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Preface

Objectives

In recent yearslinear matrix inequalities (LMI’s) have emerged as apowerful tool to approach control
problems that appear hard if not impossible to solve in an analytic fashion. Although the history of
LMI’s goes back to the fourties with amajor emphasis of their role in control in the sixties (Kalman,
Yakubovich, Popov, Willems), only recently powerful numerical interior point techniques have been
developed to solve LMI'sin a practically efficient manner (Nesterov, Nemirovskii 1994). Severa
Matlab software packages are available that allow a smple coding of general LMI problems and
provide efficient tools to solve typical control problems (LMI Control Toolbox, LMI-toal).

Boosted by the availability of fast LMI solvers, research in robust control has experienced aparadigm
shift —instead of arriving at an analytical solution the intention is to reformulate a given problem to
verifying whether an LMI is solvable or to optimizing functionals over LMI constraints.

The main emphasis of this book is

« to reveal the basic principles of formulating desired properties of a control system in the form
of LMI's,

« to demonstrate the techniques to reduce the corresponding controller synthesis problem to an
LMI problem,

« to get familiar with the use of software packages for performance analysis and controller
synthesis using LMI tools.

Thepower of thisapproachisillustrated by several fundamental robustnessand performance problems
in analysis and design of linear control systems.

vii



Topics

This book has been written for a graduate course on the subject of LMI’s in systems and control.
Within the graduate program of the Dutch Institute of Systems and Control (DISC), this course is
intended to provide up-to-date information on the topic for studentsinvolved in either the practical or
theoretical aspects of control system design. DISC courses have the format of two class hours once
per week during a period of eight weeks. In principle, the lecture notes are suitable for self-study.
The topics covered for this course are the following.

1. Examples. Facts from convex analysis. Interior point methods in convex programming and
their efficiency. Linear Matrix Inequalities, history. Thethreebasic problemsand their solution
with LMI-Lab.

2. Lyapunov functions for invariance, stability, performance, robust performance. Quadratic
stability and performance. Considered criteria: Dissipativity, Integral quadratic constraints,
H>-norm, Hu.-norm, upper bound of peak-to-peak norm. LMI stability regions.

3. Frequency domaintechniquesfor therobustnessanalysisof acontrol system. Integral Quadratic
Congtraints. Multipliers. Relations to classical tests and to p-theory.

4. A general technique to proceed from LMI analysis to LMI synthesis. State-feedback and
output-feedback synthesis algorithms for robust stability, homina performance and robust
performance using general scalings.

5. Mixed control problems. Multi-model control problems. Lyapunov shaping technique.

6. Extensiontolinear parametrically varying systems. Gain-scheduling. Examplesof occurrence.
Solution of design problem with scaling and gridding techniques.

7. Extension to certain nonlinear analysis and design problems.

In later years, the course has been reduced to a four-week course, which treats, roughly speaking,
half of the material presented in this book.

Material

The main reference material for the course will be the lectures notes and the following books

[1] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan
Linear Matrix Inequalitiesin System and Control Theory, SIAM studiesin Applied Mathemat-
ics, Philadel phia, 1994.

[2] Gahinet et al., LMI-lab Matlab Toolbox for Control Analysis and Design.

viii



[3] L.E. Ghaoui and S.-I Niculescu (Edts.), Advances in Linear Matrix Inequality Methods in
Control, SIAM, Advances in Design and Control, 2000.

Prerequisites

Linear algebra, calculus, basic system theory, and some experience with MATLAB.






Chapter 1

Convex optimization and linear
matrix inequalities

1.1 Introduction

Optimization questions and decision making processes are abundant in daily life and invariably
involve the selection of the best decision from a number of options or a set of candidate decisions.
Many examples of this theme can be found in technical sciences such as electrical, mechanical and
chemical engineering, in architecture and in economics, but also in the social sciences, in biological
and ecol ogical processesand organizational questions. For example, production processesinindustry
are more and more market driven and require an ever increasing flexibility of product changes and
product specifications due to customer demands in quality, price and specification. Products need to
be manufactured within strict product specifications, with large variations of input quality, against
competitive prices, with minimal waste of resources, energy and valuable production time, with
a minimal time-to-market and, of course, with maximal economical profit. Important economical
benefits can therefore only be realized by making proper decisions in the operating conditions of
production processes. Due to increasing requirements on the safety and flexibility of production
processes, thereisaconstant need for further optimization, efficiency and improvement of production
processes.

Casting an optimization problem in mathematicsinvolves the specification of the candidate decisions
and, most importantly, the formalization of the concept of best or optimal decision. If the (finite or
infinite) set of candidate decisions is denoted by &, then one approach to quantify the performance
of adecision x € 4§ isto expressits value in terms of asingle real quantity f(x) where f is some
real valued function f : 8 — R. Thevalue of decision x € § isthen given by f(x). Depending on
the interpretation of f, we may wish to minimize or maximize f over all possible candidatesin §.
An optimal decision isthen simply an element of § that minimizes or maximizes f over al possible

1



1.2. FACTSFROM CONVEX ANALYSIS

alternatives.

The optimization problem to minimize the criterion f over § involves various specific questions:

1. How to determine the optimal value (or optimal performance)

Vopt := )Icre“; f) =inf{f(x)|x € 8}

2. How to determine an almost optimal solution, i.e., for arbitrary ¢ > 0, how to determinex, € 4§
such that

f(xe) < Vopt + €.
3. Doesthere exist an optimal solution xopt € $ such that f (xopt) = Vopt?
4. If such an optimal solution xqpt exists, how can it be computed?

5. Finally, isthe optimal solution xqpt UNique?

We will address each of these questionsin the sequel.

1.2 Factsfrom convex analysis

In view of the optimization problems just formulated, we are interested in finding conditions for
optimal solutionsto exist. It istherefore natural to resort to a branch of analysiswhich provides such
conditions: convex analysis. The results and definitions in this subsection are mainly basic, but they
have important implications and applications as we will see later.

We start with summarizing some definitions and elementary properties from linear algebra and func-
tional analysis. We assume the reader to be familiar with the basic concepts of vector spaces and
normed linear spaces.

Definition 1.1 (Continuity) A function f which maps a normed space § into a normed space 7
is continuous at xg € 4 if for every ¢ > 0 there exist § > 0 such that ||x — xp|| < & implies that
Il f(x) — f(x0)|l < €. Thefunction f iscalled continuousif it is continuous at each xg € 4.

Obviously, continuity depends on the definition of the norm in the normed spaces § and 7. We
remark that afunction f : 8 — 7 iscontinuousat xo € 4 if and only if for every sequence {x,,}7° ;,
x, € 4, which convergesto xg asn — oo, there holdsthat f(x,) — f(xo0).

Definition 1.2 (Compactness) A set § in anormed linear space X is called compact if for every
sequence {x, },° ; in & there exists a subsequence {x,,, }>>_; which convergesto an element xo € 4.

= m=1

2
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1.2. FACTSFROM CONVEX ANALYSIS

If thenormed linear space X isfinitedimensional then compactness hasan equivalent characterization
asfollows.

Proposition 1.3 If X isfinite dimensional then § c X is compact if and only if § is closed and
bounded?.

The well-known Weierstrass theorem provides a useful tool to determine whether an optimization
problem admitsasolution. It providesan answer to thethird question rai sed inthe previous subsection
for special sets 8 and special performance functions 1.

Proposition 1.4 (Weierstrass) If f : § — R isa continuous function defined on a compact subset
4 of anormed linear space X, then there exists xmin, xmax € 4 such that
S Gmin) = )'Cre“; Sx) = f(x) sup f(x) = f(xmax)

xed

for all x € 8.

Proof. Define Vimin := infcs f(x). Then there exists a sequence {x,}:° ; in 4 such that f(x,) —
Vmin 8n — oo. As 4 iscompact, there must exist asubsequence {x,,, }°>_; of {x,} which converges
to an element, say xmin, Which liesin §. Obviously, f (x,,,) — Vmin and the continuity of f implies
thet f(xp,,) = f(xmin) @n, — oco. Weclaimthat Vimin = f (xmin). By definition of Vimin, we have
Vimin < f(xmin).- Now suppose that the latter inequality is strict, i.e., suppose that Vimin < f (Xmin)-
ThenO < f(xmin) — Vmin = liMy,, 00 f (xn,) —liMy,, o0 f (xn,,) = 0, whichyieldsacontradiction.
The proof of the existence of amaximizing element is similar. [ |

Note that Proposition 1.4 does not give a constructive method to find the extremizing solutions xmin
and xmax. It only guarantees the existence of these elements for continuous functions defined on
compact sets. For many optimization problems these conditions (continuity and compactness) turn
out to be overly restrictive. We will therefore resort to convex sets.

Definition 1.5 (Convex sets) A set 8 in alinear vector spaceis said to be convex if

{x1,x20€ 48} = {x=ax1+ 1L —a)xp e Sfordla € (0, 1)}.

In geometric terms, this statesthat for any two points of aconvex set a so the line segment connecting
these two points belongs to the set. In general, the empty set is considered to be convex. The point
ax1 + (1 — a)xp witha € (0, 1) is caled a convex combination of the two points x; and x2. More
generally, convex combinations are defined for any finite set of points as follows.

Definition 1.6 (Convex combinations) Let § be a subset of avector space and let x1, ..., x, € 4.
If aq, ..., &, isaset of non-negative real numberswith }"_; o; = 1 then

n
X = E ;X
i=1

1A set 8 isbounded if there exists anumber B suchthat for al x € 4, ||x|| < B; itisclosed if x, — x impliesthat x € 4.

3
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1.2. FACTSFROM CONVEX ANALYSIS

is caled aconvex combination of x1, ..., x,.
Supposewetaken pointsx, ..., x, in4. Thenitiseasy to seethat the set of al convex combinations
of x1, ..., x, isitself convex, i.e,

C := {x | x isaconvex combination of x1, ..., x,}

is convex. We next define the notion of interior points and closure points of sets.

Definition 1.7 (Interior points) Let 4 be a subset of anormed space X. The point x € § iscalled
an interior point of § if there existsan ¢ > 0 such that al points y € X with ||x — y|| < € aso
belong the 8. Theinterior of § isthe collection of all interior points of 4.

Definition 1.8 (Closure points) Let $ be a subset of anormed space X. The point x € X iscalled
aclosure point of 4§ if, for al € > 0, there existsapoint y € 4 with || x — y|| < €. The closure of 4§
isthe collection of all closure pointsof $. 8 issaid to be closed if it isequal to its closure.

We summarize some elementary properties pertaining to convex setsin the following proposition.

Proposition 1.9 Let 8 and 7 be convex setsin a normed vector space X;. Then

1. thesetad ;= {x | x = as, s € 8} isconvex for any scalar «.
2. thesumdS8+7 ={x|x=s+1,5 € 8,1t €T}isconvex.
3. theclosure and theinterior of 8 (and 7) are convex.
4. theintersection 8N T :={x | x € § and x € T} isconvex.
The last property actually holds for the intersection of an arbitrary collection of convex sets, i.g, if

84, a € Aisafamily of convex setsthen N4 4, isalso convex. This property turnsout to be useful
in constructing the smallest convex set that contains a given set. It is defined as follows.

Definition 1.10 (Convex hull) The convex hull co(8) of aset § istheintersection of all convex sets
containing 4.

Convex hulls have the following property.

Proposition 1.11 (Convex hulls) For any subset § of alinear vector space X, the convex hull co($)
is convex and consists precisely of all convex combinations of the elements of 4.

Definition 1.12 (Convex functions) A function f : § — R iscalled convex if

1. 8 isconvex and
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1.2. FACTSFROM CONVEX ANALYSIS

2. foradl x1, x2 € $ anda € (0, 1) there holds that

flaxi+ A —a)xz) < af(x1) + (1 —a) f(x2). (121

[ iscalled strictly convex if the inequality in (1.2.1) isstrict for x1 # x».

Note that the domain of a convex function is by definition a convex set. Simple examples of convex
functionsare f(x) = x2onR, f(x) = sinx on[r, 2z] and f(x) = |x| onR.

Instead of minimizing thefunction f : § — R we can set our aimsalittle lower and be satisfied with
considering all possible x € 4§ that give a guaranteed upper bound of f. For this, we introduce, for
any number « € R, the sublevel sets associated with f asfollows

o :={xed| fx) <a}l

Obvioudly, 8, = 0 if @ < inf,cg f(x) and &, coincides with the set of global minimizers of f if
a = infyes f(x). Noteasothat 8, C 85 whenever o < g; that is sublevel sets are non-decreasing
(in aset theoretic sense) when viewed as function of «. Asyou could have guessed, convex functions
and convex sublevel sets are closely related to each other:

Proposition 1.13 If f : § — R isconvex then the sublevel set &, isconvex for all « € R.

Proof. Suppose f is convex, let « € R and consider §,. If 8, is empty then the statement is
trivial. Suppose therefore that 8, # ¢ and let x1,x2 € 84, A € [0,1]. Then, as 4§ is convex,
Ax1+ (1 — A)x2 € 4 and by definition of §, we havethat f(x1) < «, f(x2) < «a. Convexity of f
now implies that

JOx1+ @A =Mx2) =Af(xp)+ Q=2 f(x2) <ra+ (1 —-Na=«a

i.e, Ax1+ (L—Ax2 € 48,. |

We emphasize that it is not true that convexity of the sublevel sets 8,, « € R implies convexity of
f. However, the class of functions for which all sublevel sets are convex are that important that they
deserve their own name. The following concept is probably the most important generalization of
convex functions.

Definition 1.14 (Quasi-convex functions) A function f : 8§ — R is called quasi-convex if the
sublevel set 8, isconvex for all o € R.

Itiseasy to seethat f isquasi-convex if and only if
flaxy+ (1 —a)xz) < max[f(x1), f(x2)]

fordl o € [0, 1] and for dl x1, x2 € §. In particular, every convex function is also quasi-convex.

5
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1.3. CONVEX OPTIMIZATION

1.3 Convex optimization

After the previous section with definitions and elementary properties of convex sets, we hope that
this section will convince the most skeptical reader why convexity of sets and functions is such a
desirable property for optimization.

1.3.1 Local and global minima

Anyone who gained experience with numerical optimization methods got familiar with the pitfalls of
local minimaand local maxima. One reason for studying convex functionsis related to the absence
of local minima.

