions of the elements of L.

• Arbitrary continuous rational functions F(δ), G(δ), H(δ), J (δ) without poles on δc admit a
well-posed LFT representation; they can be written as AL(δ), BL(δ), CL(δ), DL(δ) where L(δ)
is a block-diagonal matrix whose blocks admit the form δj I .

Remarks. This result shows that choice of a block-diagonal structure (as usually made in µ-theory)
is a specific case of the general formulation we started out with. In concrete applications, the extra
freedom of not being forced to use block-diagonal matrices should be exploited to arrive at more
efficient LFT representations, in particular with respect to the size of L. Note also that one is not
bound to parameter boxes of the form δc but one can also choose for more general sets that are
described as �c.
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6.10.2 Robust quadratic performance

Let us now return to robust quadratic performance analysis with an index Pp that satisfies, as earlier,
the condition (6.5.7). We have given two seemingly different sufficient conditions to guarantee robust
performance; one is related to finding a common quadratic Lyapunov function, and the other proceeds
via scalings and quadratic constraints.

Indeed, robust quadratic performance is implied by the existence of an X such that

X > 0,

(
ATLX +XAL XBL

BTLX 0

)
+
(

0 I

CL DL

)T
Pp

(
0 I

CL DL

)
< 0 for all L ∈ �v.

(6.10.3)
Moreover, it is also guaranteed if there exists an X and a scaling

P =
(
Q S

ST R

)
satisfying

(
L

I

)T
P

(
L

I

)
> 0 for all L ∈ �c (6.10.4)

such that(
I 0 0
A Bu Bp

)T ( 0 X

X 0

)(
I 0 0
A Bu Bp

)
+

+
(

0 I 0
Cu Duu Dup

)T
P

(
0 I 0
Cu Duu Dup

)
+

+
(

0 0 I

Cp Dpu Dpp

)T
Pp

(
0 0 I

Cp Dpu Dpp

)
< 0. (6.10.5)

A simple exercise reveals that (6.10.4)-(6.10.5) imply the non-singularity of I−DuuL for allL ∈ �c

and the validity of (6.10.3) with the same X. (Why?) It is not so trivial to see that the converse holds
true as well; in fact, both conditions for robust quadratic performance are equivalent.

Theorem 6.23 The matrix I − DuuL is nonsingular for all L ∈ �c and there exists an X with
(6.10.3) iff there exist symmetric X and P satisfying (6.10.4)-(6.10.5).

The proof of this theorem is found in [35]. Since based on a more general result about quadratic
forms, similar statements can be obtained with ease for all the other performance criteria (such as
H2, generalized H2 and peak-to-peak upper bound performance) that have been considered in these
notes.

Testing the first condition amounts to reducing (6.10.3) to finitely many LMI’s that can be based
on convexity arguments or gridding techniques. In the second characterization, (6.10.5) poses no
problem and only the parameterization of the scalings as in (6.10.4) has to be given with a finite
number of LMI’s.

If Duu vanishes, the picture becomes clear. Then the functions AL, BL, CL, DL are affine in L, and
one just has to solve the inequalities in (6.10.3) for the finitely many generators in �g . Similarly,
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Duu = 0 implies that any multiplier P that satisfies (6.10.5) has, in fact, the property

Q < 0.

(Why? The alert reader recalls that the required argument appeared earlier in the text.) Hence we can
introduce this extra constraint without conservatism. Under this constraint, however, (6.10.4) holds
iff it holds already for the generators �g . Hence, both robust performance characterizations reduce
without conservatism to standard LMI problems.

The situation is more complicated for Duu �= 0 such that AL, BL, CL, DL could (depending on
the structure of L) be genuinely nonlinear. Then (6.10.3) offers no clear hint how to perform the
reduction to a finite number of LMI’s. The second characterization, however, allows to give - possibly
at the expense of conservatism - certain reduction recipes. We provide three possibilities:

• Just introduce the extra constraint Q < 0 and replace �c by �g in (6.10.4). If the resulting
LMI’s are feasible, robust performance is guaranteed. Hence this is a sufficient condition for
the two tests (6.10.3) or (6.10.4)-(6.10.5) that is, generally, stronger due to the extra constraint
for the scaling.

• One can take the specific structure of the set �c and of the function

L→
(
L

I

)T
P

(
L

I

)
(6.10.6)

into account to refine the pretty rough extra constraint Q < 0. Just as an example that admits
immediate extensions, suppose that

�c = {L =
 δ1I 0

. . .

0 δmI

 | δj ∈ [−1, 1]}.

Then it suffices to restrict Q only as

Q =
 Q11 · · · Q1m

...
. . .

...

Qm1 · · · Qmm

 , Qjj < 0, j = 1, . . . , m

(in the same partition as that of L.) This renders the function (6.10.6) in δ = (
δ1 · · · δm

)
partially convex on the parameter box δc, and it suffices to describe the scalings only through
inequalities on the extreme points

δg := {δ =
(
δ1 · · · δm

) | δj ∈ {−1, 1}}

of this box. Clearly, this extra constraint on Q is less stringent than Q < 0 what reduces
conservatism.
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• Finally, we mention a variant that is even more conservative thanQ < 0. One just uses, for the
class of uncertainties as in the previous item, the scalings adjusted to the uncertainty structure as
defined in (6.4.3). This provides a subset of all scalings satisfying (6.10.4) that admit an explicit
(implementable) description. If the diagonal blocks are not repeated, Q = −R are diagonal
and S vanishes; this is the case that reappears throughout the book [2] by applying the so-called
S-procedure. Although the restriction to a smaller class of scalings introduces conservatism, it
also reduces the number of variables in the LMI test what speeds up the calculations.

This discussion reveals that the introduction of scalings allows to provide guarantees for robust
quadratic performance even if the parameters enter in a rational fashion. Moreover, for the least
conservatism, one should employ scalings that are full and can only be indirectly described. Using
the usual structured scalings as appearing in µ-theory introduces extra conservatism that should be
avoided.

There is, however, one point that seems not sufficiently stressed in the literature: No matter by which
technique, solving (6.10.4)-(6.10.5) or (6.10.3) amounts to guaranteeing robust performance not only
for the systems described with matrices in{(

AL BL
CL DL

)
| L ∈ �c

}
but even for those described with

co

{(
AL BL
CL DL

)
| L ∈ �c

}
. (6.10.7)

(Why?) If AL, BL, CL, DL are affine on �c, both sets coincide since �c is convex. However,
if these functions are nonlinear, taking the convex hull might increase the set considerably such
that the desired spec is guaranteed for systems which are not included in the original description.
Note that this observations suggests another approach to guarantee robust performance: Try to find
a description of (6.10.7) as the convex hull of finitely many generators. The computation of such a
re-parameterization, however, might be very expensive.

Remarks.

• In general, L enters the constraints (6.10.3) in a rational fashion, whereas (6.10.5) is indepen-
dent of L and (6.10.4) is quadratic in L. Through the auxiliary variable P , the dependence on
L has been simplified. The variable P is closely related to Lagrange-multipliers as appearing
in constraint optimization theory.

• In [2] the authors apply the so-called S-procedure to derive (6.10.5) from (6.10.3) for the specific
class of scalings described above; the constraint (6.10.4) does not appear explicitly since the
corresponding multipliers satisfy it automatically. In the present notes we have provided two
version of robust performance tests: One directly based on the parameter dependent system
description, and one based on QC’s. We avoided to refer to the S-procedure since the QC results
allow powerful generalizations and since our approach provides a better insight in the choice
of various classes of scalings and the resulting conservatism. Therefore, the S-procedure only
plays a minor role in our notes.
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• The discussion in this section is particularly important for the synthesis of robust controllers.
Controller synthesis seems not directly possible on the basis of (6.10.3), but one can eas-
ily provide variations of the standard D/K-iteration from µ-synthesis if characterizing robust
performance by (6.10.4)-(6.10.5).

6.11 Exercises

Exercise 1

a) Suppose that M (linear) and L are systems that have finite gain. Show that IM(L) has a causal
inverse with finite gain iff the same is true of the mapping I −ML. Show that the same holds if
‘finite gain’ is replaced with ‘finite incremental gain’.

b) Suppose S : L2e → L2e is causal and has finite incremental gain. Moreover, assume that the
restriction S : L2 → L2 has an inverse whose incremental gain is finite. Then S : L2e → L2e itself
has an inverse with finite incremental gain.

Exercise 2

Suppose w and z are two vectors in Rn. Prove:

There exists a L ∈ Rn×n with ‖L‖ ≤ 1 and w = Lz iff wTw ≤ zT z.
There exists a δ ∈ R with |δ| ≤ 1 and w = δz iff wwT ≤ zzT .

Exercise 3

For given Lj ∈ Rk×l , define the set � := co{L1, . . . , LN }. With fixed Q = QT , S, R = RT

consider the function

f (L) :=
(
L

I

)T (
Q S

ST R

)(
L

I

)
.

Prove that

1. Q ≤ 0 implies that L→ f (L) is concave.

2. if f is concave then

f (Lj ) > 0 for all j = 1, . . . , N =⇒ f (L) > 0 for all L ∈ �. (6.11.1)

3. Find weaker conditions on Q that lead to the the same implication (6.11.1).
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Exercise 4 (MIMO Circle criterion)

Consider the system
ẋ = Ax + BL(t, Cx)

where L : R× Rl → Rk is any continuously differentiable function that satisfies, for two matrices
K , L, the multi-variable sector condition

[L(t, z)−Kz]T [L(t, z)− Lz] ≤ 0 for all (t, z) ∈ R× Rl . (6.11.2)

Note that this is nothing but a static QC. Find a multiplier and the corresponding LMI that proves
exponential stability. With M(s) = C(sI − A)−1B define G(s) = (I + LM(s))(I + KM(s))−1.
Show that the LMI you found has a solution iff

A+ BKC is stable and G(iω)∗ +G(iω) > 0 for all ω ∈ R.

(Hence G is strictly positive real. Note that this terminology is often used in the literature for a
different property!) Is stability of A required for your arguments?

Exercise 5 (Popov criterion)

Consider the system
ẋ = Ax + BL(Cx) (6.11.3)

with A Hurwitz and L a continuously differentiable nonlinearity L : R→ R that satisfies

0 ≤ zL(z) ≤ z2 for all z ∈ R.

Prove the following statements:

1. L satisfies the static quadratic constraints

τ

(
L(z)

z

)T ( −2 1
1 0

)(
L(z)

z

)
≥ 0

for all z ∈ R and τ ≥ 0.

2. For any z ∈ R ∫ z

0
L(ζ) dζ ≥ 0,

∫ z

0
ζ −L(ζ) dζ ≥ 0.

If z : [0,∞)→ R is continuously differentiable, then

τ1

∫ T

0
z(t)ż(t)−L(z(t))ż(t) dt ≥ −τ1

1

2
z(0)2, τ2

∫ T

0
L(z(t))ż(t) dt ≥ −τ2

1

2
z(0)2

for τ1, τ2 ≥ 0. (Substitution rule!)
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3. Suppose there exist X and τ, τ1, τ2 ≥ 0 such that

(
I 0
A B

)T ( 0 X

X 0

)(
I 0
A B

)
+
(

0 I

C 0

)T ( −2τ τ

τ 0

)(
0 I

C 0

)
+

+
(

C 0
CA CB

)T ( 0 τ1
τ1 0

)(
C 0
CA CB

)
+
(

0 I

CA CB

)T ( 0 −τ1
τ1 0

)(
0 I

CA CB

)
+

+
(

0 I

CA CB

)T ( 0 τ2
τ2 0

)(
0 I

CA CB

)
< 0.

Then the equilibrium x0 = 0 of (6.11.3) is globally asymptotically Lyapunov stable. What can
you say about exponential stability? Hint: Use a simple hard IQC argument. Note that, along
trajectories of (6.11.3), one has z = Cx, ż = CAx + CBw and w = L(z).

4. Show that the condition in the previous exercise is equivalent to the existence of a symmetric
K , ν ∈ R, τ > 0 with(

ATK +KA KB

BTK 0

)
+
(

0 I

CA CB

)T ( 0 ν

ν 0

)(
0 I

CA CB

)
+

+
(

0 I

C 0

)T ( −2τ τ

τ 0

)(
0 I

C 0

)
< 0.

5. With G(s) = C(sI − A)−1B, the LMI in the last exercise is solvable iff there exists a q ∈ R

with
Re((1+ qiω)G(iω)) < 1 for all ω ∈ R ∪ {∞}.

This reveals the relation to the classical Popov criterion. Note that q is often assumed to be
nonnegative what is, actually, a redundant hypothesis. Show with an example that the extra
constraint q ≥ 0 (or ν ≥ 0 in the LMI) introduces conservatism. (Think of a smart test using
LMI-Lab to find an example.)

6. Find an LMI condition for global asymptotic stability of

ẋ = Ax +
k∑

j=1

BjLj (Cjx)

where the continuously differentiable Lj : R → R satisfy the sector conditions βjz2 ≤
zLj (z) ≤ αjz2 for all z ∈ R.
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Chapter 7

Robust controller synthesis

7.1 Robust controller design

So far we have presented techniques to design controllers for nominal stability and nominal per-
formance. Previous chapters have been devoted to a thorough discussion of how to analyze, for a
fixed stabilizing controller, robust stability or robust performance. For time-invariant or time-varying
parametric uncertainties, we have seen direct tests formulated as searching for constant or parameter-
dependent quadratic Lyapunov functions. For much larger classes of uncertainties, we have derived
tests in terms of integral quadratic constraints (IQC’s) that involve additional variables which have
been called scalings or multipliers.

Typically, only those IQC tests with a class of multipliers that admit a state-space description as
discussed in Sections 6.6-6.10 of Chapter 4 are amenable to a systematic output-feedback controller
design procedure which is a reminiscent of the D/K-iteration in µ-theory. This will be the first
subject of this chapter.

In a second section we consider as a particular information structure the robust state-feedback de-
sign problem. We will reveal that the search for static state-feedback gains which achieve robust
performance can be transformed into a convex optimization problem.

The discussion is confined to the quadratic performance problem since most results can be extended
in a pretty straightforward fashion to the other specifications considered in these notes.
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7.1.1 Robust output-feedback controller design

If characterizing robust performance by an IQC, the goal in robust design is to find a controller and
a multiplier such that, for the closed-loop system, the corresponding IQC test is satisfied. Hence, the
multiplier appears as an extra unknown what makes the problem hard if not impossible to solve.

However, if the multiplier is held fixed, searching for a controller amounts to a nominal design
problem that can be approached with the techniques described earlier. If the controller is held fixed,
the analysis techniques presented in Chapter 6 can be used to find a suitable multiplier. Hence, instead
of trying to search for a controller and a multiplier commonly, one iterates between the search for a
controller with fixed multiplier and the search for a multiplier with fixed controller. This procedure
is known from µ-theory as scalings/controller iteration or D/K iteration.

To be more concrete, we consider the specific example of achieving robust quadratic performance
against time-varying parametric uncertainties as discussed in Section 6.10.

The uncontrolled unperturbed system is described by (4.1.1). We assume that w1 → z1 is the
uncertainty channel and the uncontrolled uncertain system is described by including

w1(t) = L(t)z1(t)

where L(.) varies in the set of continuous curves satisfying

L(t) ∈ �c := co{L1, ..., LN } for all t ≥ 0.

We assume (w.l.o.g.) that

0 ∈ co{L1, ..., LN }.

The performance channel is assumed to be given by w2 → z2, and the performance index

Pp =
(
Qp Sp
STp Rp

)
, Rp ≥ 0 with the inverse P̃−1

p =
(
Q̃p S̃p

S̃Tp R̃p

)
, Q̃p ≤ 0

is used to define the quadratic performance specification

∫ ∞
0

(
w2(t)

z2(t)

)T
Pp

(
w2(t)

z2(t)

)
dt ≤ −ε‖w2‖22.

The goal is to design a controller that achieves robust stability and robust quadratic performance. We
can guarantee both properties by finding a controller, a Lyapunov matrix X, and a multiplier

P =
(
Q S

ST R

)
, Q < 0,

(
Lj

I

)T (
Q S

ST R

)(
Lj

I

)
> 0 for all j = 1, . . . , N (7.1.1)
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that satisfy the inequalities

X > 0,



I 0 0
XA XB1 XB2

0 I 0
C1 D1 D12

0 0 I

C2 D21 D2



T 

0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 STp Rp





I 0 0
XA XB1 XB2

0 I 0
C1 D1 D12

0 0 I

C2 D21 D2

 < 0.

(Recall that the condition on the left-upper block of P can be relaxed in particular cases what could
reduce the conservatism of the test.)

If we apply the controller parameter transformation of Chapter 4, we arrive at the synthesis matrix
inequalities

X(v) > 0,



∗
∗
∗
∗
∗
∗



T 

0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 STp Rp





I 0 0
A(v) B1(v) B2(v)

0 I 0
C1(v) D1(v) D12(v)

0 0 I

C2(v) D21(v) D2(v)

 < 0.

Unfortunately, there is no obvious way how to render these synthesis inequalities convex in all
variables v, Q, S, R.

This is the reason why we consider, instead, the problem with a scaled uncertainty

w1(t) = [rL(t)]z1(t), L(t) ∈ �c (7.1.2)

where the scaling factor is contained in the interval [0, 1]. Due to

(
rL

I

)T (
Q rS

rST r2R

)(
rL

I

)
= r2

(
L

I

)T (
Q S

ST R

)(
L

I

)
,

we conclude that the corresponding analysis or synthesis are given by (7.1.1) and

X > 0,



I 0 0
XA XB1 XB2

0 I 0
C1 D1 D12

0 0 I

C2 D21 D2



T 

0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q rS 0 0
0 0 rST r2R 0 0
0 0 0 0 Qp Sp
0 0 0 0 STp Rp





I 0 0
XA XB1 XB2

0 I 0
C1 D1 D12

0 0 I

C2 D21 D2

 < 0

(7.1.3)
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or

X(v) > 0,



∗
∗
∗
∗
∗
∗



T 

0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q rS 0 0
0 0 rST r2R 0 0
0 0 0 0 Qp Sp
0 0 0 0 STp Rp





I 0 0
A(v) B1(v) B2(v)

0 I 0
C1(v) D1(v) D12(v)

0 0 I

C2(v) D21(v) D2(v)

 < 0. (7.1.4)

For r = 0, we hence have to solve the nominal quadratic performance synthesis inequalities. If they
are not solvable, the robust quadratic performance synthesis problem is not solvable either and we
can stop. If they are solvable, the idea is to try to increase, keeping the synthesis inequalities feasible,
the parameter r from zero to one. Increasing r is achieved by alternatingly maximizing r over v
satisfying (7.1.4) (for fixed P ) and by varying X and P in (7.1.3) (for a fixed controller).

The maximization of r proceeds along the following steps:

Initialization. Perform a nominal quadratic performance design by solving (7.1.4) for r = 0. Proceed
if these inequalities are feasible and compute a corresponding controller.