Definition 1.15 (L ocal and global minima) Let 8 be a subset of a normed space X. The function
f 48 — Rissaid to havealocal minimumat xg € 4 if there existse > 0 such that

f(xo) = f(x) (1.3.)
for al x € 8 with ||x — xp|| < €. Itisaglobal minimumof f if (1.3.1) holdsfor al x € 4.

In words, f has alocal minimum at xo € 4§ if there exists a neighborhood & of xg such that
f(x0) < f(x)foral pointsx € §NN. Notethat according to this definition every global minimum
isalocal minimum aswell. The notions of local maximum and global maximum of afunction f are
similarly defined. Hereisasimpleand nice result which provides one of our main interestsin convex
functions.

Proposition 1.16 Supposethat f : § — R isconvex. If f hasalocal minimum at xo € $ then
f(xp) isalsothe global minimumof f. If f isstrictly convex, then xg is moreover unique.

Proof. Let f beconvex and supposethat f hasalocal minimum at xg € 4. Thenfor al x € § and
a € (0, 1) sufficiently small,

f(x0) = f(1—a)xo+ax) = f(xo+alx —x0) < (1—a)f(xo) +af(x). (1.32)
Thisimplies that

0<a(f(x)— f(x0) (1.3.3)

or f(xo) < f(x). SO f(xo) isaglobal minimum. If f isstrictly convex, then the second inequality

in (1.3.2) isstrict so that (1.3.3) becomes strict for all x € 4. Hence, xg isunique. [

Interpretation 1.17 It is very important to emphasize that Proposition 1.16 does not make any
statement about existence of points xg € - which minimize f. It merely says that all local minima
of f areaso global minima. It therefore suffices to compute local minima of aconvex function f to
actually determineits globa minimum.

Remark 1.18 Proposition 1.16 does not hold for quasi-convex functions.

6
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1.3. CONVEX OPTIMIZATION

1.3.2 Uniform bounds

The second good reason to i nvestigate convex functions comesfrom thefact that uniform upperbounds
of convex functions can be verified on subsets of their domain. Here are the details: let 8o be a set
and supposethat f : 8 — R isafunction with

4§ = co(4p).

Aswe have seen in Proposition 1.11, § is then convex and we have the following property which is
both simple and powerful.

Proposition 1.19 Let f : 8 — R be a convex function where 8 = co(48p). Then f(x) < y for all
x e Sifandonlyif f(x) <y forall x € 4o

Proof. The‘only if’ part istrivial. To seethe ‘if’ part, Proposition 1.11 implies that every x € 4§
can be written as a convex combination x = ) 7_; a;x; wheren > 0,; > 0,x; € 80,i =1,....n
and )" ; ; = 1. Using convexity of f and non-negativity of the o;’s, weinfer

fO)=fOQ aix) <Y aif(xi) <Y iy =v,
i=1 i=1 i=1
which yields the result. [ |

Interpretation 1.20 Proposition 1.19 statesthat the uniform bound f(x) < y on § can equivalently
be verified onthe set 8o. Thisisof great practical relevance especially when $p contains only afinite
number of elements. It then requires a finite number of tests to conclude whether or not f(x) < y
for al x € 4. In addition, since

Y0 1= Sup f(x) = max f(x)
xed x€dp

the supremum of f can be determined by considering g only.

1.3.3 Subgradients

Our third reason of interest in convex functions comes from the geometric ideathat through any point
on the graph of a convex function we can draw aline such that the entire graph lies above or on the
line. For functions f : § — R with 8 C R, thisideais pretty intuitive and the result is as follows.

Proposition 1.21 Suppose that § c R isopen. Then f : 8 — R is convex if and only if for all
xo € 4 thereexists a number g € R, depending on xg, such that

fx) > f(x0) + g (x —x0) (1.34)
for all x € 8.
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1.3. CONVEX OPTIMIZATION

Proof. Let f beconvex and xo € 8. Choose g intheinterval [ f’ (xo), f} (x0)] where

' (x0) = lim L&) = /(0

X0 X — X0

Jf(x) = f(x0)

, .
, xg) := lim
f+( x}xo0 X — X0

These limits actually exist asfor any triple x_1, xg, x € § withx_1 < xg < x we have that

fxo) — f(x-1) - f&) — fx-1) - fx) = f(xo)

X0 —X_1 X —Xx_1 X — XxQ

Hence, (f(x) — f(x0))/(x — xo) is adecreasing function of x which is bounded from below by
(f (x0)— f(x-1))/(xo—x_1). Thelimit f (xo) thereforeexists. A similar argument proves existence

of the limit £ (xo). Now the existence of the limits has been proved, it follows that L&=/00) jg
> g or < g depending on whether x > xg or x < xp. In either case we obtain (1.3.4) which proves
the ‘only if’ part. To provetheif’ part, let x1, x2 € 8, ¢ € [0, 1] and put xo = ax1 + (1 — @)x2. By
assumption, there exists g € R such that f(xg) < f(x;) + g - (x; — xp), i = 1, 2. But then also

fx0) = af (x0) + (1 — a) f(x0)
<af(x)+ Q—a) f(x2) + glaxy + (1 — a)xz2 — x0]
=of(xy) + A —a)f(x2)

which showsthat f is convex. [ |

Remark 1.22 Theright-hand side of (1.3.4) issometimescalled asupport functional for f at xg € 4.
As can be deduced from the above proof, if f happens to be differentiable at x then g is uniquely
given by the derivative f/(xg).

We now turn to the more general situation where § may be an arbitrary vector space. The natural
extension of the right hand side of (1.3.4) involves the introduction of an affine function through the

point (xg, f (xg)) onthe graph of f.

Definition 1.23 (Affine functions) A function f : § — 7 isaffineif f(x) = fo + T(x) where
foeT andT : 8 — T isalinear map, i.e.,

T (a1x1 + aox2) = a1T (x1) + a2T (x2)

foral x1, x2 € $ and aq, ao € R.

Hence f : R" — R™ is affine if and only if there exists xg € R” such that the mapping x —
f(x) — f(xo) islinear. This means that all affine functions f : R” — R™ can be represented as
f(x) = f(xo) + T - (x — xo0) where T is some matrix of dimension m x n and the dot - denotes
multiplication. We will beinterested in the case where m = 1 and denote by (-, -) the standard inner
product in R”, that is, for x1, x2 € R", (x1, x2) := x; x1.
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1.3. CONVEX OPTIMIZATION

Proposition 1.24 Let 8 C R". If f : § — R isconvexthen for all xo € § there exists a subgradient
g € R", depending on xg, such that

f @) = f(xo) + (g, x — x0) (1.35)

for all x € $.
Remark 1.25 Proposition 1.24 gives a necessary condition for convexity of a function f. If the
gradient of f
— | 9f of
£ = [B—Xl . W]
existsand is continuous at xg € 4 then g = f/(xo) isthe only subgradient of f at xo.

Interpretation 1.26 From (1.3.5) and the latter remark one easily infers that xg € 4§ is a global
minimizer of the convex function f : § — R if and only if f hasasubgradient g = 0in xo.

Interpretation 1.27 If we consider the right hand side of (1.3.5), then trividly (g, (x — xg) > 0
impliesthat f(x) > f(xg). Thusall pointsinthehalf space{x € § | (g, x —xp) > 0O} lead to larger
values of f than f(xg). In particular, in searching the globa minimum of f we can disregard this
entire half-space.

The observation in Interpretation 1.27 leads to a smple and straightforward recursive algorithm for
the computation of the global minimum of a convex function.

Algorithm 1.28 (Ellipsoid algorithm (conceptual)) Let xo € R" and Py = POT be a positive def-
inite matrix. Consider the problem of minimizing the convex function f : R" — R over x € R”
subject to the constraint

(x — xo)TPo_l(x —x0) <1

Step 0 Set & := {x € R" | (x — x0)| Py *(x — x0) < 1}.
Stepk Fork=1,2,...,
* Compute asubgradient gx—1 € R" for f at xx—1 and put
Ri={x eR" | x € &-1and (gx—1, x — x,—1) < 0}.

e Compute x; € R"” and P, = PkT > 0 with minimal determinant det(P;) such that the
ellipsoid
G i={r eR" | (x —x0) P x —x) < 1)
contains Ry.
e Setktok + 1andreturnto Step k.



1.3. CONVEX OPTIMIZATION

The sequence of ellipsoids & and the sets R, have the property that they contain an optimal solution.
The subgradients g € R" divide R” in the two half-spaces {x | (gr,x — xx) < 0} and {x |
(gk, x — xx) > 0} while the cutting plane {x | (gr, x — xx) = 0} passes through the center of the
ellipsoid &, for each k. In this construction, the sequence f (x;) hasthe property that it convergesto
aminimizer of f. The algorithm therefore does not calculate a solution but only the minimal value
of f. Convergence of the algorithm isin ‘polynomial time' due to the fact that the volume of the
€llipsoids decrease geometrically. However, in practice convergenceisrather slow so that the method
isnot particularly efficient from a computational point of view.

1.3.4 Duality in optimization

In many applications, the decision space 4 is described in terms of inequalities and equations. With
X C R", atypica decision space therefore assumes the form

$:={xeX|glx)<0, h(x) =0} (1.3.6)

whereg : X — Rfand h : X — R’ are functions and the inequality g(x) < 0 is interpreted
component-wise. With decision sets of this form, we consider the optimization problem to find
Popt := infycg f(x) where f : X — R isadgiven function. In this section, we will refer to this
problem as a primal optimization problem and to Pqpt asthe primal optimal value. We will assume
that 8 is non-empty.

Remark 1.29 If X, f and g are convex and h is &ffine, then it is easily seen that 4§ is convex, in
which case this problem is commonly referred to as a convex program. This is probably the only
tractable instance of this problem and its study certainly belongs to the most sophisticated area of
nonlinear optimization theory. The specia instance where f, ¢ and & are all affine functions makes
the problem to determine Popt alinear programming problem.

Obvioudly, for any xo € 8 we havethat Popt < f(x0), i.€., an upperbound of Pop is obtained from
any feasible point xg € 4. On the other hand, if x € X satisfies g(x) < 0and 2(x) = O, then for
arbitrary vectors y > 0 and z we have that

L(x,y,2) = f(x)+(y,g) + (z, h(x)) = f(x).

Here, L(-, -, -) iscalled aLagrangian, which isafunction of n + k + [ variables. It isimmediate that
for al y > 0 and z we have that

The function £(-, -) isthe Lagrange dual cost and since it is independent of x we conclude that

Dopt:= sup  £(y,z)= sup inf L(x,y,2) < Popt
(,2),y20,z (y,2), y=0,z %€

providesalower bound of Popt. Notethat £(y, z) iscomputed by solving an unconstrained optimiza-
tion problem. Furthermore, —£(-, -) isaconvex function (¢(y, z) isaconcave function) whenever the
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1.4. LINEAR MATRIX INEQUALITIES

primal problemisaconvex program. The dual optimization problemto determine Dqyy isthereforea
concave maximization problem. Note that the constraintsin the dual problem are much simpler than
the ones in the primal problem.

Of course, the question arises when Dqgt = Popt. To answer this question, suppose that X, f and g
are convex and 4 is affine. As noted before, thisimpliesthat § is convex.

We then have the following

key result.

Theorem 1.30 (Karush-Kuhn-Tucker) Supposethat X, f and g are convex and 4 is affine. If §
defined in (1.3.6) satisfies the constraint qualification then Dot = Popt. In that case, there exists
VECtOrs (Yopt, Zopt), Yopt = 0 suchthat Dopt = £(yopt, Zopt), i-€., the dual optimization problemadmits
an optimal solution. Moreover, xopt € 4 satisfies f(xopt) = Popt if and only if xgpe Minimizes
L(x, yopt, Zopt) Over all x € X such that (yopt, g(xopt)) = 0.

Remark 1.31 If the triple (xopt, Yopt, zopt) defined in Theorem 1.30 exists it defines a saddle point
for the Lagrangian L in the sense that

L(xopt, ¥, 2) < L(xopt, Yopt> Zopt) < L(x, Yopt, Zopt)

forall x € X, y > 0and z. Under the given conditions, Theorem 1.30 therefore states that xopt is
asolution of primal optimization problem if and only if there exists (yopt, zopt), yopt = O such that
(opt, Yopt» Zopt) iSasaddle point of L and such that (yopt, & (xopt)) = 0.

Remark 1.32 The result of Theorem 1.30 is very general and provides a strong tool in convex
optimization. This, because the dual optimization problem is, in general, simpler and, under the
stated assumptions, is guaranteed to be solvable. The point (yopt, zopt) iS generally called a Kuhn-
Tucker point. The assumptions in the proposition are rather weak. If X = R”", then al points are
interior points.

1.4 Linear matrix inequalities

141 What arethey?

A linear matrix inequality is an expression of the form
Fx):=Fo+xiFi+...+xu,Fyu >0 (24.3)

where

e x = (x1,...,xy) isavector of m rea numbers called the decision variables.

2S0me authors call 8 superconsistent in that case.
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1.4. LINEAR MATRIX INEQUALITIES

e Fo, ..., F, are rea symmetric matrices, i.e., F; = FIT e R™" { =0,...,m for some
ne Z+.

« the inequality > 0 in (1.4.1) means ‘positive definite’, i.e., u' F(x)u > 0 for al u € R”,
u # 0. Equivalently, the smallest eigenvalue of F(x) is positive.

Stated slightly more general,

Definition 1.33 (Linear Matrix Inequality) A linear matrix inequality (LMI) is an inequality
F(x)>0 (1.4.2)

where F isan affine function mapping afinite dimensional vector space V tothesetS := {M | In >
Osuchthat M = M T e R""}, of real symmetric matrices.

Remark 1.34 Recal from Definition 1.23 that an affine mapping F : V — S necessarily takes the
form F(x) = Fo+ T(x) where Fp e Sand T : V — Sisalinear transformation. Thusif V isfinite
dimensional, say of dimension m, and {e1, ..., ¢, } constitutesabasis for V, then we can write

m
T(X) = Z)Cij
j=1

where the elements {x1, ..., x,,} are such that x = Z’};lxjej and F; =T(ej)forj=1,...,m.
Hence we obtain (1.4.1) as a specia case.