After this initial phase, the iteration is started. The j − 1-st step of the iteration leads to a controller,
a Lyapunov matrix X, and a multiplier P that satisfy the inequalities (7.1.1) and (7.1.3) for the
parameter r = rj−1. Then it proceeds as follows:

First step: Fix the controller and maximize r by varying the Lyapunov matrix X and the scaling such
that such that (7.1.1) and (7.1.3) hold. The maximal radius is denoted as r̂j and it satisfies rj−1 ≤ r̂j .

Second step: Fix the resulting scaling P and find the largest r by varying the variables v in (7.1.4).
The obtained maximum rj clearly satisfies r̂j ≤ rj .

The iteration defines a sequence of radii

r1 ≤ r2 ≤ r3 ≤ · · ·
and a corresponding controller that guarantee robust stability and robust quadratic performance for
all uncertainties (7.1.2) with radius r = rj .

If we are in the lucky situation that there is an index for which rj ≥ 1, the corresponding controller
is robustly performing for all uncertainties with values in �c as desired, and we are done. However,
if rj < 1 for all indices, we cannot guarantee robust performance for r = 1, but we still have a
guarantee of robust performance for r = rj !

Before entering a brief discussion of this procedure, let us include the following remarks on the
start-up and on the computations. If the nominal performance synthesis problem has a solution, the
LMI’s (7.1.1)-(7.1.3) do have a solution X and P for the resulting controller and for some - possibly
small - r > 0; this just follows by continuity. Hence the iteration does not get stuck after the first
step. Secondly, for a fixed r , the first step of the iteration amounts to solving an analysis problem,
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and finding a solution v of (7.1.4) can be converted to an LMI problem. Therefore, the maximization
of r can be performed by bisection.

Even if the inequalities (7.1.1)-(7.1.4) are solvable for r = 1, it can happen the the limit of rj is
smaller than one. As a remedy, one could consider another parameter to maximize, or one could
modify the iteration scheme that has been sketched above. For example, it is possible to take the
fine structure of the involved functions into account and to suggest other variable combinations that
render the resulting iteration steps convex. Unfortunately, one cannot give general recommendations
for modifications which guarantee success.

Remark. It should be noted that the controller/multiplier iteration can be extended to all robust
performance tests that are based on families of dynamic IQC’s which are described by real rational
multipliers. Technically, one just requires a parametrization of the multipliers such that the corre-
sponding analysis test (for a fixed controller) and the controller synthesis (for a fixed multiplier) both
reduce to solving standard LMI problems.

7.1.2 Robust state-feedback controller design

For the same set-up as in the previous section we consider the corresponding synthesis problem if
the state of the underlying system is measurable. According to our discussion in Section 4.6, the
resulting synthesis inequalities read as

Q < 0,

(
Lj

I

)T (
Q S

ST R

)(
Lj

I

)
> 0 for all j = 1, . . . , N

and

Y > 0,



∗
∗
∗
∗
∗
∗



T 

0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 STp Rp





I 0 0
AY + BM B1 B2

0 I 0
C1Y + E1M D1 D12

0 0 I

C2Y + E1M D21 D2

 < 0

in the variables Y , M , Q, S, R.

In this form these inequalities are not convex. However, we can apply the Dualization Lemma (Section
4.5.1) to arrive at the equivalent inequalities

R̃ > 0,

(
I

−LT
j

)T (
Q̃ S̃

S̃T R̃

)(
I

−LT
j

)
< 0 for all j = 1, . . . , N
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and Y > 0,

∗



0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q̃ S̃ 0 0
0 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p

0 0 0 0 S̃Tp R̃p





−(AY + BM)T −(C1Y + E1M)T −(C2Y + E2M)T

I 0 0
−BT1 −DT

1 −DT
21

0 I 0
−BT2 −DT

12 −DT
2

0 0 I

> 0

in the variables Y , M , Q̃, S̃, R̃. It turns out that these dual inequalities are all affine in the unknowns.
Testing feasibility hence amounts to solving a standard LMI problem. If the LMI’s are feasible, a
robust static state-feedback gain is given by D = MY−1. This is one of the very few lucky instances
in the world of designing robust controllers!

7.1.3 Affine parameter dependence

Let us finally consider the system ẋ

z

y

 =
 A(L(t)) B1(L(t)) B(L(t))

C1(L(t)) D(L(t)) E(L(t))

C(L(t)) F (L(t)) 0

 x

w

u

 , L(t) ∈ co{L1, ..., LN }

where the describing matrices depend affinely on the time-varying parameters. If designing output-
feedback controllers, there is no systematic alternative to pulling out the uncertainties and applying
the scalings techniques as in Section 7.1.1.

For robust state-feedback design there is an alternative without scalings. One just needs to directly
solve the system of LMI’s

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp
0 0 STp Rp




I 0
A(Lj )Y + B(Lj )M B1(Lj )

0 I

C1(Lj )Y + E(Lj )M D(Lj )

 < 0, j = 1, . . . , N

(7.1.5)
in the variables Y and M .

For the controller gain Dc = MY−1 we obtain

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp
0 0 STp Rp




I 0
(A(Lj )+ B(Lj )Dc)Y B1(Lj )

0 I

(C1(Lj )+ E(Lj )Dc)Y D(Lj )

 < 0, j = 1, . . . , N
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A convexity argument leads to

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp
0 0 STp Rp




I 0
(A(L(t))+ B(L(t))Dc)Y B1(L(t))

0 I

(C1(L(t))+ E(L(t))Dc)Y D(L(t))

 < 0

for all parameter curves L(t) ∈ co{L1, ..., LN }, and we can perform a congruence transformation
as in Section 4.6 to get

X > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp
0 0 STp Rp




I 0
X(A(L(t))+ B(L(t))Dc) XB1(L(t))

0 I

(C1(L(t))+ E(L(t))Dc) D(L(t))

 < 0.

These two inequalities imply, in turn, robust exponential stability and robust quadratic performance
for the controlled system as seen in Section 6.10.2.

We have proved that it suffices to directly solve the LMI’s (7.1.5) to compute a robust static state-
feedback controller. Hence, if the system’s parameter dependence is affine, we have found two
equivalent sets of synthesis inequalities that differ in the number of the involved variables and in the
sizes of the LMI’s that are involved. In practice, the correct choice is dictated by whatever system
can be solved faster, more efficiently, or numerically more reliably.

Remark. Here is the reason why it is possible to directly solve the robust performance problem by
state-feedback without scalings, and why this technique does, unfortunately, not extend to output-
feedback control: The linearizing controller parameter transformation for state-feedback problems
does not involve the matrices that describe the open-loop system, whereas that for that for ouptut-
feedback problems indeed depends on the matrices A, B, C of the open-loop system description.

Let us conclude this chapter by stressing, again, that these techniques find straightforward extensions
to other performance specifications. As an exercise, the reader is asked to work out the details of the
corresponding results for the robust H2-synthesis problem by state- or output-feedback.

7.2 Exercises

Exercise 1

This is an exercise on robust control. To reduce the complexity of programming, we consider a
non-dynamic system only.
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Suppose you have given the algebraic uncertain system

z1
z2
z3
z4

z

y1
y2


=



0 1 0 1 1 1 0
0.5 0 0.5 0 1 0 1
2a 0 a 0 1 0 0
0 −2a 0 −a 1 0 0
1 1 1 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0





w1
w2
w3
w4

w

u1
u2


,

with a time-varying uncertainty
w1
w2
w3
w4

 =

δ1(t) 0

δ1(t)

δ2(t)

0 δ2(t)



z1
z2
z3
z4

 , |δ1(t)| ≤ 0.7, |δ2(t)| ≤ 0.7.

As the performance measure we choose the L2-gain of the channel w→ z.

1. For the uncontrolled system and for each a ∈ [0, 1], find the minimal robust L2-gain level of
the channel w → z by applying the robust performance analysis test in Chapter 3 with the

following class of scalings P =
(
Q S

ST R

)
:

• P is as in µ-theory: Q, S, R are block-diagonal, Q < 0, R is related to Q (how?), and
S is skew-symmetric.

• P is general with Q < 0.

• P is general with Q1 < 0, Q2 < 0, where Qj denote the blocks Q(1 : 2, 1 : 2) and
Q(3 : 4, 3 : 4) in Matlab notation.

Draw plots of the corresponding optimal values versus the parameter a and comment!

2. For a = 0.9, apply the controller(
u1
u2

)
=
(

0 0
0 k

)(
y1
y2

)
and perform the analysis test with the largest class of scalings for k ∈ [−1, 1]. Plot the resulting
optimal value over k and comment.

3. Perform a controller/scaling iteration to minimize the optimal values for the controller structures(
u1
u2

)
=
(

0 0
0 k2

)(
y1
y2

)
and

(
u1
u2

)
=
(
k1 k12
k21 k2

)(
y1
y2

)
.

Start from gain zero and plot the optimal values that can are reached in each step of the iteration
to reveal how they decrease. Comment on the convergence.

4. With the last full controller from the previous exercise for a performance level that is close to
the limit, redo the analysis of the first part. Plot the curves and comment.
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Chapter 8

Linear parameterically varying
systems

Linear parameterically varying (LPV) systems are linear systems whose describing matrices depend
on a time-varying parameter such that both the parameter itself and its rate of variation are known to
be contained in pre-specified sets.

In robust control, the goal is to find one fixed controller that achieves robust stability and robust
performance for all possible parameter variations, irrespective of which specific parameter curve
does indeed perturb the system.