Remark 1.35 The same remark appliesto affine mappings F : R"*" — S. A smple exampleisthe
Lyapunov inequality F(X) = ATX + XA + Q > 0. Here, A, Q € R™*" are assumed to be given
and X € R"*" isthe unknown. The unknown variable is therefore a matrix. Note that this defines
an LMl only if Q issymmetric. We can view thisLMI asaspecial case of (1.4.1) by defining abasis
Ei, ..., Ey, of Vandwriting X = Z’j":lijj. Indeed,

m m m
F(X)=F (Zx,Ej) =Fo+ Y x;F(Ej)=Fo+ Y x;F;
j=1

j=1 j=1

whichis of theform (1.4.1).

Remark 1.36 A non-strict LMI isalinear matrix inequality where > in (1.4.1) and (1.4.2) isreplaced
by >. Thematrixinegqualities F(x) < 0,and F (x) > G(x) with F and G affinefunctionsareobtained
as special cases of definition 1.33 asthey can be rewritten asthe linear matrix inequality —F(x) > 0
and F(x) — G(x) > 0.

12
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1.4.2 Why arethey interesting?

The linear matrix inequality (1.4.2) defines a convex constraint on x. That is, the set § := {x |
F(x) > 0} isconvex. Indeed, if x1, x2 € 4 anda € (0, 1) then

Flaxi+(A—-a)x2) =aF(x) +(1—-a)F(x2) >0

wherein the equality we used that F is affine and the inequality follows from the fact that « > 0 and
1—a)=>0.

Although the convex constraint F(x) > 0onx may seem rather special, it turns out that many convex
sets can be represented in thisway. In this subsection we discuss some seemingly trivial properties
of linear matrix inequalities which turn out to be of eminent help to reduce multiple constraints on
an unknown variable to an equivalent constraint involving asingle linear matrix inequality.

Definition 1.37 (System of LMI’s) A system of linear matrix inequalities is a finite set of linear
matrix inequalities
Fi(x) >0,..., Fr(x) > 0. (2.4.3)

It isasimple but essential property that every system of LMI’s can be rewritten as one single LMI.
Specificaly, F1(x) > 0, ..., Fr(x) > 0if and only if

Fi(x) 0 0
0 Fo(x) ... 0
F(x) := . . . > 0.
6 0 Fk.(x)

The last inequality indeed makes sense as F(x) is symmetric for any x . Further, since the set of
eigenvalues of F(x) issimply the union of the eigenvalues of Fy(x), ..., Fx(x), any x that satisfies
F(x) > 0 also satisfies the system of LMI’s (1.4.3) and vice versa.

A second important property amountsto incorporating affine constraintsin linear matrix inequalities.
By this, we mean that combined constraints (in the unknown x) of the form

F(x)>0
Ax =b
or
F(x)>0
x = Ay + b for some y

wherethe affine function F : R™ — S and matrices A € R™*" and b € R™ are given can be lumped
in one linear matrix inequality F(x) > 0. More generally, the combined equations

(1.4.4)

Fx)>0
XEM

13
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where M is an affine subset of R, i.e,
M = x0 + Mo = {x0 + mo | mo € Mo}
with xg € R™ and Mo alinear subspace of R™, can be rewritten in the form of one single linear

matrix inequality F(x) > 0. To actualy do this, let e1, ..., ey, € R™ be abasis of Mo and let
F(x) = Fo+ T (x) be decomposed asin remark 1.34. Then (1.4.4) can be rewritten as

mo mo
0< F(x)=Fo+T(xo+ Y _xje))=Fo+T(xo)+ Y x;T(e;)

j=1 constant part /=1
linear part
= fo + xlfl +... —i—xmofmo
= F®X)
where Fo = Fo + T(xo), F; = T(e;) ad X = (x1, ..., Xn,) are the coefficients of x — xo in

the basis of Mo. Thisimpliesthat x € R™ satisfies (1.4.4) if and only if F(¥) > 0. Note that the
dimension mg of x is smaller than the dimension m of x.

A third property of LMI’sis obtained from asimple exercisein algebraic. It turns out to be possible
to convert some non-linear inequalities to linear inequalities. Suppose that we partition a matrix

M e R"™" as
M1 M1z
M=
(M21 M22>

where M1 has dimension r x r. Assume that M1, is non-singular. Then the matrix S := Mo, —
MglMl‘llMlz is called the Schur complement of M11 in M. If M is symmetric then we have that

Mq1 O
M>0<:><0 S>>0

M1 >0
S>0

For the interested reader, the result is obtained as follows.
o (1 =F\T (1 F\T,, (1 F\(l -F
“\o I 0 I o 1)\o 1
(1 -F\' M1 M1 F + Myo I —F
—\o I FTMyg+ My, FTM{1F+ F " Myp+ MxnF +Mx»n)\0 I

which is positive definite if and only if the matrix in the middle factor in the last expression is positive definite.
Now take F = —Ml_llMlz to obtain the result.

An immediate consequence of this observation is the following proposition.

14
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Proposition 1.38 (Schur complement) Let F : V — S be an affine function which is partitioned

according to
_ [ Ful) Fikx)
F (x)—<le<x> Fzz(X))

where F11(x) issquare. Then F(x) > 0if and only if

(1.4.5)

Fii(x) > 0
Fap(x) — Fi2(x) [F11(x)] 7! Fa1(x) > 0

Note that the second inequality in (1.4.5) is a non-linear matrix inequality in x. Using this result,
it follows that non-linear matrix inequalities of the form (1.4.5) can be converted to linear matrix
inequalities. In particular, it follows that non-linear inequalities of the form (1.4.5) define a convex
congtraint on the variable x in the sense that all x satisfying (1.4.5) define a convex set.

1.4.3 What arethey good for?

Aswe will see, many optimization problems in control, identification and signal processing can be
formulated (or reformulated) using linear matrix inequalities. Clearly, it only makes sense to cast
these problemsin an LMI setting if these inequalities can be solved in an efficient and reliable way.
Sincethelinear matrix inequality F (x) > 0definesaconvex constraint onthevariablex, optimization
problems involving the minimization (or maximization) of a performance function f : § — R with
§ :={x | F(x) > 0} belong to the class of convex optimization problems. Casting thisin the setting
of the previous section, it may be apparent that the full power of convex optimization theory can be
employed if the performance function f is known to be convex.

Supposethat F, G, H : V — S are afine functions. There are three generic problems related to the
study of linear matrix inequalities:

1. Feasibility: The test whether or not there exist solutions x € V of F(x) > Oiscaled a
feasibility problem. The LMI is called feasible if such x exists, otherwisethe LMI F(x) > 0
issaid to be infeasible.

2. Optimization: Let f : 8 — R and suppose that § = {x | F(x) > 0}. The problem to
determine

Vopt = inf

opt ol S )

is called an optimization problemwith an LMI constraint. This problem involves the determi-
nation of Vopt and for arbitrary ¢ > 0 the calculation of an almost optimal solution x which
satisfiesx € 4 and Vopt < f(x) < Vopt + €.
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3. Generalized eigenvalue problem: The generalized eigenvalue problem amounts to minimiz-
ingascaar A € R subject to
AME(x) —G(x) >0
F(x)>0
H(x)>0

L et us give some simple examples to motivate the study of these problems.

Example 1. stability

Consider the problem to determine asymptotic stahility of the linear autonomous system
X = Ax (1.4.6)

where A € R"*". By this, we mean the problem to decide whether or not al functionsx : R — R”
which satisfy (1.4.6) have the property that lim;_, o x(z) = 0. Lyapunov taught usthat thissystemis
asymptotically stable if and only if there exists X € Ssuchthat X > 0Oand AT X 4+ XA < 0. Thus,
asymptotic stability of the system (1.4.6) is equivalent to feasibility of the LMI

X 0 0
0 —ATX — XA :

Example 2: u-analysis

Expertsin p-analysis (but other people aswell!) regularly face the problem to determine a diagonal
matrix D such that | DM D~1|| < 1 where M is some given matrix. Since

IDMD™ Y| <1< D "M'D'DMD <1
< M'D'DM <D'D
— X-M"XM>0

where X := DTD > 0, we see that the existence of such a matrix is an LMI feasibility problem
where V needs to be taken as the set of diagonal matrices.

Example 3: eigenvalue minimization

Let F : V — S be an affine function and let Anax(-) denote the maximal eigenvalue of a real
symmetric matrix. Consider the problem to minimize f(x) := Amax(F (x)) over x. Clearly,

Amax(FT(x)F(x)) <y & yl — FT(x)F(x) >0
vyl FT(x)
— (F(x) I ) >0

16
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where the second inequality follows by taking Schur complements. If we define

—. (x —— (vl FT() -
x.-(y), F(x).—(F(x) / ), f&x) =y

then F is an affine function of X and the problem to minimize the maximum eigenvalue of F(x) is
equivalent to determining inf f(x) subject to the LMI F(x) > 0. Hence, thisis an optimization
problem with an LMI constraint with alinear objective function f.

Example 4: simultaneous stabilization

Consider the linear time-invariant system
X = A;x + Bju

where A; e R"™ " and B; e R i =1, ..., k. Thisrepresentsk linear time-invariant systemswith
n dimensional state space and m-dimensional input space. The question of simultaneous stabilization
amountstofinding astatefeedback lawu = Fx with F € R™*" suchthattheeigenvaluesi(A;+B; F)
belong to the left-half complex planefor all i = 1, ..., k. Using Example 1 above, this problem is
solved when we can find matrices F and X;,i = 1, ..., k, such that for all of thesei’s

{Xi >0 (1.4.7)

(Ai + BiF)"X; + Xi(A; + B;F) <0
Since both X; and F are unknown, this is not a system of LMI’s in the variables X; and F. A
simplification of this problem is obtained by assuming the existence of ajoint Lyapunov function,

ie. X1 =...= X; = X. If weintroduce new variablesY = X~ and K = FY (note that this
corresponds to a basis transformation in the state space of the system) then (1.4.7) reads

Y>0
AiY +YA! +BK+K'B] <0

fori = 1,...,k. Thelatter isasystem of LMI'sin the variables Y and K. The joint stabilization
problem therefore has a solution if this system of LMI’sisfeasible.

Example5: quadratic cost evaluation

Consider the linear autonomous system
X = Ax (1.4.8)

together with an arbitrary (but fixed) initial value x(0) = xp and the criterion function J :=
Jo~ xT(1)0x(t)dt where Q = QT is non-negative definite. Assume that the system is asymp-
totically stable. Then all solutions x of (1.4.8) are square integrable so that J < oo. Now consider
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the non-strict linear matrix inequality AT X + XA + Q < 0. For any solution X = X T of thisLMI
we can differentiate the function x T (r) X x (¢) along solutions x of (1.4.8) to get

%[xT(I)Xx(t)] = x"O[ATX + XAlx(t) < —x" (1) 0x(1).

If we assume that X > O then integrating the latter inequality from ¢ = 0 till co yields the upper
bound

J=/ x () Ox(t)dt < xg Xxo.
0

Here, we used that lim,_, o x(t) = 0. Moreover, the smallest upperbound of J is obtained by
minimizing the function f(X) := xJ Xxo over al X = X T which satisfy

X>0
ATX+XA+0<0

Thisis an optimization problem with an LMI constraint.

Example 6, a L eontief economy

A manufacturer may be able to produce n different products from m different resources. Assume
that the selling price of product ; is p; and that it takes the manufacturer a;; units of resource i to
produce one unit of product j. Let x; denote the amount of product j that is to be produced and
let a; denote the amount of available units of resourcei, i = 1, ..., m. The manufacturer probably
wishes to maximize his profit

p(X1, ..., Xp) 1= p1x1+ p2x2+ ...+ ppXn
subject to the production constraints

a1x1 +apex2+ ...t awmx, <ax
anxi+axpx2+ ...+ axx, <az

am1X1 + Am2x2 + ... + AppXn < ap

andx; >0, j =1,...,n. Notethat thisis an optimization problem subject to a system of non-strict
linear matrix inequalities.

Wassily Leontief was born in 1906 in St. Petersburg and is winner of the 1973 Nobel
Prize of Economics. Among many things, he used input-output analysis to study the
characteristics of trade flow between the U.S. and other countries.
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144 How arethey solved?

The three problems defined in the previous subsection can be solved with numerical efficient tools.
In this section we discuss the basic theoretical ideas behind the ‘LMI-solvers'.

Ellipsoid method for LM1’s

We first give a solution which is based on the ellipsoidal algorithm as explained in the previous
section. This solution is simple but not a very efficient one. Let F : 8§ — S be an affine function
with 8§ ¢ R™. Recall that F(x) < Oif andonly if Amax(F (x)) < 0. Define f(x) := Amax(F (x)) and
consider the problem to minimize f. If inf f(x) < Othenthe LMI F(x) < Oisfeasible, otherwise
the LMl isinfeasible.

There are a few observations to make to apply Proposition 1.24. The first one is to establish that f
isaconvex function. Indeed, for all 0 < @ < 1 and x1, x» € § we have that

Sflaxy + (1 —a)x2) = Amax (F (ax1 + (1 — a)x2))
= Amax(a F'(x1) + (1 — o) F(x2))
< admax(F(x1)) + (1 — o) Amax (F (x2))
=af(x1) + (1 —a)f(x2)

which showsthat f isconvex. Second, for any xg we need to determine a subgradient g on the point
(x0, f(x0)) of thegraph of f. To do this, we will use the fact that

ulu=

Sx) = Amax(F(x)) = maxluTF(x)u.

Thismeansthat for an arbitrary xo € 4§ we can determine avector ug € R” with uguo = 1such that
Amax(F (x0)) = ug F(xo)uo. But then

f@0) = o) = max u” Fxu—ug Fxohuo
> ug F(x)uo — ug F (xo)uo
= ug (F(x) — F(x0)) uo.

The last expression is an affine functional which vanishes at xg. This means that the right-hand side
of thisexpression must be of theform (g, x — xo) for somevector g € R™. To obtain g, we can write

m
ugF(x)uo = ugFouo—}— ij ugFjuo

g0 =1

= go+ (g, x),

8j

where g; are the components of g. In particular, we obtain that f(x) — f(x0) > (g, x — xo). The
ellipsoid agorithm is now as follows.
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Algorithm 1.39 (Ellipsoid algorithm)

Step O Let xg € 8 and Py € S be a positive definite matrix. Define the ellipsoid
€0:={x e 4| (x—x0) Pytx —x0) <1
from the initialization step of the ellipsoid algorithm.

Stepk Fork=1,2,...,

1. Compute asubgradient g1 € R™ for f at x;_1 and put

Ri:={xed|xe_1and(gr1,x —xt_1) <0}
2. Compute x; € 8 and P, > 0 such that the ellipsoid
G =1{x eR" | (x —xp) P Hx —xp) < 1)

entirely contains R;. One such x; and Py are given by

] Pr_18k-1
Xp 1= Xp—1 —
(m+1),/gy_1 Pr-18k-1
P m* (p 2 P TP
e 1= k-1 — %—18k—18x—1Pr—1
m? —1 (m+ g1 Peo18k—1

3. Setktok + 1and repeat Step k.

As noticed earlier, this recursive scheme generates a sequence of elipsoids & that are guaranteed
to contain aminimizer of f in 4. The algorithm needs an initialization step in which Py and xg are
determined. Notethat thisisthe only ‘ non-automated’ step in the algorithm. If § isabounded subset
of R™ then the safest choice of the initia elipsoid & would be one which guarantees that 8 C &p.

Interior point methods

A major breakthrough in convex optimization liesin theintroduction of interior-point methods. These
methods were developed in a series of papers[11] and became of true interest in the context of LMI
problems in the work of Yrii Nesterov and Arkadii Nemirovskii [19].

Themainideaisasfollows. Let F be an affine functionand let § := {x | F(x) > 0} bethe domain
of aconvex function f : § — R which we wish to minimize. That is, we wish to solve the convex
optimization problem

min f(x)
over all x which satisfy the linear matrix inequality F(x) > 0. To do this, it is first necessary to
introduce a barrier function. Thisisasmooth function ¢ which is required to
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1. bestrictly convex on theinterior of § and

2. approach infinity along each sequence of points x, in the interior of 4 that converge to a
boundary point of .

Given such abarrier function ¢, the constraint optimization problem tominimize f (x) overal x € §
isreplaced by the unconstrained optimization problem to minimize the functional

fi(x) =1f(x) + ¢ (x) (14.9)

wherer > Oisaso called penalty parameter. Themainideaisto determineaminimizer x (¢) of f; and
to consider the behavior of x (¢) asfunction of the penalty parameter ¢ > 0. Inalmost al interior point
methods the latter unconstrained optimization problem is solved with the classical Newton-Raphson
iteration technique to approximate the minimum of f;. Under mild assumptions and for a suitably
defined sequence of penalty parameterst, witht, — oo asn — oo, the sequence x (t,,) withn € Z
will then converge to a point x which is a solution of the original convex optimization problem.

A small modification of this theme is obtained by replacing the the original constraint optimization
problem by the unconstrained optimization problem to minimize

8i(x) == ot — f(x)) + P (x) (14.10)

wheret > tg := inf p(x)~0 f (x) and ¢g isabarrier function for thenon-negativereal half-axis. Again,
theideaisto calculate aminimizer x (¢) of g, (typically using the classical Newton algorithm) and to
consider the ‘path’ x(¢) as function of the penalty parameter ¢. The curve given by x(¢) witht > 1o
is called the path of centers for the optimization problem. Under suitable conditions the solutions
x(¢) areanaytic and have alimit ast | g, Say xopt. The point xqp isoptimal since for ¢ > 1, x(¢)
isfeasible and satisfies f(x(¢)) < t.

Interior point methods can be applied to each of the three problems as defined in the previous section.
If we consider the feasibility problem associated with the LMI F(x) > Othen (f doesnot play arole
and) one candidate barrier function is the logarithmic function
I F(x)~1 if
Sx) = ogdet F(x) i xe§ .
00 otherwise

Under the assumption that the feasible set § is bounded and non-empty, it follows that ¢ is strictly
convex and hence it defines a barrier function for the feasibility set §. By invoking proposition 1.16,
we know that there exists a uniquely defined xo € 8 such that ¢ (xopt) is the globa minimum of ¢.
This point xqpt Obviously belongs to 4 and is called the analytic center of the feasibility set 4. Itis
usually obtained in a very efficient way from the classical Newton iteration

X1 = Xk — (0" () 1 (). (14.12)
Here ¢’ and ¢” denote the gradient and the Hessian of ¢, respectively.

21



1.4. LINEAR MATRIX INEQUALITIES

The convergence of this algorithm can be analyzed as follows. Since ¢ is strongly convex and
sufficiently smooth, there exist numbers L and M such that for all vectorsu with norm ||| = 1there
holds

uT¢”(x)u >M
19" ) — ¢" (ull < Lllx — yl.
In that case,
/ 2 L / 2
9" DI = 55 197Gl

so that whenever the initial value xo is such that 5= ¢/ (x0)| < 1 the method is guaranteed to
converge quadratically.

The idea will be to implement this algorithm in such a way that quadratic convergence can be
guaranteed for the largest possible set of initial values xg. For this reason the iteration (1.4.11) is
modified as follows
X1 = X — o (M) (k) "L (k)
where
1 ifa<2-43

ar(L) = 1 . .
= ifAa>2-43

1+x

and A(x) := /@' (x)T¢"(x)¢'(x) is the so called Newton decrement associated with ¢. It is this
damping factor that guarantees that x; will converge to the analytic center xopt, the unique minimizer
of ¢. Itisimportant to note that the step-sizeis variable in magnitude. The agorithm guaranteesthat
x isalwaysfeasiblein the sensethat F (x;) > 0 and that x; converges globally to an optimum xop.
It can be shown that ¢ (xx) — ¢ (xopt) < € Whenever

k > c1+ cz2loglog(1/€) 4 c3 (¢ (x0) — ¢ (xopt))

where c1, ¢2 and c¢3 are constants. Thefirst and second terms on the right-hand side do not dependent
ontheoptimization criterion and the specific LMI constraint. Thesecond term canamost be neglected
for small values of €.

The optimization problem to minimize f(x) subject to the LMI F(x) > 0 can be viewed as a
feasibility problem for the LMI

Eux:(‘g“)F&J>a

wherer > t* = inf p(y)~0 f(x) is a penaty parameter. Using the same barrier function for this
linear matrix inequality yields the unconstrained optimization problem to minimize
_ 1
g:(x) :=logdet F,(x) "t = log - 5] +logdet F(x)™t
— X e e ——
D e— @ (x)
¢o(t—f(x))

which is of the form (1.4.10). Due to the strict convexity of g; the minimizer x(¢) of g; is unique
for adl ¢+ > r*. It can be shown that the sequence x(¢) isfeasible for al ¢+ > r* and approaches the
infimum inf g()=0 f(x) ast 1 ¢*.
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145 How arethey implemented?

The LMI toolbox in MATLAB provides various routines for the computation of solutions to the
three generic problems that were formulated in subsection 1.4.3. The manual [5] is a well written
introduction for the usage of this software and provides plenty of examples. Since nobody likes to
read software manuals, we give a*‘ nutshell summary’ of the most rel evant routines and their usage in
this section.

The best introduction to the LMI toolbox (and in particular the LMI-lab which comprisesthe routines
for LMI solvers) isto run and study the tutorial | m demof the LMI toolbox. We recommend every
‘beginner’ to try this tutorial at least once.

Implementation of LMI’s

In MATLAB, the data for the description of alinear matrix inequality isinternally represented in one
vector. This vector encodes the structure and dimension of the LM, the structure and dimension of
the unknown variables and a description of all terms which occur in the inequality. The toolbox can
handle any system of LMI’swhich take the form

NTL(X1,...,Xk)N < M"R(X1,...,Xx)M (Imi1)

wherethe X;’sarethe (unknown) matrix variables, possibly with some prescribed structure, N and M
are (known) sguare matrices of identical dimensionsand L(-) and R(-) are symmetric block matrices
with identical block structures. Each block of L(-) and R(-) is an affine expression in the matrix
variables X1, ..., Xg and their transposes and consists of the sum of elementary terms. A term is
constant when it does not depend on either of the decision variables, otherwise it is variable.

An LMI of thistype can be specified in MATLAB in either of the following ways:

1. by meansof theinterfacel mi edi t, aninteractive graphical LMI editor to symbolically enter
asystem of LMI’s.

2. by means of the more powerful command-line routines| i var and | ni t er mto incremen-
tally define a system of LMI’s.

For beginners, the simplest way to specify an LMI isby typing | mi edi t at the MATLAB prompt.
Thiswill give you agraphical user interface in which all data for the specification of an LMI can be
entered in symbolic expressions. For more experienced and more demanding users, the command
lineroutines| m var and | m t er malow for an incremental specification of a system of LMI’s.
The usage of the latter is described as follows.

Initialization step To initialize avoid structure, first give the command set | mi s([] ), possibly
followed by | mi 1=new m to attach an identifying tag to the LMI you wish to specify.
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Variable definition For each of the unknown matrix variables X1, ..., Xg in (Imil), invoke the
routinel nmi var to defineits structure and dimension. It turns out handy to respect the index-
ordering 1, ..., K indoing so. Thesyntax is X=I mi var (t ype, struc), where

e t ype=1 for symmetric block diagonal matrices of the form
X =diag(S1, ..., Sy),

where each of the §; is either afull symmetric matrix, a scalar multiple of the identity
matrix, or identically zero. Inthiscase, st r uc isaJ x 2 matrix whose jth row is set as
[sj.,tj] wheresj isthesizeof S; and

1 if §; isfull symmetric
tj =10 iij:SjIOf
-1 ifS§; =0

e t ype=2 to specify afull m x n rectangular matrices. Inthiscasestruc=[ m n] .

* t ype=3 for a-typical structuresin which each entry of X can be specified aszero or non-
zero. Inthiscase st r uc hasthedimension of X and struc(i,j)=0if X(, j) =0;
struc(i,j)=nif X(@, j)=x,;struc(i,j)=-nif X, j) = —x,.

term specification The term content of an LMI is specified with | mi t er m The syntax is
Imtern(id,A B)

where A and B are real matrices, i d=[ I m 1, i, ], k] referstothe (i, j)th block of L(-) in
(Imi1) and k isan integer between —K and K. The command

Imiterm([Inmi1,i,j,k],A B)

addsthetermAXkB,AXkTB or Atothe (i, j)thblock of L(-)inl nmi 1, depending onwhether k
ispositive, negative or zero, respectively. Here, k will refer to the matrix variable X, provided
that X; has been defined as the kth call of | mi var. The ‘outer-matrix’ N in (Imil) is an
identity matrix by default, but canbeset asAbytakingi d=[ I nmi 1 0 O 0] . Theright-hand
sideof (Imil) iszero bedefault, but can be similarly specified by replacing thefirstentry | m 1
ini dby-Im 1. When describing an LMI with several blocks, it isimportant that

only the terms of the blocks on and above the diagonal need to be specified thisway.

Asafurther comment, if A and/or B isascalar matrix i.e., amatrix of theform A7 with A € R,
then A or B may be set equal to the scalar A. Zero matrices need not be specified in the term
contents.

final step The specificationiscompleted withthecommand| i sys=get | ni s; . Thisreturnsthe
internal MATLAB representation of (Imil) inthevariablel m sys. Don't forget the semicolon
as you do not want to see or understand the entries of this variable.
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LMI solvers

The basic routines for numerically solving the three generic problems formulated in section 1.4.3 are
the following

 f easp to compute a solution to the feasibility problem
e m ncx to compute a solution to the optimization problem

« gevp to compute a solution to the generalized eigenval ue problem.

Each of theseroutinesisimplemented asa.mex filein MaTLAB and takes avariable which represents
the data of an LMI as its input. These routines do not return a feasible or optimal set of matrix
variables X1, ..., Xk, but avector x of decision variablesxy, . .., x,; which constitute the non-zero
independent entries of X1, ..., Xx. The matrix variables X1, ..., Xx are retrieved from x by the
routine dec2nmat . Specifically, X, is obtained by the command Xk=dec2mat (| m sys, x, k).

Information retrieval

Theroutinel m i nf o canbeusedtointeractively retrieveinformation about alinear matrix inequality
of the form (Imil), its specific structure, block dimensions and term contents in the affine functions
L(-) and R(").

Validation

A solution X1, ..., X of (Imil) can be validated with the routineseval | m and showl m . We
refer to the corresponding help information of these routines for more details.

146 When werethey invented?

Contrary to what many authors nowadays seem to suggest, the study of linear matrix inequalitiesin
the context of dynamical systemsand control goesback along way in history and probably startswith
thefundamental work of Aleksandr Mikhailovich Lyapunov onthe stability of motion. Lyapunov was
aschool friend of Markov (yes, the one of the Markov parameters) and later a student of Chebyshev.
Around 1890, Lyapunov made a systematic study of the local expansion and contraction properties
of motions of dynamical systems around an attractor. He worked out the idea that an invariant set of
adifferential equation is stablein the sense that it attracts all solutions if one can find afunction that
is bounded from below and decreases along all solutions outside the invariant set.

Aleksandr Mikhailovich Lyapunov was born on May 25, 1857 and published in 1892 his work
‘“The General Problem of the Stability of Motion’ in which he analyzed the question of stahility of
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equilibrium motions of mechanical systems. Thiswork served as his doctoral dissertation and was
defended on September 1892 in Moscow University. Put into modern jargon, he studied stability of
differential equations of the form

i = A(x)

where A : R" — R" issomeanalytic function and x isavector of positionsand velocities of material
taking values in afinite dimensional state space X, = R”. As Theorem | in Chapter 1, section 16 it
contains the statement3 that

if the differential equation of the disturbed motion is such that it is possible to find a
definitefunction V of which thederivative V' isa function of fixed sign which is opposite
to that of V, or reduces identically to zero, the undisturbed motion is stable.

The intuitive idea behind this result is that the so called Lyapunov function V can be viewed as a
generalized ‘ energy function’ (in the context of mechanical systemsthe kinetic and potential energies
always served astypica Lyapunov functions). A systemisthen stableif it is‘dissipative’ in the sense
that the Lyapunov function decreases. We will consider stability issuesin much more detail in alater
chapter.

1.5 Further reading

Optimization: [14]

Convex function analysis: [22, 25,43, 50]
Theory of subgradients: [26]

Theory of interior point methods: [19]
Software issues: [5]

1.6 Exercises

Exercise 1

In section 1.2 we defined sublevel sets and related them to the convexity of functions f : 8 — R.
Define a suitable notion of suplevel sets (yes, thisis a“p”) and formulate and prove a sufficient
condition (in the spirit of proposition 1.13) for suplevel setsto be compact.

S3Translation by A.T. Fuller as published in the special issue of the International Journal of Control in March 1992 and
in[15].
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Exercise 2

Give an example of a non-convex function f : § — R whose sublevel sets 4§, are convex for al
o € R.