Instead, in LPV control, it is assumed that the parameter (and, possibly, its rate of variation), although
not known a priori, is (are) on-line measurable. Hence the actual parameter value (and its derivative)
can be used as extra information to control the system - the controller will turn out to depend on the
parameter as well. We will actually choose also an LPV structure for the controller to be designed.

We would like to stress the decisive distinction to the control of time-varying systems: In the standard
techniques to controlling time-varying systems, the model description is assumed to be known a priori
over the whole time interval [0,∞). In LPV control, the model is assumed to be known, at time
instant t , only over the interval [0, t].
The techniques we would like to develop closely resemble those for robust control we have investigated
earlier. It is possible to apply them

• to control certain classes of nonlinear systems

• to provide a systematic procedure for gain-scheduling

with guarantees for stability and performance.
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Before we explore these applications in more detail we would like to start presenting the available
problem setups and solution techniques to LPV control.

8.1 General Parameter Dependence

Suppose that δc, δ̇c ⊂ Rm are two parameter sets such that

δc × δ̇c is compact,

and that the matrix valued function A(p) Bp(p) B(p)

Cp(p) Dp(p) E(p)

C(p) F (p) 0

 is continuous in p ∈ δc. (8.1.1)

Consider the Linear Parameterically Varying (LPV) system that is described as ẋ

zp
y

 =
 A(δ(t)) Bp(δ(t)) B(δ(t))

Cp(δ(t)) Dp(δ(t)) E(δ(t))

C(δ(t)) F (δ(t)) 0

 x

wp
u

 , δ(t) ∈ δc, δ̇(t) ∈ δ̇c. (8.1.2)

We actually mean the family of systems that is obtained if letting δ(.) vary in the set of continuously
differentiable parameter curves

δ : [0,∞)→ Rm with δ(t) ∈ δc, δ̇(t) ∈ δ̇c for all t ≥ 0.

The signals admit the same interpretations as in Chapter 4: u is the control input, y is the measured
output available for control, and wp → zp denotes the performance channel.

In LPV control, it is assumed that the parameter δ(t) is on-line measurable. Hence the actual value
of δ(t) can be taken as extra information for the controller to achieve the desired design goal.

In view of the specific structure of the system description, we assume that the controller admits a
similar structure. In fact, an LPV controller is defined by functions(

Ac(p) Bc(p)

Cc(p) Dc(p)

)
that are continuous in p ∈ δc (8.1.3)

as (
ẋc
u

)
=
(
Ac(δ(t)) Bc(δ(t))

Cc(δ(t)) Dc(δ(t))

)(
xc
y

)
with the following interpretation: It evolves according to linear dynamics that are defined at time-
instant t via the actually measured value of δ(t).

Note that a robust controller would be simply defined with a constant matrix(
Ac Bc
Cc Dc

)
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that does not depend on δwhat clarifies the difference between robust controllers and LPV controllers.

The controlled system admits the description(
ξ̇

zp

)
=
(

A(δ(t)) B(δ(t))

C(δ(t)) D(δ(t))

)(
ξ

wp

)
, δ(t) ∈ δc, δ̇(t) ∈ δ̇c (8.1.4)

where the function (
A(p) B(p)

C(p) D(p)

)
is continuous in p ∈ δc

and given as A(p)+ B(p)Dc(p)C(p) B(p)Cc(p) Bp(p)+ B(p)Dc(p)F (p)

Bc(p)C(p) Ac(p) Bc(p)F (p)

Cp(p)+ E(p)Dc(p)C(p) E(p)Cc(p) Dp(p)+ E(p)Dc(p)F (p)


or  A(p) 0 Bp(p)

0 0 0
Cp(p) 0 Dp(p)

+
 0 B(p)

I 0
0 E(p)

(
Ac(p) Bc(p)

Cc(p) Dc(p)

)(
0 I 0

C(p) 0 F(p)

)
.

To evaluate performance, we concentrate again on the quadratic specification∫ ∞
0

(
w(t)

z(t)

)T
Pp

(
w(t)

z(t)

)
dt ≤ −ε‖w‖22 (8.1.5)

with an index

Pp =
(
Qp Sp
STp Rp

)
, Rp ≥ 0 that has the inverse P̃−1

p =
(
Q̃p S̃p

S̃Tp R̃p

)
, Q̃p ≤ 0.

In order to abbreviate the formulation of the analysis result we introduce the following differential
operator.

Definition 8.1 If X : δc , p → X(p) ∈ Rn×n is continuously differentiable, the continuous
mapping

∂X : δc × δ̇c → Rn×n is defined as ∂X(p, q) :=
m∑
j=1

∂X

∂pj
(p)qj .

Note that this definition is simply motivated by the fact that, along any continuously differentiable
parameter curve δ(.), we have

d

dt
X(δ(t)) =

m∑
j=1

∂X

∂pj
(δ(t))δ̇j (t) = ∂X(δ(t), δ̇(t)). (8.1.6)
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(We carefully wrote down the definitions and relations, and one should read all this correctly. X

and ∂X are functions of the parameters p ∈ δc and q ∈ δ̇c respectively. In the definition of ∂X, no
time-trajectories are involved. The definition of ∂X is just tailored to obtain the property (8.1.6) if
plugging in a function of time.)

In view of the former discussion, the following analysis result comes as no surprise.

Theorem 8.2 Suppose there exists a continuously differentiable X(p) defined for p ∈ δc such that
for all p ∈ δc and q ∈ δ̇c one has

X(p) > 0,

(
∂X(p, q)+A(p)TX(p)+X(p)A(p) X(p)B(p)

B(p)TX(p) 0

)
+

+
(

0 I

C(p) D(p)

)T
Pp

(
0 I

C(p) D(p)

)
< 0. (8.1.7)

Then there exists an ε > 0 such that, for each parameter curve with δ(t) ∈ δc and δ̇(t) ∈ δ̇c,
the system (8.1.4) is exponentially stable and satisfies (8.1.5) if the initial condition is zero and if
wp ∈ L2.

In view of our preparations the proof is a simple exercise that is left to the reader.

We can now use the same procedure as for LTI systems to arrive at the corresponding synthesis result.
It is just required to obey that all the matrices are actually functions of p ∈ δc or of (p, q) ∈ δc × δ̇c.
If partitioning

X =
(

X U

UT ∗
)
, X−1 =

(
Y V

V T ∗
)
,

we can again assume w.l.o.g. that U , V have full row rank. (Note that this requires the compactness
hypothesis on δc and δ̇c. Why?) With

Y =
(

Y I

V T 0

)
and Z =

(
I 0
X U

)
we obtain the identities

YTX = Z and I −XY = UV T .

If we apply the differential operator ∂ to the first functional identity, we arrive at (∂Y)TX+YT (∂X) =
∂Z. (Do the simple calculations. Note that ∂ is not the usual differentiation such that you cannot
apply the standard product rule.) If we right-multiply Y, this leads to

YT (∂X)Y = (∂Z)Y − (∂Y)TZT =
(

0 0
∂X ∂U

)(
Y I

V T 0

)
−
(
∂Y ∂V

0 0

)(
I X

0 UT

)
and hence to

YT (∂X)Y =
( −∂Y −(∂Y )X − (∂V )UT

(∂X)Y + (∂U)V T ∂X

)
.
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If we introduce the transformed controller parameters(
K L

M N

)
=
(
U XB

0 I

)(
Ac Bc
Cc Dc

)(
V T 0
CY I

)
+
(
XAY 0

0 0

)
+

+
(
(∂X)Y + (∂U)V T 0

0 0

)
,

a brief calculation reveals that

YT (∂X+ATX+XA)Y =
( −∂Y + sym (AY + BM) (A+ BNC)+KT

(A+ BNC)T +K ∂X + sym (AX + LC)
)

YTXB =
(
Bp + BNF
XBp + LF

)
, CY = (

CpY + EM Cp + ENC
)
, D = Dp + ENF

where we used again the abbreviation sym (M) = M+MT . If compared to a parameter independent
Lyapunov function, we have modified the transformation to K by (∂X)Y + (∂U)V T in order to
eliminate this extra term that appears from the congruence transformation of ∂X. If X is does not
depend on p, ∂X vanishes identically and the original transformation is recovered.

We observe that L, M , N are functions of p ∈ δc only, whereas K also depends on q ∈ δ̇c. In fact,
this function has the structure

K(p, q) = K0(p)+
m∑
i=1

Ki(p)qi (8.1.8)

(why?) and, hence, it is fully described by specifying

Ki(p), i = 0, 1, . . . , m

that depend, as well, on p ∈ δc only.

Literally as in Theorem 4.3 one can now prove the following synthesis result for LPV systems.

Theorem 8.3 If there exists an LPV controller defined by (8.1.3) and a continuously differentiable
X(.) defined for p ∈ δc that satisfy (8.1.7), then there exist continuously differentiable functions
X, Y and continuous functions Ki , L, M , N defined on δc such that, with K given by (8.1.8), the
inequalities (

Y I

I X

)
> 0 (8.1.9)

and −∂Y + sym (AY + BM) (A+ BNC)+KT Bp + BNF
(A+ BNC)T +K ∂X + sym (AX + LC) XBp + LF
(Bp + BNF)T (XBp + LF)T 0

+
+
( ∗
∗
)T

Pp

(
0 0 I

CpY + EM Cp + ENC Dp + ENF
)
< 0 (8.1.10)
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8.1. GENERAL PARAMETER DEPENDENCE

hold on δc × δ̇c. Conversely, suppose the continuously differentiable X, Y and the continuous
Ki , defining K as in (8.1.8), L, M , N satisfy these synthesis inequalities. Then one can factorize
I −XY = UV T with continuously differentiable square and nonsingular U , V , and

X =
(
Y V

I 0

)−1 (
I 0
X U

)
(8.1.11)(

Ac Bc
Cc Dc

)
=
(
U XB

0 I

)−1 (
K −XAY − [(∂X)Y + (∂U)V T ] L

M N

)(
V T 0
CY I

)−1

(8.1.12)

render the analysis inequalities (8.1.7) satisfied.