Exercise 3
Let f : § — R beaconvex function.

1. Show the so called Jensen’s inequality which states that for a convex combination x =
Yol joix; of x1,...x, € & there holds that

FO aixi) £ ai f(xi).
i=1 i=1

Hint: A proof by induction on n may be the easiest.

2. Show that co(8) is equal to the set of all convex combinations of §

Exercise 4

Run the MatLAB demo | m dem

Exercise 5
Use afeasibility test of the LMI toolbox to verify the asymptotic stability of the system x = Ax,

where
0O 1 O
A=|10 0 1.
-2 -3 -4

Todothis, usetheroutinel ti sys to convert astate space model to aninternal format which is used
for the LTI toolbox. Use theroutine f easp to verify feasibility of a suitable LMI.

Exercise 6
Prove that

1. thefunction f : R* — R defined by the quadratic form f(x) = x " Qx + s " x + r is convex
ifandonlyif 0 = QT > 0.
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2. theintersection of thesets §; := {x € R" | xTij+szx+rj <Olwherej=1,...,kand
Q; = Oisconvex.

How does 4; look likeif 0 ; = 0? And how if s; = 0?

Exercise 7

In this exercise we investigate the stability of the linear time-varying system
X = A(f)x (1.6.2)

wherefor all € Ry the matrix A(¢) isaconvex combination of the triple
-1 1 -1 1 -2 1
A= (—1 —o.2>’ 42:= (—2 —o.7>’ A3 = (—1.2 o.4>'

A(r) € CO(A1, Ao, A3)

That is,

for all valuesof + € Ry. Thisisreferred to as a polytopic model. It is an interesting fact that the
time-varying system (1.6.1) is asymptotically stableif thereexistsa X = X | > 0 such that

A{ X +XA1 <0

AJX+ XA <0

AJX + XAz <0.
(We will come this fact later!) If such an X exists then (1.6.1) is stable irrespective of how fast

the time variations of A(r) take place! In fact, the function V (x) := x | Xx serves as a Lyapunov
function for thistime-varying system.

1. Reformulate the question of asymptotic stability of (1.6.1) as afeasibility problem.
2. Find, if possible afeasible solution X to this problem. To do so, either

 usethe graphical interface LMI-editor | mi edi t , or
« use the command-line instructions explained in subsection 1.4.5, or

» use the MaTtLaB function quadst ab. This routine tests the (quadratic) stability of
polytopic models. To invoke this routing, first usel ti sys to represent the state space
systems x = A;x fori = 1,2,3 ininterna LMI format. Then define the polytopic
model (1.6.1) by using psys.
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Exercise 8
Consider the dynamical system
X = Ax + Bu

where x is an n-dimensional state and « is a scalar-valued input which is supposed to belong to
U={u:R—>R|-1=<u() <1lforalr > 0}. Definethe null controllable subspace of this
system as the set

C:={xoeR"|3IT >0andu € U suchthat x(T) = 0}

i.e, the set of initial states that can be steered to the origin of the state space in finite time with
constrained inputs. Show that € isaconvex set.
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Figure 1.1: Aleksandr Mikhailovich Lyapunov
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Chapter 2

Dissipative dynamical systems and
linear matrix inequalities

2.1 Introduction

The notion of dissipativity isamost important concept in systems theory both for theoretical consid-
erations as well as from a practical point of view. Especialy in the physical sciences, dissipativity
is closely related to the notion of energy. Roughly speaking, a dissipative system is characterized
by the property that at any time the amount of energy which the system can conceivably supply to
its environment can not exceed the amount of energy that has been supplied to it. Stated otherwise,
when time evolves, adissipative system absorbs afraction of its supplied energy and transformsit for
exampleinto heat, an increase of entropy, mass, electro-magnetic radiation, or other kinds of energy
‘losses’. In many applications, the question whether a system is dissipative or not can be answered
from physical considerations on the way the system interacts with its environment. For example, by
observing that the system is an interconnection of dissipative components, or by considering systems
inwhich aloss of energy isinherent to the behavior of the system due to friction, optical dispersion,
evaporation losses, etc.

In this chapter we will formalize the notion of a dissipative dynamical system for a very general
class of systems. It will be shown that linear matrix inequalities occur in a very natural way in
the study of linear dissipative systems. Perhaps the most appealing setting for studying LMI’sin
system and control theory iswithin the framework of dissipative dynamical systems. It will be shown
that solutions of LMI’s have anatural interpretation as storage functions associated with adissipative
system. Thisinterpretationwill play akey rolein understanding theimportance of LMI’sin questions
related to stability, robustness, and alarge variety of controller design problems.
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2.2. DISSIPATIVE DYNAMICAL SYSTEMS

2.2 Dissipative dynamical systems

2.2.1 Definitions and examples

Consider a continuous time, time-invariant dynamical system X described by the equations

0= f(x,x,u) (2.2.19)
y=g(x,u) (2.2.1b)

Here, x is the state which takes its values in a state space X, u is the input taking its valuesin an
input space U and y denotes the output of the system which assumes its values in the output space
Y. Throughout this section, the precise representation of the system will not be relevant. What we
need, though, isthat for any initial condition x(0) = xg of (2.2.1a) and for any input u belonging to
aninput class U, the state x and the output y are uniquely defined for al positive time and depend on
u in acausal way. The system (2.2.1) therefore generates outputs from inputs and initial conditions.
Let
s:UxY —>R

be a mapping and assume that for all 1o, 11 € R and for all input-output pairsu, y satisfying (2.2.1)
the composite function
s(t) == s(u(), y())

islocaly integrable, i.e., f,;l |s(t)|dt < oo. (We do realize that we abuse notation for s here). The
mapping s will be referred to as the supply function.

Definition 2.1 (Dissipativity) Thesystem X with supply rates issaid to bedissipativeif there exists
anon-negative function V : X — R such that

n

V(X(to))-i-/ s(n), y@)dt = V(x(t1)) (222

fo

for dl 1o < 11 and all trajectories (u, x, y) which satisfy (2.2.1).

Interpretation 2.2 The supply function (or supply rate) s should be interpreted as the supply de-
livered to the system. This means that in atime interval [0, r] work has been done on the system
whenever f(; s(t)dt is positive, while work is done by the system if this integral is negative. The
non-negative function V is called a storage function and generalizes the notion of an energy function
for adissipative system. With thisinterpretation, inequality (2.2.2) formalizestheideathat a dissipa-
tive system is characterized by the property that the change of internal storage V (x(¢1)) — V (x(t0))
in any time interval [zg, 1] will never exceed the amount of supply that flowsinto the system (or the
‘work done on the system’). This means that part of what is supplied to the system is stored, while
the remaining part is dissipated. Inequality (2.2.2) is known as the dissipation inequality.

Remark 2.3 Since the system communicates with its environment through the variables u and y, it
is natural to define the supply function s on the signal space U x Y. Moreover, since storage is a
concept related to the internal structure of the system, it islogical to view storage functions as state
functions.
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2.2. DISSIPATIVE DYNAMICAL SYSTEMS

Remark 2.4 Note that whenever the composite function V (x(-)) with V a storage function and
x : R — X astate trgjectory satisfying (2.2.1a), is differentiable as a function of time, then (2.2.2)
can be equivalently written as

V() < s(1). (2.2.3)

Example 2.5 The classical motivation for the study of dissipativity comes from circuit theory. In
the analysis of electrical networks the product of voltages and currents at the external branches of a
network, i.e. thepower, isan obvioussupply function. Similarly, theproduct of forcesand velocitiesis
acandidate supply functionin mechanical systems. For those familiar with the theory of bond-graphs
weremark that every bond-graph can be viewed as arepresentation of adissipative dynamical system
where input and output variables are taken to be effort and flow variables and the supply function s
isthe product of these two variables. A bond-graph istherefore aspecial case of a dissipative system
(and not the other way around!).

Example 2.6 Consider a thermodynamic system at uniform temperature 7 on which mechanical
work is being done at rate W and which is being heated at rate Q. Let (T, Q, W) be the external
variables of such a system and assume that —either by physical or chemical principles or through
experimentation— the mathematical model of the thermodynamic system has been decided upon and
is given by the time invariant system (2.2.1). The first and second law of thermodynamics may then
beformulated in the sense of Definition 2.1 by saying that the system ¥ isconservative with respect to
the supply function s1 := (W + Q) and dissipative with respect to the supply functions; := —Q/T.
Indeed, the two basic laws of thermodynamics state that for all system trajectories (T, Q, W) and all
timeinstantsrg < 11

1
E(x(t0)) +/ Q@)+ W(r) dt = E(x(11))
1o

(which is conservation of thermodynamical energy) and the second law of thermodynamics states
that the system trajectories satisfy

n
S(x(10)) + /IO —% dt = §(x(t1))

for a storage function S. Here, E is called the internal energy and S the entropy. The first law
promises that the change of internal energy is equal to the heat absorbed by the system and the
mechanical work which is done on the system. The second law states that the entropy decreases at a
higher rate than the quotient of absorbed heat and temperature. Note that thermodynamical systems
are dissipative with respect to more than one supply function!

Example 2.7 Typical examples of supply functionss : U x Y — R are
s, y)=u'y,
s, y) = I1ylI% — llul?
s, y) = Iyl + llull?
s(u, y) = [lyll?

which arise in network theory, bondgraph theory, scattering theory, H., theory, game theory and
LQ-optimal control and H»-optimal control theory.
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Remark 2.8 There are afew refinementsto Definition 2.1 which are worth mentioning. The system
¥ issaid to be conservative or lossless if there exists a non-negative function V : X — R such that
equality holdsin (2.2.2) fordl tp <ty and al (u, x, y) which satisfy (2.2.1). Also, Definition 2.1 can
be generalized to time-varying systems by letting the supply rate s explicitly depend on time. Wewill
not need atime-varying generalization for our purposes. Many authors have proposed a definition of
dissipativity for discrete time systems, but since we can not think of any physical example of such a
system, there seemsllittle point in doing this. An other refinement is based on the idea that a system
3 may be dissipative with respect to more than one supply function. See Example 2.6 below.

Thenotion of strict dissipativity isarefinement of Definition 2.1 which wewill usein the sequel. For
this, let the state space X be equipped with its usual Euclidean norm. Wewill say that V : XX — R
has a strong global minimum if there exists x*' € X, § > 0 and a continuous, strictly increasing
function« : Ry — R4 withw(0) = 0, suchthat (1) V(x*) < V(x) foral x € X and (2)

V() = V) = a(lx — x|

for al x with ||lx — x*} < §. Stated otherwise, V attainsits global minimum at x*, while V (x) is
strictly larger than V (x* for al x sufficiently close to x*.

Definition 2.9 (Strict dissipativity) Thesystem = with supply rates issaid to be strictly dissipative
if there exists a non-negative function V : X — R which attains a strong global minimum and an
€ > 0 such that

n
V(x(10) + / (s, y@y) = u@I?) dr = Vxt) (224)
0

for al 1g < 11 and all trgjectories (u, x, y) which satisfy (2.2.1).

Clearly, asystemis strictly dissipative only if astrict inequality holdsin (2.2.2). In addition, storage
functions of strictly dissipative systems are assumed to have a strong global minimum at some point
x* e X.

2.2.2 A classification of storage functions

If (2, s) is dissipative with storage function V then we will assume that there exists a reference
point x* € X of minimal storage, i.e., there exists x* € X such that V (x*) = min,cx V(x). Given
a storage function V, its normalization (with respect to x*) is defined as V (x) := V(x) — V(x*).
Obviously, V(x*) = 0 and V isastorage function of £ whenever V is.

Instead of considering the set of al possible storage functions associated with (X, s), wewill restrict
attention to the set of normalized storage functions. Formally, the set of normalized storage functions
(associated with (X, 5)) is defined by

Vx*):={V:X —> R, | V(¥ =0and (2.2.2) holds}.
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The existence of areference point x* of minimal storage impliesthat for a dissipative system

5
/1S(u(l)7y(l))dl >0
0

forany 11 > O and any (u, x, y) satisfying (2.2.1) with x(0) = x™*. Stated otherwise, any trgjectory
of the system which emerges from x* has the property that the net flow of supply isinto the system.
Often, this property is taken as definition of passivity. Two mappings Vo : X — Ry U oo and
Vieg : X = R U {—oo0} will play acrucial rolein the sequel. They are defined by

t
Vav(x0) := sup {— / ls(l‘) dt | t1>0; (u,x,y) satisfy (2.2.1) with x(0) = xo} (2.2.59)
0

0
Vieq(x0) := inf {/ s@)dt | t—1 <0; (u, x, y) satisfy (2.2.1) with (2.2.5b)
3

1
x(0) = xgand x(r_1) = x*}

Then Vg, (x) denotes the maximal amount of internal storage that may be recovered from the sys-
tem over all state tragjectories starting from x. Similarly, Vieq(x) reflects the minimal supply the
environment has to deliver to the system in order to excite the state x via any trgectory in the state
space originating in x*. We refer to Va and Vieq as the available storage and the required supply,
respectively. Notethat in (2.2.5b) it is assumed that the point xg € X isreachable from the reference
point x*, i.e., it is assumed that there exists a control input u € U which steers the state from x* at
timer =r_1 toxg at timer = 0. Thisisthe case when the system X is controllable.

Proposition 2.10 (Willems) Let the system X be described by (2.2.1) and let s be a supply function.
Then

1. Y isdissipativeif and only if Vg (x) isfinitefor all x € X.
2. If ¥ isdissipative and controllable then

(a.) Vav, Vreq (S V(x*)
(b) {V e V(x*)} = {Forallx e X thereholds 0 < Vay(x) < V(x) < Vieg(x)}.
(c) V(x*)isaconvexset. Inparticular, Vy := aVay+(1—a) Vieq € V(x*) for all o € (0, 1).

Interpretation 2.11 Proposition 2.10 gives a hecessary and sufficient condition for a system to be
dissipative. It shows that both the available storage and the required supply are possible storage
functions. Moreover, statement (b) shows that the available storage and the required supply are the
extremal storage functionsin V(x*). In particular, for any state of a dissipative system, the available
storage can not exceed itsrequired supply. In addition, convex combinations of the available storage
and the required supply are candidate storage functions.
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2.2. DISSIPATIVE DYNAMICAL SYSTEMS

Proof. 1. Let X bedissipative, V astorage function and xg € X. From (2.2.2) it then follows that
foral r; > 0and all (u, x, y) satisfying (2.2.1) with x(0) = xo,

15
—fls(ua), YOt < V(x0) < oo
0

Taking the supremum over al r1 > 0 and al such trgjectories (u, x, y) (with x(0) = xq) yields that
Vav(x0) < V(x0) < oo. To prove the converse implication it suffices to show that Vy, is a storage
function. To seethis, first notethat Vg (x) > Ofor dl x € X (takery = 0in (2.2.5a)). To prove that
Va sttisfies (2.2.2), lettg < 11 < t2 and (u, x, y) satisfy (2.2.1). Then

17}

S(u(t),y(t))dt—/ s(u(r), y(t))dr.

n

n

Vav(x(f0)) > —/

o
Since the second term in the right hand side of thisinequality holdsfor arbitrary r» > #1 and arbitrary
(u, x, Y) .1, (With x(z1) fixed), we can take the supremum over all such trajectories to conclude
that

n

Vav(x(t0)) = —/ s((t), y(@)dt + Vay(x(t1))

fo

which showsthat V,, satisfies (2.2.2).

2a. Suppose that = is dissipative and let V be a storage function. Then V(x) := V(x) — V(x*) €
V(x*) sothat V(x*) # . Observethat Va, (x*) > 0and Vieq(x*) < 0(taker; = r_3 = 0in(2.2.5)).
Suppose that the latter inequalities are strict. Then, using controllability of the system, there exists
t_1 < 0 < rp and astatetrajectory x withx (1_1) = x(0) = x(¢1) = x* suchthat — fél s(t)dt > Oand
[21 s(t)dt < 0. Butthisyieldsacontradictionwith (2.2.2)asbothfc’;l s(t)dt > Oand ffl s(t)dt > 0.
Thus, Vay(x*) = Vieg(x*) = 0. Wealready proved that Va isastoragefunction sothat Vay € V(x*).
Along the same lines one shows that also Vieq € V(x™).

2b. If V € V(x*) then

1 0
_/0 s(u(t), y(1))dr < V(xo) S/ s(u(t), y(0)dt

-1
foral sy <0< and(u,x,y) saisfying (2.2.1) with x(r_1) = x* and x(0) = xg. Now take the
supremum and infimum over all such trgjectoriesto obtain that Vay < V < Vieg.

2c. Followstrivialy from (2.2.2). [ |

2.2.3 Dissipation functions and Lyapunov functions

If the system X is dissipative with respect to the supply function s then

n

V(x(10)) +f s(t)dr — V(x(t1))

o
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is a non-negative quantity that can be interpreted as the amount of supply that is dissipated in the
system in thetimeinterval [z, 11].

Definition 2.12 (Dissipation functions) A functiond : X x U — R iscaled adissipation function
for (X, s) if there existsa storage function V : X — R such that

1
V (x(t0)) +/ [s(®), y(®)) —dx@), u()]dt = V(x(t1))
o

hold for al 79 < 1 and al trgjectories (u, x, y) which satisfy (2.2.1).

Obvioudly, the system ¥ is dissipative with respect to the supply function s if and only if there exists
a dissipation function d which is non-negative in the sense that d(x, u) > 0 for al x, u. Note that
d is anon-negative dissipation function for (X, s) then X is conservative with respect to the supply
functions — d.

Storage functions and Lyapunov functions are closely related. Indeed, if u(¢) = u* withu* € U is
taken as a constant input in (2.2.1) then we obtain the autonomous system

0= f(x,x,u")
y = gx,u).

Let x* be an equilibrium point of this system, i.e., apoint x* € X which satisfies0 = f(0, x*, u*).
Suppose that the system defined by (2.2.1) is dissipative with supply

s@*,y) =s@", g(x,u®) < 0

for al x in aneighborhood of x*. From Remark 2.4 we then infer that any (differentiable) storage
function V of this system is non-negative and monotone non-increasing a ong solutionsin aneighbor-
hood of x*. Consequently, by Lyapunov’stheorem, x* is a stable equilibrium if the storage function
V attains a strong local minimum at x*. In that case, the storage function V is nothing else than a
Lyapunov function defined in a neighborhood of x*.

2.3 Linear dissipative systemswith quadratic supply rates

In this section we will apply the above theory to linear input-output systems X described by

<§>:<ég>(ﬁ) (23.0)

with state space X = R”, input space U = R™ and output space Y = R”. Consider a general
guadratic supply functions : U x ¥ — R defined by

:
=) (82 62)C) @32
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2.3. LINEAR DISSIPATIVE SYSTEMSWITH QUADRATIC SUPPLY RATES

Here,
P ny Qyu)
Q o (Quy Quu
isareal symmetric matrix which is partitioned conform with « and y. we emphasize that no a priori
definiteness assumptions are made on Q.

Remark 2.13 Substituting the output equation y = Cx + Du in (2.3.2) shows that (2.3.2) can
equivalently be viewed as a quadratic function in the variables u and x. Indeed,

T
s(u,y) =su,Cx + Du) = <i) <gXX gxu> (i)

(Qxx qu):<C D)T (ny Qyu) (C D)
qu Quu 0 I Quy Q,m 0 I ’

2.3.1 A characterization of linear dissipative systems

where

The following Theorem is the main result of this chapter. It provides necessary and sufficient con-
ditions for the pair (X, s) to be dissipative. For linear systems with quadratic supply functions, it
provides a complete parametrization of its normalized storage functions, together with a frequency
domain characterization of dissipativity.

Theorem 2.14 Suppose that the system ¥ described by (2.3.1) is controllable and let the supply
function s be defined by (2.3.2). Then the following statements are equivalent.

1. (X, s) isdissipative.
2. (¥, s) admits a quadratic storage function V(x) := x ' KxwithK = KT > 0.

3. Thereexists K = K ' > 0 such that
_ (ATK+KA KB c D\' (0, 0w\ [(C D
Py e - (KA KB (€ D) (00 01)(€ D) Ly o
4. Thereexists K_ = K > Osuchthat Vg (x) = x T K_x.

5. Thereexists Ky = K| > Osuchthat Vieg(x) = x T Kx.

6. For all € R with det(iwl — A) # 0, the transfer function G(s) := C(Is — A) "B + D

satisfies
Gliw) : Oyy Oyu G(iw)
( ! ) (QZ; QL)( I )Z 0 (2.3.4)
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2.3. LINEAR DISSIPATIVE SYSTEMSWITH QUADRATIC SUPPLY RATES

Moreover, if one of the above equivalent statementsholds, then V (x) := x T Kx isaquadratic storage
functionin V(0) ifand only if K > Oand F(K) > O.

Proof. (1=24). If (X, s) is dissipative then we infer from Proposition 2.10 that the available
storage Va(x) is finite for any x € R”. We claim that V4 (x) is a quadratic function of x. This
follows from [46] upon noting that the supply function s is quadratic and that

11 15
Va(x) = sup—/ s(t)ydt = — inf/ s(t)dt
0 0

denotes the optimal cost of a linear quadratic optimization problem. It iswell known that the latter
infimum is a quadratic formin x.

(4=1). Obvious from Proposition (2.10).

(2=3). If V(x) = x" Kx with K > 0 is a storage function then the dissipation inequality can be
rewritten as

58 d
/ (—Ex(t)TKx(t) + su(), y(t))) dt > 0.
1

0

Substituting the system equations (2.3.1), thisis equivalent to

nx@) T ATK +KA KB c D\ 0 0w\ (C D 0
/’0 <”(t)> {_< BTK 0)+(0 1) <Qi;v Qzu) (0 1) <u(t)> dt = 0.

F(K)

(2.3.5)
Since (2.3.5) holdsfor al 1o < r1 and all inputs u thisreducesto the requirement that K > 0 satisfies
theLMI F(K) > 0.

(3=2). Cornversely, if there exist K > 0 such that F(K) > 0 then (2.3.5) holds and it follows that
V(x) = x " Kx isastorage function which satisfies the dissipation inequality.

(1&5). If (2, 5) is dissipative then by Proposition (2.10), Vieq is a storage function. Since Vyeq is
defined asan optimal cost corresponding to alinear quadratic optimization problem, Vieq isquadratic.
Hence, if the reference point x* = 0, Vyeq(x) isof the form x " K,x for some K, > 0. Conversely,
if Vieg=x" Kyx, K+ > 0, then it is easily seen that Vieq Satisfies the dissipation inequality (2.2.2)
which impliesthat (X, s) is dissipative.

(1<6). Letw € Rbesuchthatdet(iwl —A) # 0andconsider the(complex) inputu(¢) = exp(iwt)uo
with ug € R™. Define x(r) := exp(iowt)(iwl — A)"1Bug and y(r) := Cx(t) + Du(t). Then
y(t) = exp(iwt) G (iw)ug and the triple (u, x, y) satisfies (2.3.1). Moreover,

o =i (7)) G2) (75

whichisconstant for al timer € R. Now supposethat (X, s) isdissipative. For non-zero frequencies
w, the triple (u, x, y) is periodic with period P = 2n/w. In particular, for dl k € Z, x(tp) =
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2.3. LINEAR DISSIPATIVE SYSTEMSWITH QUADRATIC SUPPLY RATES

x(to+kP)andhence V (x(t9)) = V(x(to+ kP)). For r1 > tg, the dissipation inequality (2.2.2) now

reads
& _ i _ (G(iw) . Oyy Qyu) (G(lw)>
[0 s,y dr = ./zo “o ( I ) (Quy OQuu 1 uodw

(Gl (Qyy Q) (Gliw)
B (tl tO)u0< 1 ) <Quy Quu I “o = 0
Sinceug and 1 > g are arbitrary thisyields 6.

The implication (1<-6) is much more involved and will be omitted here. [

We recognize in (2.3.3) anon-strict linear matrix inequality. The matrix F(K) isusually called the
dissipation matrix. Observe that in the above proposition the set of quadratic storage functionsin
V(0) is completely characterized by the inequalities K > 0 and F(K) > 0. In other words, the
set of normalized quadratic storage functions associated with (X, s) coincides with the feasibility
set of the system of LMI’'SK = KT > Oand F(K) > 0. In particular, the available storage and
the required supply are quadratic storage functions and hence K and K also satisfy F(K_) > 0
and F(K,) > 0. Using Proposition 2.10, it moreover follows that any solution K = KT > 0 of
F(K) > 0 hasthe property that
O0<K_<K<Kjy.

In other words, among the set of positive semi-definite solutions K of the LMI F(K) > O there
exists a smallest and a largest element. The equivalence between statements 1 and the frequency
domain characterization in statement 6 has along history in system theory. The result goes back to
V.A. Yakubovich (1962) and R. Kalman (1963) and is often referred to as to ‘Kaman-Yakubovich
Lemma.

For conservative systems with quadratic supply functions a similar characterization can be given.
The preciseformulationisevident from Theorem 2.14 and isleft to the reader. For strictly dissipative
system the result is worth mentioning.

Theorem 2.15 Suppose that the system ¥ described by (2.3.1) is controllable and let the supply
function s be defined by (2.3.2). Then the following statements are equivalent.

1. (X, s) isstrictly dissipative.
2. (¥, s) admits a quadratic storage function V(x) := x ' Kx withK = KT > 0.
3. Thereexists K = K | > 0 such that

. ATK +KA KB c D\' (0, 0w\ (C D
F(K).:—( BTK 0>+(0 1) <Qui QL,)(O 1) >0 (23.6)

4. For all € R with det(iwl — A) # 0, the transfer function G(s) := C(Is — A)"1B + D

satisfies
(P& &) e
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2.3. LINEAR DISSIPATIVE SYSTEMSWITH QUADRATIC SUPPLY RATES

Moreover, if one of the above equivalent statementsholds, then V (x) := x T Kx isaquadratic storage
functionin V(0) ifand only if K > Oand F(K) > 0.

Proof. The proof proceeds along the same lines as the proof of Theorem 2.14. We only prove the
implication (3=1) here. Let K > Obesuchthat F(K) > 0. Then obvioudly, thereexistse > 0 such
that F(K) — diag(0, €21) > 0. But then

hd o 2\ [T (x®) 0 0\](x®
/to <_Ex(t) Kx (1) +s(), y(1)) — e llu@)|l )dt—/to (u(t)> [F(K)— (O 62,)} (u(t)> dt > 0

which is (2.2.4) with V(x) = x T Kx. Since V is non-negative and attains a strong global minimum
a 0, it followsthat (X, s) is strictly dissipative. [ ]

2.3.2 Dissipation functions

Thereisasimple relation between the dissipation matrix F(K) and dissipation functions. Indeed, if
K =KT >0(or> 0)issuchthat F(K) > 0 then the dissipation matrix can be factorized as

F(K)= (Mx Nk)' (Mg Ng).

where (Mg Ng) isarea matrix with n + m columnsand rg := rank(F(K)) rows. For any triple
(u, x, y) satisfying (2.3.1) we then obtain that

i 1\ T X
/ ||MKx(t)+NKu(t)||2dt:/ < ) F(K)( )dt
0 0 \U u
41

=x(to)TKx(to)—x(tl)TKx(tl)+/ s(r)drt.

fo

In other words, the function
d(x,u) := ||Mgx + Ngul)?

isadissipation function of the system (2.3.1).

2.3.3 Thepositivereal lemma

Consider the system (2.3.1) together with the quadratic supply function s(u, y) = y 'u +u"y. Then
the following is an immediate consequence of Theorem 2.14.

Corollary 2.16 Suppose that the system X described by (2.3.1) is controllable and has transfer
function G. Let s(u, y) = y 'u + u ' y be a supply function. Then equivalent statements are

1. (X, s) isdissipative.
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2. thesystemof LMI’s

K=K'">0

—ATK —KA —-KB+CT - 0
—-B'K+C D+ DT =

isfeasible
3. Forall w e Rwithdetiwl — A) #0G(iw)* + G(@iw) > 0.

Moreover, V (x) = x| Kx defines a quadratic storage function if and only if K satisfies the above
system of LMI’s.

Remark 2.17 Corollary 2.16 isknown as the Kalman-Yacubovich-Popov or the positive real lemma
and has played a crucial role in questions related to the stability of control systems and synthesis of
passive electrical networks. Transfer functions which satisfy the third statement are generally called
positive real.

2.3.4 Thebounded real lemma

Consider the quadratic supply function
s, y)=y%u'u—y'y (2.3.8)
where y > 0. We obtain the following result as an immediate consegquence of Theorem 2.14.