Remark. Note that the formula (8.1.12) just emerges from the modified controller parameter trans-
formation. We observe that the matrices Bc, Cc, Dc are functions of p ∈ δc only. Due to the
dependence of K on q and due to the extra term U−1[(∂X)Y + (∂U)V T ]V −T in the formula for Ac,
this latter matrix is a function that depends both on p ∈ δc and q ∈ δ̇c. It has the same structure as
K and can be written as

Ac(p, q) = A0(p)+
m∑
i=1

Ai(p)qi .

A straightforward calculation reveals that

Ai = U−1[KiV
−T − ∂X

∂pi
YV −T − ∂U

∂pi
], i = 1, . . . , m.

Hence, to implement this controller, one indeed requires not only to measure δ(t) but also its rate
of variation δ̇(t). However, one could possibly exploit the freedom in choosing U and V to render
Ai = 0 such that Ac does not depend on q any more. Recall that U and V need to be related by
I −XY = UV T ; hence let us choose

V T := U−1(I −XY).
This leads to

Ai = U−1[(Ki − ∂X

∂pi
Y )(I −XY)−1U − ∂U

∂pi
], i = 1, . . . , m.

Therefore,U should be chosen as a nonsingular solution of the system of first order partial differential
equations

∂U

∂pi
(p) = [Ki(p)− ∂X

∂pi
(p)Y (p)](I −X(p)Y (p))−1U(p), j = 1, . . . , m.

This leads toAi = 0 such that the implementation of the LPV controller does not require any on-line
measurements of the rate of the parameter variations. First order partial differential equations can be
solved by the method of characteristics [10]. We cannot go into further details at this point.

In order to construct a controller that solves the LPV problem, one has to verify the solvability of the
synthesis inequalities in the unknown functions X, Y , Ki , L, M , N , and for designing a controller,
one has to find functions that solve them.
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8.1. GENERAL PARAMETER DEPENDENCE

However, standard algorithms do not allow to solve functional inequalities directly. Hence we need
to include a discussion of how to reduce these functional inequalities to finitely many LMI’s in real
variables.

First step. Since q ∈ δ̇c enters the inequality (8.1.10) affinely, we can replace the set δ̇c, if convex,
by its extreme points. Let us make the, in practice non-restrictive, assumption that this set has finitely
many generators:

δ̇c = co{δ̇1, . . . , δ̇k}.
Solving (8.1.9)-(8.1.10) over (p, q) ∈ δc × δ̇c is equivalent to solving (8.1.9)-(8.1.10) for

p ∈ δc, q ∈ {δ̇1, . . . , δ̇k}. (8.1.13)

Second step. Instead of searching over the set of all continuous functions, we restrict the search to a
finite dimensional subspace thereof, as is standard in Ritz-Galerkin techniques. Let us hence choose
basis functions

f1(.), . . . , fl(.) that are continuously differentiable on δc.

Then all the functions to be found are assumed to belong to the subspace spanned by the functions
fj . This leads to the Ansatz

X(p) =
l∑

j=1

Xjfj (p), Y (p) =
l∑

j=1

Yjfj (p)

Ki(p) =
l∑

j=1

Ki
jfj (p), i = 0, 1, . . . , m,

L(p) =
l∑

j=1

Ljfj (p), M(p) =
l∑

j=1

Mjfj (p), N(p) =
l∑

j=1

Njfj (p).

We observe

∂X(p, q) =
l∑

j=1

Xj ∂fj (p, q), ∂Y (p, q) =
l∑

j=1

Yj ∂fj (p, q).

If we plug these formulas into the inequalities (8.1.9)-(8.1.10), we observe that all the coefficient
matrices enter affinely. After this substitution, (8.1.9)-(8.1.10) turns out to be a family of linear matrix
inequalities in the

matrix variables Xj , Yj ,K
i
j , Lj ,Mj ,Nj

that is parameterized by (8.1.13). The variables of this system of LMI’s are now real numbers;
however, since the parameter p still varies in the infinite set δc, we have to solve infinitely many
LMI’s. This is, in fact, a so-called semi-infinite (not infinite dimensional as often claimed) convex
optimization problem.
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Third step. To reduce the semi-infinite system of LMI’s to finitely many LMI’s, the presently chosen
route is to just fix a finite subset

δfinite ⊂ δc

and solve the LMI system in those points only. Hence the resulting family of LMI’s is parameterized
by

p ∈ δfinite and q ∈ {δ̇1, . . . , δ̇k}.
We end up with a finite family of linear matrix inequalities in real valued unknowns that can be
solved by standard algorithms. Since a systematic choice of points δfinite is obtained by gridding the
parameter set, this last step is often called the gridding phase, and the whole procedure is said to be
a gridding technique.

Remark on the second step. Due to Weierstraß’ approximation theorem, one can choose a sequence
of functions f1, f2, . . . on δc such that the union of the subspaces

Sν = span{f1, . . . , fν}
is dense in the set of all continuously differentiable mappings on δc with respect to the norm

‖f ‖ = max{|f (p)| | p ∈ δc} +
m∑
j=1

max{| ∂f
∂pj

(p)| | p ∈ δc}.

This implies that, given any continuously differentiable g on δc and any accuracy level ε > 0, one
can find an index ν0 such that there exists an f ∈ Sν0 for which

∀p ∈ δc, q ∈ δ̇c : |g(p)− f (p)| ≤ ε, |∂g(p, q)− ∂f (p, q)| ≤ ε.
(Provide the details.) Functions in the subspace Sν hence approximate any function g and its image
∂g under the differential operator ∂ up to arbitrary accuracy, if the index ν is chosen sufficiently large.

Therefore, if (8.1.9)-(8.1.10) viewed as functional inequalities do have a solution, then they have a
solution if restricting the search over the finite dimensional subspace Sν for sufficiently large ν, i.e., if
incorporating sufficiently many basis functions. However, the number of basis functions determines
the number of variables in the resulting LMI problem. To keep the number of unknowns small
requires an efficient choice of the basis functions what is, in theory and practice, a difficult problem
for which one can hardly give any general recipes.

Remark on the third step. By compactness of δc and continuity of all functions, solving the LMI’s
for p ∈ δc or for p ∈ δfinite is equivalent if only the points are chosen sufficiently dense. A measure
of density is the infimal ε such that the balls of radius ε around each of the finitely many points in
δfinite already cover δc:

δc ⊂
⋃

p0 ∈ δfinite

{u | ‖p − p0‖ ≤ ε}.

If the data functions describing the system are also differentiable in δ, one can apply the mean value
theorem to provide explicit estimates of the accuracy of the required approximation. Again, however,
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it is important to observe that the number of LMI’s to solve depends on the number of grid-points;
hence one has to keep this number small in order to avoid large LMI’s.

Remark on extensions. Only slight adaptations are required to treat all the other performance
specifications (such as bounds on the L2-gain and on the analogue of the H2-norm or generalized
H2-norm for time-varying systems) as well as the corresponding mixed problems as discussed in
Chapter 4 in full generality. Note also that, for single-objective problems, the techniques to eliminate
parameters literally apply; there is no need go into the details. In particular for solving gain-scheduling
problems, it is important to observe that one can as well let the performance index depend on the
measured parameter without any additional difficulty. As a designer, one can hence ask different
performance properties in different parameter ranges what has considerable relevance in practical
controller design.

Remark on robust LPV control. As another important extension we mention robust LPV design.
It might happen that some parameters are indeed on-line measurable, whereas others have to be
considered as unknown perturbations with which the controller cannot be scheduled. Again, it is
straightforward to extend the robustness design techniques that have been presented in Chapter 4
from LTI systems and controllers to LPV systems and controllers. This even allows to include
dynamic uncertainties if using IQC’s to capture their properties. Note that the scalings that appear
in such techniques constitute extra problem variables. In many circumstances it causes no extra
technical difficulties to let these scalings also depend on the scheduling parameter what reduces the
conservatism.

8.2 Affine Parameter Dependence

Suppose that the matrices (8.1.1) describing the system are affine functions on the set

δc = co{δ1, . . . , δk}.
In that case we intend to search, as well, for an LPV controller that is defined with affine functions
(8.1.3). Note that the describing matrices for the cosed-loop system are also affine in the parameter
if (

B

E

)
and

(
C F

)
are parameter independent

what is assumed from now on. Finally, we let X in Theorem 8.2 be constant.

Since Rp ≥ 0, we infer that (8.1.7) is satisfied if and only if it holds for the generators p = δj of the
set δc. Therefore, the analysis inequalities reduce to the finite set of LMI’s

X > 0,

(
A(δj )TX+XA(δj ) XB(δj )

B(δj )TX 0

)
+

+
(

0 I

C(δj ) D(δj )

)T
Pp

(
0 I

C(δj ) D(δj )

)
< 0 for all j = 1, . . . , k.
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Under the present structural assumptions, the affine functions

(
Ac Bc
Cc Dc

)
are transformed into affine

functions

(
K L

M N

)
under the controller parameter transformation as considered in the previous

section.