Corollary 2.18 Suppose that the system ¥ described by (2.3.1) is controllable and has transfer
function G. Let s(u, y) = y%u'u — y ' y be a supply function. Then equivalent statements are

1. (X, s) isdissipative.

2. Thesystemof LMI's

K=K'">0

ATK +KA+C'C KB+C'D\ _ 0
BTK+D'C DD —y?I

isfeasible.

3. For all w € Rwithdet(iwl — A) # 0G(iw)*G(iw) < y2I.

Moreover, V (x) = x| Kx defines a quadratic storage function if and only if K satisfies the above
system of LMI’s.
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Let us analyze the importance of thisresult. If X is dissipative with respect to the supply function
(2.3.8) then we infer from Remark 2.4 that for any quadratic storage function V(x) = x ' Kx,

V< yZuTu —yly (2.3.9)

along solutions (u, x, y) of (2.3.1). Suppose that x(0) = 0, A has al its eigenvalues in the open
left-half complex plane and the input u is taken from the set £ of square integrable functions, i.e.,
u is such that

lull3 = foouT(t)u(t)dt < oo
0

Then boththe state x and the output y of (2.3.1) aresquareintegrablefunctionsand lim;_, o x () = 0.
We can therefore integrate (2.3.9) from ¢ = 0 till co to obtain that for al u € £2

y2ul3 — llyl3 > O.

Equivaently,
Iyll2
—_— <

<. (2.3.10)
uely lull2

The left-hand side of (2.3.10) is the so called «£,-induced norm or L£2-gain of the system (2.3.1).
The L£»-gain istherefore the smallest y > 0 for which (2.3.10) holds.

Translated in terms of LMI’s, we infer that the upperbound (2.3.10) holds if and only if there exists
K that satisfies the linear matrix inequalities of Corollary (2.18). This provides a feasibility test,

parametrized in y > 0, to determine the L£2-gain of the system. We will analyze the consequences
of this observation for control in the next chapter.

2.4 Further reading

The material on dissipative systems originates from [47, 48] and has been further developed in [42]
and [44,45].

2.5 Exercises

Exercise 1

Show that for conservative controllable systemsthe set of normalized storagefunctions V (x*) consist
of one element only. (Conseguently, storage functions of conservative or |ossless systems are unique
up to normalization!).
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Exercise 2

Show that the set of dissipation functions associated with a dissipative system is convex.

Exercise 3
Suppose that

(5)=(22)()

isaminimal (i.e. controllable and observable) representation of a linear time-invariant dynamical
system 3. Show that X is stable (in the sense that the unforced system x = Ax has solutions x with
lim,_, o x(¢) = 0) whenever X is dissipative with respect to the supply function s (u, y) = y Tu.

Exercise 4

Consider the suspension system ¥ of a transport vehicle as depicted in Figure 2.1. The system is

Figure 2.1: Model for suspension system
modeled by the equations

m2g2 + ba(g2 — q1) + ka(g2 —q1) — F =0
migi + b2(q1 — §2) + k2(q1 — q2) + ki(g1 —qo) + F =0
where F (resp. —F) is aforce acting on the chassis mass m (the axle mass m1). Here, g2 — g1 is

the distance between chassis and axle, and g, denotes the acceleration of the chassis massmo. b is
adamping coefficient and k1 and k2 are spring coefficients. (b1 = 0). The variable gg representsthe

m1i mo k1 ko bs
15x10° | 1.0x 107 | 5.0 x 10° | 5.0 x 10° | 50 x 10°

Table 2.1: Physical parameters
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road profile. A ‘red life’ set of system parametersis givenin Table 2.1.

1. Derive astate space model of the form 2.3.1 of the system which assumesu = col (o, F) and
y = col(q1, 41, g2, §2) asitsinput and output, respectively.

2. Defineasupply functions : U x Y — R such that (2, s) isdissipative. (Base your definition
on physica insight).

3. Characterize the set of all quadratic storage functions of the system as the feasibility set of a
linear matrix inequality.

4. Use the MATLAB routine f easp to compute a quadratic storage function V(x) = x " Kx of
this system.

5. Use MATLAB to determine a dissipation functiond : X x U — R for this system.
Exercise 5
Consider the transfer functions

1. Gi(s) =1/(s + 1)
2. Gs)=(6—-D/s+D

(5 +DG =D/ +D? (s+3/(s+D)
3. Gals) = ( —1/(s+05  (s+1)/(s+ 2))'

Determine for each of these transfer functions (1) whether or not they are positive real and (2) their
«L2-induced norm. Reformulate this problem as a feasibility test involving a suitably defined LMI
(See Corollary 2.16 and Corollary 2.18 of this chapter).

Exercise 6

Consider the following electrical circuit. We will be interested in modeling the relation between

i
Rc R

"D c .
j E—

the external voltage V and the current I through the circuit. Assume that the resistors Rc = 1 and
R; = 1, the capacitor C = 2 and theinductance L = 1.
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1. Derive alinear, time-invariant system X that models the relation between the voltage V and
the current 1.

2. Find a state space representation of the form (2.3.1) which represents . Isthe choice of input
and output variable unique?

3. Defineasupply functions : U x ¥ — R such that (2, s) isdissipative.

4. Characterize the set of all quadratic storage functions of the system as the feasibility set of a
linear matrix inequality.

5. Use the MATLAB routine f easp to compute a quadratic storage function V(x) = x " Kx of
this system.

6. Does dissipativitity of (X, s) depend on whether you take the voltage V or the current I as
input of your system?

Exercise 7

Consider a first-order unstable system P(s) = 1/(—3s + 1). It is desirable to design a feedback
compensator C, so that the feedback system isdissipative. Assumethat the compensator C isasimple
gain C(s) = k. Find the range of gains that will make the system depicted in Figure 2.2 dissipative
with respect to the supply function s (i, y) = yu.

u y

4T+—~ C P -

Figure 2.2: Feedback configuration
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Chapter 3

Stability and nominal performance

3.1 Lyapunov stability

Asmentioned in Chapter 1, Lyapunov studied contraction and expansion phenomena of the motions
of adynamical systems around an equilibrium of amechanical system. Translated in modern jargon,
the study of what we call Lyapunov stability concerns the asymptotic behavior of the state of an
autonomous dynamical system. The main contribution of Lyapunov has been that stability of such
systems can be verified in terms of the existence of functions, called Lyapunov functions. For
the general class of nonlinear systems there are no systematic procedures for finding such functions.
However, for linear systemsthe problem of finding Lyapunov functionsturnscan be solved adequately
as afeasibility test of alinear matrix inequality.

Consider the differential equation
x=f(x) 3.11

with finite dimensional state space X = R” and f : R" — R”" an analytic function. Usually, the
differential equation (3.1.1) is referred to as a flow, while for system theorists this is an example
of an autonomous dynamical system. Assume that for al initial conditions xg € X there exists a
unique solution x : Ry — X of (3.1.1) which passes through xg at the initial time = 0 and which
is defined for all + > 0. With some abuse of notation this solution will be denoted as x (¢, xp) to
explicitly display the dependence of the initial value. In particular, x (0, xg) = xo.

A set 8§ C X iscaled aninvariant set of (3.1.1) if xo € 8 impliesthat x (¢, xg) € § foral r € R.
The idea of an invariant set is therefore that a solution remains in the set once it started there. A
point x* in X is called an equilibrium point of the flow if the singleton § = {x*} isan invariant set.
Obviously, every equilibrium point definesaconstant solution x (¢, x*) = x*, ¢ > 0 of thedifferential
equation (3.1.1). In particular, an equilibrium point x* of (3.1.1) satisfies0 = f(x*). To investigate
the issue of stability, we will be interested in the behavior of solutions x (¢, xg) with# > 0 and initial
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3.1. LYAPUNOV STABILITY

condition xp in the neighborhood of an equilibrium point x*. To do this, we equip the state space X
with its natural (Euclidean) norm || - ||.

Definition 3.1 (Lyapunov stability) Consider the differential equation (3.1.1).
1. An equilibrium point x* € X is called stable (in the sense of Lyapunov) if given any € > 0,
there exists § > 0 (only depending on ¢ and not on ¢) such that

[x* —xoll <8 = |x(t,x0) —x*|| <eforalr >0

2. Theequilibrium point x* € X iscalled an attractor if thereexistse > 0 with the property that

Ix* —xoll <e = lim x(z, x0) = x*
t—00
3. Itiscalled asymptotically stable (in the sense of Lyapunov) if x* is both stable (in the sense of
Lyapunov) and an attractor.

4. Theequilibrium point x* € X issaidtobeunstableif itisnot stable (in the sense of Lyapunov).
There are many variations to these concepts. The region of attraction associated with an equilibrium
point x* is defined to be set of al initia states xg € X for which x (¢, xg) — x* ast — oo. If this
region coincides with X then x* is said to be aglobal attractor. We will say that an equilibrium x*

is globally asymptotically stable if it is stable and aglobal attractor. Lyapunov functions are defined
asfollows.

Definition 3.2 (Lyapunov functions) A function V : X — R is caled a Lyapunov function in a
neighborhood & (x*) C X of an equilibrium point x* if
1. V iscontinuousat x*,

2. V atains astrong local mimimum at x*, i.e., there existsafunction @ : R, — R, whichis
continuous, strictly increasing, with «(0) = 0, such that

V(x) = V(x*) = a(lx —x*|)
foral x € N(x¥).
3. V is monotone non-increasing along all solutions x (¢, xg) of (3.1.1) with xo € N (x¥), i.e,

V (x(z, x0)) ismonaotone non-increasing as afunction of ¢ for al xg € N (x™).

If aLyapunov function V is differentiable, the last item states that

d A%
TV x0) =Y o fi(x(t, %0))
J

dt j=1
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is less than or equal to zero for solutions x (¢, xg) of (3.1.1) with initial condition xg nearby the
equilibrium x*. Anintuitive way to think about Lyapunov functionsisin terms of storage functions
(asintroduced in Chapter 2). Due to the dissipativity property of a system, the storage (or ‘stored
energy’) decreases along trajectories of the system. For example, in amechanical system, it isnatura
to take the (mechanical) energy in the system as a Lyapunov function. The derivative of the energy
then denotes the dissipation rate.

Themain stability resultsfor autonomous systemsof theform (3.1.1) are summarizedin thefollowing
proposition.

Proposition 3.3 (Lyapunov theorem) Consider the differential equation (3.1.1) and let x* € X be
an equilibrium point.
1. x*isastableequilibriumif there existsa Lyapunov function V in a neigborhood & (x*) of x*.

2. x* isan aymptotically stable equilibriumif there exists a Lyapunov function V' in a neighbor-
hood .V (x*) of x* such that the only solution x of (3.1.1) in & (x™*) for which V (x(¢)) = 0is

x() = x*.

Proof. 1. Supposethat x* € X isan equilibrium point and V aLyapunov function. Let ¢ > 0 be
given. Since V is continuous at x*, there exists § > 0 such that V(xg) — V(x*) < a(e) for every
xo € X suchthat ||x —x*|| < 8. Since V hasastrong local minimum at x*, we infer that

0 <a(llxo—x*[) < V(xo) = V(&™) < a(e).
Since V is monotone non-increasing for al solution x (¢, xg) with xg € N (x*), aso the inequality
0 < a(llx(t, x0) —x*|) < V(x(t, x0)) — V(x*) < V(x0) — V(x¥) < a(e)

withxg € N (x*) holdsforz > 0. Infer fromthefact that o isstrictly increasing, that || x (¢, xg) —x*|| <
efordl:=>0.

2. Similarly proven. [ |

Together with the autonomous system (3.1.1) let us also consider the linear autonomous system
X = Ax (31.2)

where A : R" — R" is alinear map obtained as the linearization of f : R” — R" around an
equilibrium point x* € X of (3.1.1). Precisely, for x* € X wewrite

fx) = f&x*+ ;%(x*)[x — x4+

where we assume that f is at least once differentiable. The linearization of f around x* is defined
by the system (3.1.2) with A defined by thereal n x n matrix

N Of
A '_ZE(X ).
j=1
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The origin of the linear flow (3.1.2) isthe only candidate equilibrium point. The origin of the linear
flow (3.1.2) isasymptoticaly stableif and only if there exists an ellipsoid

E=xeX|x Xx=1, X>0

with center in the origin such that the velocity vector Ax is directed inward at any point x of the
elipsoid &. The positive definite quadratic function V : X — R defined by

Vix) = x ' Xx

then serves as a quadratic Lyapunov function. Indeed, V iscontinuousat x* = 0, iSassumes astrong
local minimum at x = 0 (actually thisisastrong global minimum of V), whilethe derivative of V (x)
in the direction of the vector field Ax is given by

ViAx = x '[ATX + XAlx

which should be negative to guarantee that the origin is an asymptotic stable equilibrium point of
(3.1.2). We thus obtain the following result:

Proposition 3.4 Let thelinear system (3.1.2) bealinearization of (3.1.1) at the equilibriumx*. The
following statements are equivalent.

1. Theoriginisan asymptotic stable equilibrium for (3.1.2).

2. Theoriginisa global asymptotic stable equilibriumfor (3.1.2).

3. All eigenvalues A(A) of A have strictly negative real part.

4. Thelinear matrix inequalities

ATX+XA <0, X=X'>0
arefeasible.

Moreover, if one of these statements hold, then the equilibrium x* of the flow (3.1.1) isasymptotically
stable.

The most important conclusion of Proposition 3.4 is that asymptotic stability of the equilibrium x*
of the nonlinear flow (3.1.1) can be concluded from the asymptotic stability of the linearized system.
It is evident that this result has important consequences for systems and control.

3.2 Generalized stability regionsfor LTI systems

As we have seen, the autonomous dynamical system

X = Ax
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isasymptotically stableif and only if al eigenvaluesof A liein C_, the open left half complex plane.
For many applications in control and engineering we may be interested in more general stability
regions. Let us define a stability region as a subset Cg4 C C with the following two properties

L€ Cqapy = XE(Cstab

Property 1.
Caab IS CONVEX .

Property 2:

Typical examples of common stability setsinclude

Cgap = C_ open left half complex plane
Cgap =C no stability requirement
Cqap={s € C| N(s) < —a} guaranteed damping

Caao={s € C| N(s) < —a, |s] <r} maximal damping and oscillation
Cgap={s € C| a1 < N(s) < a2} vertical strip

Caap = {s € C|[3(s)] < }
Caap = {5 € C | N(s)tand < —|I(s)|}

horizontal strip
conic stability region.