Then the synthesis inequalities (8.1.9)-(8.1.10) whose variables are the constant X and Y and the

affine functions

(
K L

M N

)
turn out to be affine in the parameter p. This implies for the synthesis

inequalities that we can replace the search over δc without loss of generality by the search over the
generators δj of this set. Therefore, solving the design problem amounts to testing whether the LMI’s(

Y I

I X

)
> 0

and sym
(
A(δj )Y + BM(δj )

) ∗ ∗
(A(δj )+ BN(δj )C)T +K(δj ) sym

(
A(δj )X + L(δj )C) ∗

(Bp(δ
j )+ BN(δj )F )T (XBp(δ

j )+ L(δj )F )T 0

+
+
( ∗
∗
)T

Pp

(
0 0 I

Cp(δ
j )Y + EM(δj ) Cp(δ

j )+ EN(δj )C Dp(δ
j )+ EN(δj )F

)
< 0

for j = 1, . . . , k admit a solution.

Since affine, the functions K , L, M , N are parameterized as(
K(p) L(p)

M(p) N(p)

)
=
(
K0 L0
M0 N0

)
+

m∑
i=1

(
Ki Li
Mi Ni

)
pi

with real matrices Ki , Li , Mi , Ni . Hence, the synthesis inequalities form genuine linear matrix
inequalities that can be solved by standard algorithms.

8.3 LFT System Description

Similarly as for our discussion of robust controller design, let us assume in this section that the LPV
system is described as and LTI system

ẋ

zu
zp
y

 =


A Bu Bp B

Cu Duu Dup Eu
Cp Dpu Dpp Ep
C Fu Fp 0




x

wu
wp
u

 (8.3.1)

in wich the parameter enters via the uncertainty channel wu→ zu as

wu(t) = L(t)zu(t), L(t) ∈ �c. (8.3.2)
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The size and the structure of the possible parameter values L(t) is captured by the convex set

�c := co{L1, ..., LN }
whose generatorsLj are given explicitly. We assume w.l.o.g. that 0 ∈ �c. As before, we concentrate
on the quadratic performance specification with index Pp imposed on the performance channel
wp → zp.

Adjusted to the structure of (8.3.1)-(8.3.2), we assume that the measured parameter curve enters the
controller also in a linear fractional fashion. Therefore, we assume that the to-be-designed LPV
controller is defined by scheduling the LTI system

ẋc = Acxc + Bc
(

y

wc

)
,

(
u

zc

)
= Ccxc +Dc

(
y

wc

)
(8.3.3)

with the actual parameter curve entering as

wc(t) = Lc(L(t))zc(t). (8.3.4)

The LPV controller is hence parameterized through the matrices Ac, Bc, Cc, Dc, and through a
possibly non-linear matrix-valued scheduling function

Lc(L) ∈ Rnr×nc defined on �c.

Figure 8.1 illustrates this configuration.

The goal is to construct an LPV controller such that, for all admissible parameter curves, the controlled
system is exponentially stable and, the quadratic performance specification with index Pp for the
channel wp → zp is satisfied.

The solution of this problem is approached with a simple trick. In fact, the controlled system can,
alternatively, be obtained by scheduling the LTI system

ẋ

zu
zc
zp
y

wc

 =


A Bu 0 Bp B 0
Cu Duu 0 Dup Eu 0
0 0 0 0 0 Inc
Cp Dpu 0 Duu Ep 0
C Fu 0 Fp 0 0
0 0 Inr 0 0 0





x

wu
wc
wp
u

zc

 (8.3.5)

with the parameter as (
w1
wc

)
=
(
L(t) 0

0 Lc(L(t))

)(
z1
zc

)
, (8.3.6)

and then controlling this parameter dependent system with the LTI controller (8.3.3). Alternatively,
we can interconnect the LTI system (8.3.5) with the LTI controller (8.3.3) to arrive at the LTI system

ẋ

zu
zc
zp

 =


A Bu Bc Bp

Cu Duu Duc Dup

Cc Dcu Dcc Dcp

Cp Dpu Dpc Dpp




x

wu
wc
wp

 , (8.3.7)
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Figure 8.1: LPV system and LPV controller with LFT description

and then re-connect the parameter as (8.3.6). This latter interconnection order is illustrated in Figure
8.2.

Note that (8.3.5) is an extension of the original system (8.3.1) with an additional uncertainty channel
wc → zc and with an additional control channel zc → wc; the number nr and nc of the components
of wc and zc dictate the size of the identity matrices Inr and Inc that are indicated by their respective
indices.

Once the scheduling function Lc(L) has been fixed, it turns out that (8.3.3) is a robust controller
for the system (8.3.5) with uncertainty (8.3.6). The genuine robust control problem in which the
parameter is not measured on-line would relate to the situation that nr = 0 and nc = 0 such that
(8.3.5) and (8.3.1) are identical. In LPV control we have the extra freedom of being able to first
extend the system as in (8.3.5) and design for this extended system a robust controller. It will turn
out that this extra freedom will render the corresponding synthesis inequalities convex.

Before we embark on a solution of the LPV problem, let us include some further comments on the
corresponding genuine robust control problem. We have seen in section 7.1.1 that the search for a
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Figure 8.2: LPV system and LPV controller: Alternative Interpretation

robust controller leads to the problem of having to solve the matrix inequalities

X(v) > 0,



∗
∗
∗
∗
∗
∗



T 

0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 STp Rp





I 0 0
A(v) Bu(v) Bp(v)

0 I 0
Cu(v) Duu(v) Dup(v)

0 0 I

Cp(v) Dpu(v) Dpp(v)

 < 0

(
L

I

)T (
Q S

ST R

)(
L

I

)
> 0 for all L ∈ �c

in the parameter v and in the multiplier P =
(
Q S

ST R

)
.

Recall from our earlier discussion that one of the difficulties is a numerical tractable parameterization
of the set of multipliers. This was the reason to introduce, at the expense of conservatism, the
following subset of multipliers that admits a description in terms of finitely many LMI’s:

P :=
{
P =

(
Q S

ST R

)
|Q < 0,

(
Lj

I

)T
P

(
Lj

I

)
> 0 for j = 1, . . . , N

}
. (8.3.8)

Even after confining the search to v and P ∈ P , no technique is known how to solve the resulting
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still non-convex synthesis inequalities by standard algorithms.

In contrast to what we have seen for state-feedback design, the same is true of the dual inequalities
that read as

X(v) > 0,



∗
∗
∗
∗
∗
∗



T


0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q̃ S̃ 0 0
X 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p

0 0 0 0 S̃Tp R̃p





−A(v)T −Cu(v)
T −Cp(v)

T

I 0 0
−Bu(v)

T −Duu(v)
T −Dpu(v)

T

0 I 0
−Bp(v)

T −Dup(v)
T −Dpp(v)

T

0 0 I

 > 0

(
I

−LT

)T (
Q̃ S̃

S̃T R̃

)(
I

−LT

)
< 0 for all L ∈ �c.

Again, even confining the search to the set of multipliers

P̃ :=
{
P̃ =

(
Q̃ S̃

S̃T R̃

)
| R̃ > 0,

(
I

−LT
j

)T
P̃

(
I

−LT
j

)
< 0 for j = 1, . . . , N

}
(8.3.9)

does not lead to a convex feasibility problem.

Since non-convexity is caused by the multiplication of functions that depend on vwith the multipliers,
one could be lead to the idea that it might help to eliminate as many of the variables that are involved
in v as possible. We can indeed apply the technique exposed in Section 4.5.3 and eliminate K , L,
M , N .

For that purpose one needs to compute basis matrices

N =
 N1

N2

N3

 of ker
(
BT ET

u ET
p

)
and O =

 O1

O2

O3

 of ker
(
C Fu Fp

)
respectively. After elimination, the synthesis inequalities read as(

Y I

I X

)
> 0, (8.3.10)

OT



I 0 0
A Bu Bp
0 I 0
Cu Duu Dup

0 0 I

Cp Dpu Dpp



T 

0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp
0 0 0 0 STp Rp





I 0 0
A Bu Bp
0 I 0
Cu Duu Dup

0 0 I

Cp Dpu Dpp

O < 0, (8.3.11)
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NT



−AT −CTu −CTp
I 0 0
−BTu −DT

uu −DT
pu

0 I 0
−BTp −DT

pu −DT
pp

0 0 I



T


0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q̃ S̃ 0 0
0 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p

0 0 0 0 S̃Tp R̃p





−AT −CTu −CTp
I 0 0
−BTu −DT

uu −DT
pu

0 I 0
−BTp −DT

pu −DT
pp

0 0 I

N > 0

(8.3.12)
in the variables X, Y , and in the multiplier P and P̃ that are coupled as

P̃ =
(
Q̃ S̃

S̃T R̃

)
=
(
Q S

ST R

)−1

= P−1. (8.3.13)

Hence, after elimination, it turns out that the inequalities (8.3.10)-(8.3.12) are indeed affine in the
unknownsX, Y , P and P̃ . Unfortunately, non-convexity re-appears through the coupling (8.3.13) of
the multipliers P and P̃ .

Let us now turn back to the LPV problem where we allow, via the scheduling function Lc(L) in the
controller, extra freedom in the design process.

For guaranteeing stability and performance of the controlled system, we employ extended multipliers
adjusted to the extended uncertainty structure (8.3.6) that are given as

Pe =
(
Qe Se

STe Re

)
=


Q Q12 S S12
Q21 Q22 S21 S22

∗ ∗ R R12
∗ ∗ R21 R22

 with Qe < 0, Re > 0 (8.3.14)

and that satisfy 
L 0
0 Lc(L)

I 0
0 I

Pe


L 0
0 Lc(L)

I 0
0 I

 > 0 for all L ∈ �. (8.3.15)

The corresponding dual multipliers P̃e = P−1
e are partitioned similarly as

P̃e =
(
Q̃e S̃e

S̃Te R̃e

)
=


Q̃ Q̃12 S̃ S̃12

Q̃21 Q̃22 S̃21 S̃22

∗ ∗ R̃ R̃12

∗ ∗ R̃21 R̃12

 with Q̃e < 0, R̃e > 0 (8.3.16)

and they satisfy
I 0
0 I

−LT 0
0 −Lc(L)

T


T

Pe


I 0
0 I

−LT 0
0 −Lc(L)

T

 > 0 for all L ∈ �.
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As indicated by our notation, we observe that(
Q S

ST R

)
∈ P and

(
Q̃ S̃

S̃T R̃

)
∈ P̃

for the corresponding sub-matrices of Pe and P̃e respectively.

If we recall the description (8.3.6)-(8.3.7) of the controlled LPV system, the desired exponential
stability and quadratic performance property is satisfied if we can find a Lyapunov matrix X and an
extended scaling Pe with (8.3.14)-(8.3.15) such that

X > 0,



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp
0 0 0 0 0 0 STp Rp





I 0 0 0
A Bu Bc Bp

0 I 0 0
0 0 I 0
Cu Duu Duc Dup

Cc Dcu Dcc Dcp

0 0 0 I

Cp Dpu Dpc Dpp


< 0.

(8.3.17)

We are now ready to formulate an LMI test for the existence of an LPV controller such that the
controlled LPV system fulfills this latter analysis test.

Theorem 8.4 The following statements are equivalent:

1. There exists a controller (8.3.3) and a scheduling functionLc(L) such that the controlled system
as described by (8.3.4)-(8.3.7) admits a Lyapunov matrix X and a multiplier (8.3.14)-(8.3.15)
that satisfy (8.3.17).

2. There exist X, Y and multipliers P ∈ P , P̃ ∈ P̃ that satisfy the linear matrix inequalities
(8.3.10)-(8.3.12).

Proof. Let us first prove 1 ⇒ 2. We can apply the technique as described in Section 4.5.3 to
eliminate the controller parameters in the inequality (8.3.17). According to Corollary 4.15, this leads
to the coupling condition (4.5.24) and to the two synthesis inequalities (4.5.25)-(4.5.26). The whole
point is to show that the latter two inequalities can indeed be simplified to (8.3.11)-(8.3.12). Let us
illustrate this simplification for the first inequality only since a duality argument leads to the same
conclusions for the second one.

With

Oe =


O1

O2

0
O3

 as a basis matrix of ker

(
C Fu 0 Fp
0 0 Inr 0

)
,
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the inequality that corresponds to (4.5.24) reads as

OT
e



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp
0 0 0 0 0 0 STp Rp





I 0 0 0
A Bu 0 Bp
0 I 0 0
0 0 I 0
Cu Duu 0 Dup

0 0 0 0
0 0 0 I

Cp Dpu Dpc Dpp


Oe < 0.

Due to the zero block in Oe, it is obvious that this is the same as

OT



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp
0 0 0 0 0 0 STp Rp





I 0 0
A Bu Bp
0 I 0
0 0 0
Cu Duu Dup

0 0 0
0 0 I

Cp Dpu Dpp


O < 0.

The two zero block rows in the outer factors allow to simplify this latter inequality to (8.3.11), what
finishes the proof of 1⇒ 2.

The constructive proof of 2⇒ 1 is more involved and proceeds in three steps. Let us assume that we
have computed solutions X, Y and P ∈ P , P̃ ∈ P̃ with (8.3.10)-(8.3.12).

First step: Extension of Scalings. Since P ∈ P and P̃ ∈ P̃ , let us recall that we have(
L

I

)T
P

(
L

I

)
> 0 and

(
I

−LT

)T
P̃

(
I

−LT

)
< 0 for all L ∈ �. (8.3.18)

Due to 0 ∈ �c, we get R > 0 and Q̃ < 0. Hence we conclude for the diagonal blocks of P that
Q < 0 and R > 0, and for the diagonal blocks of P̃ that Q̃ > 0 and R̃ < 0. If we introduce

Z =
(
I

0

)
and Z̃ =

(
0
I

)
with the same row partition as P , these properties can be expressed as

ZT PZ < 0, Z̃T P Z̃ > 0 and ZT P̃Z < 0, Z̃T P̃ Z̃ > 0. (8.3.19)

If we observe that im(Z̃) is the orthogonal complement of im(Z), we can apply the Dualization
Lemma to infer

Z̃T P−1Z̃ > 0, ZT P−1Z < 0 and Z̃T P̃−1Z̃ > 0, ZT P̃−1Z < 0. (8.3.20)
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For the given P and P̃ , we try to find an extension Pe with (8.3.14) such that the dual multiplier
P̃e = P−1

e is related to the given P̃ as in (8.3.16). After a suitable permutation, this amounts to
finding an extension(

P T

T T T T NT

)
with

(
P̃ ∗
∗ ∗

)
=
(

P T

T T T T NT

)−1

, (8.3.21)

where the specific parameterization of the new blocks in terms of a non-singular matrix T and some
symmetricN will turn out convenient. Such an extension is very simple to obtain. However, we also
need to obey the positivity/negativity constraints in (8.3.14) that amount to(

Z 0
0 Z

)T (
P T

T T T T NT

)(
Z 0
0 Z

)
< 0 (8.3.22)

and (
Z̃ 0
0 Z̃

)T (
P T

T T T T NT

)(
Z̃ 0
0 Z̃

)
> 0. (8.3.23)

We can assume w.l.o.g. (perturb, if necessary) that P − P̃−1 is non-singular. Then we set

N = (P − P̃−1)−1

and observe that (8.3.21) holds for any non-singular T .

The main goal is to adjust T to render (8.3.22)-(8.3.23) satisfied. We will in fact construct the sub-
blocks T1 = T Z and T2 = T Z̃ of T = (T1 T2). Due to (8.3.19), the conditions (8.3.22)-(8.3.23)
read in terms of these blocks as (Schur)

T T1

[
N − Z(ZT PZ)−1ZT

]
T1 < 0 and T T2

[
N − Z̃(Z̃T P Z̃)−1Z̃T

]
T2 > 0. (8.3.24)

If we denote by n+(S), n−(S) the number of positive, negative eigenvalues of the symmetric matrix
S, we hence have to calculate n−(N − Z(ZT PZ)−1ZT ) and n+(N − Z̃(Z̃T P Z̃)−1Z̃T ). Simple
Schur complement arguments reveal that

n−
(
ZT PZ ZT

Z N

)
= n−(ZT PZ)+ n−(N − Z(ZT PZ)−1ZT ) =

= n−(N)+ n−(ZT PZ − ZTN−1Z) = n−(N)+ n−(ZT P̃−1Z).

SinceZT PZ andZT P̃−1Z have the same size and are both negative definite by (8.3.19) and (8.3.20),
we conclude n−(ZT PZ) = n−(ZT P̃−1Z). This leads to

n−(N − Z(ZT PZ)−1ZT ) = n−(N).

Literally the same arguments will reveal

n+(N − Z̃(Z̃T P Z̃)−1Z̃T ) = n+(N).
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These two relations imply that there exist T1, T2 with n−(N), n+(N) columns that satisfy (8.3.24).
Hence the matrix T = (T1 T2) has n+(N) + n−(N) columns. Since the number of rows of T1, T2,
Z, Z̃, N are all identical, T is actually a square matrix. We can assume w.l.o.g. - by perturbing T1
or T2 if necessary - that the square matrix T is non-singular.

This finishes the construction of the extended multiplier (8.3.14). Let us observe that the dimensions of
Q22/R22 equal the number of columns ofT1/T2 which are, in turn, given by the integersn−(N)/n+(N).

Second Step: Construction of the scheduling function. Let us fixL and let us apply the Elimination
Lemma to (8.3.15) with Lc(L) viewed as the unknown. We observe that the solvability conditions
of the Elimination Lemma just amount to the two inequalities (8.3.18). We conclude that for any
L ∈ � one can indeed compute a Lc(L) which satisfies (8.3.15).

Due to the structural simplicity, we can even provide an explicit formula which shows that Lc(L)

can be selected to depend smoothly onL. Indeed, by a straightforward Schur-complement argument,
(8.3.15) is equivalent to

U11 U12 (W11 +L)T WT
21

U21 U22 WT
12 (W22 +Lc(L))

T

W11 +L W12 V11 V12
W21 W22 +Lc(L) V21 V22

 > 0

for U = Re − STe Q−1
e Se > 0, V = −Q−1

e > 0, W = Q−1
e Se. Obviously this can be rewritten to(

U22 ∗
W22 +Lc(L) V22

)
−
(
U21 WT

12
W21 V21

)(
U11 (W11 +L)T

W11 +L V11

)−1(
U12 WT

21
W12 V12

)
> 0

in which Lc(L) only appears in the off-diagonal position. Since we are sure that there does indeed
exist a Lc(L) that renders the inequality satisfied, the diagonal blocks must be positive definite. If
we then choose Lc(L) such that the off-diagonal block vanishes, we have found a solution of the
inequality; this leads to the following explicit formula

Lc(L) = −W22 +
(
W21 V21

) ( U11 ∗
W11 +L V11

)−1 (
U12
W12

)
for the scheduling function. We note that Lc(L) has the dimension n−(N)× n+(N).
Third Step: LTI controller construction. After having constructed the scalings, the last step is to
construct an LTI controller and Lyapunov matrix that render the inequality (8.3.17) satisfied. We are
confronted with a standard nominal quadratic design problem of which we are sure that it admits a
solution, and for which the controller construction proceed along the steps that have been intensively
discussed in Chapter 4.

We have shown that the LMI’s that needed to be solved for designing an LPV controller are identical
to those for designing a robust controller, with the only exception that the coupling condition (8.3.13)
drops out. Therefore, the search for X and Y and for the multipliers P ∈ P and P̃ ∈ P̃ to satisfy
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(8.3.10)-(8.3.12) amounts to testing the feasibility of standard LMI’s. Moreover, the controller
construction in the proof of Theorem 8.4 is constructive. Hence we conclude that we have found a
full solution to the quadratic performance LPV control problem (including L2-gain and dissipativity
specifications) for full block scalings Pe that satisfy Qe < 0. The more interesting general case
without this still restrictive negativity hypotheses is dealt with in future work.

Remarks.

• The proof reveals that the scheduling function Lc(L) has a many rows/colums as there are
negative/positive eigenvalues of P − P̃−1 (if assuming w.l.o.g. that the latter is non-singular.)
If it happens that P − P̃−1 is positive or negative definite, there is no need to schedule the
controller at all; we obtain a controller that solves the robust quadratic performance problem.

• Previous approaches to the LPV problem [1,7,20,39] were based onLc(L) = L such that the
controller is scheduled with an identical copy of the parameters. These results were based on
block-diagonal parameter matrices and multipliers that were as well assumed block-diagonal.
The use of full block scalings [35] require the extension to a more general scheduling function
that is - as seen a posteriori - a quadratic function of the parameter L.

• It is possible to extend the procedure toH2-control and to the other performance specifications
in these notes. However, this requires restrictive hypotheses on the system description. The
extension to general mixed problems seems nontrivial and is open in its full generality.

8.4 A Sketch of Possible Applications

It is obvious how to apply robust or LPV control techniques in linear design: If the underlying system
is affected, possibly in a nonlinear fashion, by some possibly time-varying parameter (such as varying
resonance poles and alike), one could strive

• either for designing a robust controller if the actual parameter changes are not available as
on-line information

• or for constructing an LPV controller if the parameter (and its rate of variation) can be measured
on-line.

As such the presented techniques can be a useful extension to the nominal design specifications that
have been considered previously.

In a brief final and informal discussion we would like to point out possible applications of robust and
LPV control techniques to the control of nonlinear systems:

• They clearly apply if one can systematically embed a nonlinear system in a class of linear
systems that admit an LPV parameterization.
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• Even if it is required to perform a heuristic linearization step, they can improve classical gain-
scheduling design schemes for nonlinear systems since they lead to a one-shot construction of
a family of linear controllers.

8.4.1 From Nonlinear Systems to LPV Systems

In order to apply the techniques discussed in these notes to nonlinear systems, one uses variations of
what is often called global linearization.

Consider a nonlinear system described by

ẋ = f (x) (8.4.1)

where we assume that f : Rn→ Rn is a smooth vector field.

If f (0) = 0, it is often possible to rewrite f (x) = A(x)x with a smooth matrix valued mappingA(.).
If one can guarantee that the LPV system

ẋ = A(δ(t))x

is exponentially stable, we can conclude that the nonlinear system

ẋ = A(x)x

has 0 as a globally exponentially stable equilibrium. Note that one can and should impose a priori
bounds on the state-trajectories such as x(t) ∈ M for some set M such that the stability of the LPV
system only has to be assured for δ(t) ∈ M; of course, one can then only conclude stability for
trajectories of the nonlinear system that remain in M .

A slightly more general procedure allows to consider arbitrary system trajectories instead of equi-
librium points (or constant trajectories) only. In fact, suppose x1(.) and x2(.) are two trajectories of
(8.4.1). By the mean-value theorem, there exist

ηj (t) ∈ co{x1(t), x2(t)}
such that

ẋ1(t)− ẋ2(t) = f (x1(t))− f (x2(t)) =


∂f1
∂x
(η1(t))
...

∂fn
∂x
(ηn(t))

 (x1(t)− x2(t)).

Therefore, the increment ξ(t) = x1(t)− x2(t) satisfies the LPV system

ξ̇ (t) = A(η1(t), . . . , ηn(t))ξ(t)

with parameters η1, . . . , ηn. Once this LPV system is shown to be exponentially stable, one can
conclude that ξ(t) = x1(t)− x2(t) converges exponentially to zero for t →∞. If x2(.) is a nominal
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system trajectory (such as an equilibrium point or a given trajectory to be investigated), we can
conclude that x1(t) approaches this nominal trajectory exponentially.

Finally, the following procedure is often referred to as global linearization. Let

F be the closure of co{fx(x) | x ∈ Rn}.
Clearly, F is a closed and convex subset of Rn×n. It is not difficult to see that any pair of trajectories
x1(.), x2(.) of (8.4.1) satisfies the linear differential inclusion

ẋ1(t)− ẋ2(t) ∈ F (x1(t)− x2(t)). (8.4.2)

Proof. Fix any t and consider the closed convex set

F [x1(t)− x2(t)] ⊂ Rn.

Suppose this set is contained in the negative half-space defined by the vector y ∈ Rn:

yTF [x1(t)− x2(t)] ≤ 0.

Due to the mean-value theorem, there exists a ξ ∈ co{x1(t), x2(t)} with

yT [ẋ1(t)− ẋ2(t)] = yT [f (x1(t))− f (x2(t))] = yT fx(ξ)[x1(t)− x2(t)].
Since fx(ξ) ∈ F , we infer

yT [ẋ1(t)− ẋ2(t)] ≤ 0.

Hence ẋ1(t)− ẋ2(t) is contained, as well, in the negative half-space defined by y. Since F is closed
and convex, we can indeed infer (8.4.2) as desired.

To analyze the stability of the differential inclusion, one can cover the set F by the convex hull of
finitely many matrices Aj and apply the techniques that have been presented in these notes.

Remarks. Of course, there are many other possibilities to embed nonlinear systems in a family of
linear systems that depend on a time-varying parameter. Since there is no general recipe to transform
a given problem to the LPV scenario, we have only sketched a few ideas. Although we concentrated
on stability analysis, these ideas straightforwardly extend to various nominal or robust performance
design problems what is a considerable advantage over other techniques for nonlinear systems. This
is particularly important since, in practical problems, non-linearities are often highly structured and
not all states enter non-linearly. For example, in a stabilization problem, one might arrive at a system

ẋ = A(y)x + B(y)u, y = Cx

where u is the control input and y is the measured output that captures, as well, those states that enter
the system non-linearly. We can use the LPV techniques to design a stabilizing LPV controller for
this system. Since y is the scheduling variable, this controller will depend, in general, non-linearly on
y; hence LPV control amounts to a systematic technique to design nonlinear controllers for nonlinear
systems ‘whose non-linearities can be measured’.
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8.4.2 Gain-Scheduling

A typical engineering technique to attack design problems for nonlinear systems proceeds as follows:
Linearize the system around a couple of operating points, design good linear controllers for each of
these points, and then glue these linear controllers together to control the nonlinear system.

Although this scheme seems to work reasonably well in many practical circumstances, there are
considerable drawbacks:

• There is no general recipe how to glue controllers together. It is hard to discriminate between
several conceivable controller interpolation techniques.

• It is not clear how to design the linear controllers such that, after interpolation, the overall
controlled system shows the desired performance.

• There are no guarantees whatsoever that the overall system is even stabilized, not to speak of
guarantees for performance. Only through nonlinear simulations one can roughly assess that
the chosen design scenario has been successful.

Based on LPV techniques, one can provide a recipe to systematically design a family of linear
controllers that is scheduled on the operating point without the need for ad-hoc interpolation strategies.
Moreover, one can provide, at least for the linearized family of systems, guarantees for stability and
performance, even if the system undergoes rapid changes of the operating condition.

Again, we just look at the stabilization problem and observe that the extensions to include as well
performance specifications are straightforward.

Suppose a nonlinear system
ẋ = a(x, u), y = c(x, u)− r (8.4.3)

has x as its state, u as its control, r as a reference input, and y as a tracking error output that is also the
measured output. We assume that, for each reference input r , the system admits a unique equilibrium
(operating condition)

0 = a(x0(r), u0(r)), 0 = c(x0(r), u0(r))− r
such that x0(.), u0(.) are smooth in r . (In general, one applies the implicit function theorem to
guarantee the existence of such a parameterized family of equilibria under certain conditions. In
practice, the calculation of these operating points is the first step to be done.)

The next step is to linearize the the system around each operating point to obtain

ẋ = fx(x0(r), u0(r))x + fu(x0(r), u0(r))u, y = cx(x0(r), u0(r))x + cu(x0(r), u0(r))u− r.
This is indeed a family of linear systems that is parameterized by r .

In standard gain-scheduling, linear techniques are used to find, for each r , a good tracking controller
for each of these systems, and the resulting controllers are then somehow interpolated.
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At this point we can exploit the LPV techniques to systematically design an LPV controller that
achieves good tracking for all reference trajectories in a certain class, even if these references vary
quickly with time. This systematic approach directly leads to a family of linear systems, where the
interpolation step is taken care of by the algorithm. Still, however, one has to confirm by nonlinear
simulations that the resulting LPV controller works well for the original nonlinear system. Note
that the Taylor linearization can sometimes be replaced by global linearization (as discussed in the
previous section) what leads to a priori guarantees for the controlled nonlinear system.

Again, this was only a very brief sketch of ideas to apply LPV control in gain-scheduling, and we
refer to [13] for a broader exposition of gain-scheduling in nonlinear control.
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