Here, 6 € (0, 7/2) andr, o, a1, ap arereal numbers. We consider the question whether we can derive
afeasibility test to verify whether the eigenmodes of the system x = Ax belong to either of these
sets. This can indeed be done in the case of the given examples. To see this, we observe that

R(s) <0 < s+s5<0
N(s) < —a = s+5+22<0
|s|<r < <_§r _sr)<0
(s+35)— 202 0
)
a1 < R(s) < ap — < 0 —(s+§)+2a1> <0

N(s) tan(®) < —|3(s)] = (““Wn@ <s—5)cose> .

(s —5)cosf (s+5)sind

Here, in the third equivalence we used that |s| < r if and only if s5 < 2 which in turn is equivalent
tor —sr—15 > 0. Thelatter expression can then be recognized as a Schur complement of 7.

In any case, each of these regions can be expressed as the set of complex numberss € C for which
F(s):=P+Q0s+0'5<0 (3.2.1)

where P = P T and Q arereal matrices. As F(s) is symmetric for al s € C this defines a linear
matrix inequality whose feasibility set is a convex subset of C. The matrix valued function F(s) is
called the characteristic function of the stability region

Cgap:={s € C| F(s) <0}

This set includes all the examples given above and regions bounded by circles, ellipses, strips,
parabolas and hyperbolas. Since finite intersections of such regions can be obtained by systems of
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LMI’s one can virtually approximate any convex region in the complex plane by an LMI of theform

P O ... O o1 0 ... 0 o1 0 ... O
0O P ... O 0 Qg ... O 0 Qg ... O
) ) N i A K . . |5<0
0O ... 0 P 0 ... 0 O 0O ... 0 O

which is again of the form (3.2.1). Stability regions C«ap Which are described as feasibility sets of
this form lead to the following interesting generalization of the Lyapunov inequality. The result can
be found as Theorem 2.2 in [3].

Proposition 3.5 (M. Chilali and P. Gahinet) Let P = PT, Q and A bereal matrices. Then A has
all its eigenvalues in the stability region
Ceap:={s€C|P+0s+0"5<0}
if and only if there exists a real symmetric matrix X = X T > 0 with
puX +quAX +quXAT ... puX +quAX + g XAT
: : <0 (322
PiiX + quiAX + quXAT . puX + quAX 4+ qu X AT
where p;; and g;; aretheij-th entry of P and Q, respectively.

Stated otherwise, A has al its eigenvalues in the stability region Cgq, With characteristic function
P + Qs + Q5 if and only if there exists a positive definite matrix X such that

(pij X +qij XA+q;;ATX) <0,

for all i, j. Notethat thisisan LMI in X and that the classical Lyapunov theorem corresponds to the
characteristicfunction f(s) = s+5. Notea sothat thecondition (3.2.2) isrelated to the characteristic
function of the stability region by the substitution (A, AX, XAT) < (1,5, 5).

3.3 Nominal performanceand LMI’s

In this section we will use the results on dissipative systems of Chapter 2 to characterize a number of
relevant performance criteria for dynamical systems. In view of forthcoming chapters we consider
the system

331
z =Cx+ Dw ( )

where x(r) € X = R" isthe state, w(r) € ‘W = R™ theinput and z(r) € Z = R? the output.
Assume throughout this section that the system is asymptotically stable (i.e. the eigenvaluesof A are
in the open left-half complex plane). Let

T(s)=C(s—A) "B+ D

{)'c = Ax + Bw
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denote the transfer function corresponding to (3.3.1). Here, we will view w as an input variable (a
‘disturbance’) whose effect on the output z we wish to minimize. There are various ways to quantify
the effect of w on z. For example, for agiven input w, and for suitable choices of normsthe quotient
llzIl/llw] indicatesthe relative gain which theinput w has on the output z. More generaly, the worst
case gain of the system is the quantity

Izl
IT|:= sup ——
O<|lwl|<oo lwll

which, of course, depends on the specific norms. Other indicators for nominal performance could be
the energy in the impulse response of the system, the (asymptotic) variance of the output when the
system is fed with inputs with a prescribed stochastic nature, etc.

3.3.1 Quadratic nominal performance

Recall from Chapter 2 that aquadratic supply function associated with the system (3.3.1) isafunction

of the form -
_(w Ouww Qu; w
0= (2) (G 82) (2):

The following proposition is an immediate consegquence of the Kalman-Yabubovich-Popov lemma
and we will see that it has important implications for the characterization of performance criteria
We refer to Theorem 2.15 and Lemma ?? for its proof.

Proposition 3.6 Consider the system (3.3.1) with transfer function 7. Supposethat A hasits eigen-
valuesin C~ and let x(0) = 0. The following statements are equivalent.

1. thereexistse > 0 such that for all w € £2

® fw T Oww Ouw: w 5 00 -
/0 <Z> <sz sz)(Z)dtS_E/O w ' (Hw(t)dt (3.3.2

2. for all w € R U {o0} there holds

I\ (Quw Qu: 1
<T(ia))) <sz sz) <T(iw))<0.

3. thereexists K = KT e R"*" such that

ATK+KA KB 0 I\ (Quw Qu:\(0 I
( BTK O>+(C D) <sz sz)(c D><O‘

This result characterizes quadratic performance of the system (3.3.1) in the sense that it provides
necessary and sufficient conditions for the quadratic performance function J := fO°° s(w, z)dt 10
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3.3. NOMINAL PERFORMANCEAND LMI'S

be strictly negative for all square integrable trgjectories of the system. Proposition (3.6) provides
an equivalent condition in terms of a frequency domain inequality and an equivalent linear matrix
inequality for this. This very general result proves useful in a number of important specia cases,
which we describe below.

3.3.2 Hy nominal performance

A popular performance measure of astablelinear time-invariant systemisthe H,, norm of itstransfer
function. It is defined as follows. Consider the system (3.3.1) together with its transfer function 7.
Assume the system to be asymptotically stable. In that case, T (s) is bounded for al s € C with
positive real part. By this, we mean that the largest singular value omax (T (s)) isfinitefor all s € C
with fs > 0. Thisis an example of an H, function. To be slightly more formal on this class of
functions, let C* denote the set of complex numbers with positive real part. The Hardy space Hy,
consists of all complex valued functions 7 : Ct — CP*™ which are analytic and for which

1T ||oo := SUP omax(T(s)) < oo.
seCt

The left-hand side of this expression satisfies the axioms of a norm and defines the H., norm of T.
Although H, functions are defined on the right-half complex plane, it can be shown that each such
function has a unique extension to the imaginary axis (which is usually also denoted by T') and that
the H,, norm is given by
T loo = SUP omax (T (iw)).
weR

Inwords, the H,, norm of atransfer function is theGlipiciuMeiEEmaimumSnouEaueeiie
frequency response of the system.

Remark 3.7 Various graphical representations of frequency responses are illustrative to investigate
system propertieslike bandwidth, gains, etc. Probably the most important oneisaplot of thesingular
vaueso;(T(iw)) (j = 1,..., min(m, p)) viewed as function of the frequency » € R. (FONSIHGIED
A Bode
diagram of the system is a plot of the mapping @ — |T (iw)| and provides useful information to
what extent the system amplifies purely harmonic input signals with frequenciesw € R. In order to
interpret these diagrams one usually takeslogarithmic scales on the w axisand plots 2010 log(7 (jw))
to ga uits in decibels . (ETRIROTNOIAIESENUIONIStETORNYEsE oS
(CEEkyEiuewhichoceusimtisIBedeplem | n other words it is the largest gain if the system is fed

with harmonic input signals.

The H,, norm of astablelinear system admits an interpretation in terms of dissipativity of the system
with respect to a specific quadratic supply function. Thisis expressed in the following result.

Proposition 3.8 Let the system (3.3.1) be asymptotically stable and ¥ > 0. Then the following
statements are equivalent.
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LTl <.

2. for all w there holds that
llzll2

O<|lwlz<oco lwll2

where z isthe output of (3.3.1) subject to input w and initial condition x(0) = O.

3. Thesystem(3.3.1) isstrictly dissi pativewith respect to the supply function s (w, z) = y2||w||2—
llzl1%.

4. thereexistsa solution K = K T to the LMI

ATK+KA+C'C KB+C'D
< BTk+DTC D D-y2) =% (333
Proof. Apply Proposition 3.6 with
(wa sz> _ (yzl 0)
sz QZZ 0 -1)"
[

For a stable system, the H,, norm of the transfer function therefore coincides with the £2-induced
norm of the input-output operator associated with the system. Using the Kalman-Yakubovich-Popov
lemma, this yields an LMI feasibility test to verify whether or not the Hy, norm of the transfer
function T is bounded by y .

Interpretation 3.9 We can compute the smallest possible upperbound of the L»-induced gain of the

system (which is the Hy, norm of the transfer function) by minimizing y > 0 over al variables y
and K = K T that satisfy the LMI (3.3.3).

3.3.3 Hz nominal performance

The Hardy space H» consists of the class of complex valued functions which are analytic in C* and
for which

o0

T fy := \/i suptrace/ To+iw)|T( +iw)]*dw
27 50 —0

isfinite. This definesthe H> norm of 7. this‘cold-blooded’ definition may seem little appealing at

first sight, but in fact, it has nice and important system theoretic interpretations. Asin H, it can be

shown that each function in H2 has a unique extension to the imaginary axis, which we also denote

by T, and that in fact the H, norm satisfies

1 o0
||T||%-12 =oF trace/ T(io)T (iw)*do (3.34)
T —00
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We will first give an interpretation of the H> norm of a system in terms of its impulsive behavior.
Consider the system (3.3.1) and suppose that we are interested only in the impul se responses of this
system. This means, that we take impulsive inputs! of the form

w(t) =6(t)e;

wheree; the jth basis vector in the standard basis of theinput spaceR™, (j = 1, ..., m). Theoutput
z/ which correspondsto theinput w and initial condition x(0) = 0 isuniquely defined and given by

Cexp(At)Be; fort >0
2 (t) = { De;s(1) forr=0.
0 fort <0

Since the system is assumed to be stable, the outputs z/ are square integrablefor all j = 1,...,m,
provided that D = 0. In that case

m o0

Z Iz/ 113 = tracef BT exp(ATt)CTC exp(Ar)B dt
. 0
j=1

o0
= trace f Cexp(At)BB exp(AT1)C" dt.
0
Long ago, Parseval taught us that the latter expression is equal to

1 o0
2—trace/ T(io)T(iw)*dw

T —00

whichis ||T||§12. Infer that the squared H> norm of T' coincides with the (SisijoupilSISoynte

(MpuISErESponsESoiiesySEm Vhat ismore, thisobservation provides astraightforward algorithm
to determine the H> norm of a stable rational transfer function. Indeed, associate with the system

(3.3.1) the symmetric non-negative matrices
o0
w :=/ exp(Ar)BB " exp(A ') dt
0
o0
M = / exp(AT1)CT C exp(Ar) dt.
0

Then W isusualy referred to as the controllability gramian and M the observability gramian of the
system (3.3.1). The gramians satisfy the matrix equations

AW +WAT +BBT =0, ATM+MA+C'C=0

and are, in fact, the unique solutions to these equations whenever A hasits eigenvaluesin C~ (asis
assumed here). Consequently,
IT %, = trace(CWCT) = trace(B" M B).

1Forma||y, the impulse § is not a function and for this reason it is neither asignal. It requires a complete introduction to
distribution theory to make these statements more precise, but we will not do this at this place.
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A second interpretation of the H> norm makes use of stochastics. Consider the system (3.3.1) and
assume that the components of the input w are independent zero-mean, white noise processes. If we
take x(0) = O asinitial condition, the state variance matrix

W(t) := E(x(t)x ' (1))
is the solution of the matrix differential equation
W=AW+ WA + BB, W(0) = 0.
Conseguently, with D = 0, the output variance

&z z2(1) =8 CTCx(t)) = Etrace(Cx()x ' (1)CT) =
=traceC&(x(H)x ' (1))CT = trace(CW(1)C").

Since A isasymptotically stable, thelimit W := lim,_, oo W (¢) existsandisequal to the controllability
gramian of the system (3.3.1). Consequently, the asymptotic output variance

lim 8(z(1)z " (1)) = trace(CWCT)

which is the square of the H, norm of the system. The H» norm therefore has an interpretation in
terms of the asymptotic output variance of the system when it is excited by white noise input signals.

The following theorem characterizes the H> norm in terms of linear matrix inequalities.

Proposition 3.10 Suppose that the system (3.3.1) is asymptotically stable and let T'(s) = C(Is —
A)~1B + D denoteitstransfer function. Then

1 T2 < ocifandonlyif D = 0.
2. If D = 0then the following statements are equivalent

@ ITl2 < vy
(b) thereexists X > 0 such that

AX+XAT+BBT <0, trace(CXC") < y2.
(c) thereexists Y > 0 such that

ATY+YA+CTC <0, trace(B'YB) < 2.
(d) thereexists K = KT > 0 and Z such that

(ATK+KA KB) 0 (K c’

BTK 7 c 7 ) > 0; trace(Z) < y2 (3.35)
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(e) thereexists K = K > 0 and Z such that

(AK + KAT KCT

. (K B . 2
CK 7 ) <0 ( ) > 0; trace(Z) < y°. (3.3.6)

BT 7

Proof. The first claim is immediate from the definition of the H> norm. To prove the second
part, note that ||| < y is equivalent to requiring that the controllability gramian W satisfies
trace(CWCT) < y2. Since the controllability gramian is the unique positive definite solution of the
Lyapunov equation AW + WAT + BB' = 0 thisis equivalent to saying that there exists X > 0
such that
AX+XAT + BB <0; trace(CXC") < y2.
In turn, with a change of variables K := X1, thisis equivalent to the existence of K > 0 and Z
such that
ATK+KA+KBB'K <0; CKC'" <Z; trace(Z) < y°.

Now, using Schur complements for the first two inequalities yields that ||T'||2 < y isequivalent to
the existence of K > 0 and Z such that

ATK+KA KB (K CT . 2

( BTK —I><0’ (C Z)>0, trace(Z) < y

whichis(3.3.5) asdesired. The equivalencewith (3.3.6) and the matrix inequalitiesin Y are obtained
by adirect dualization and the observation that || || = ||T " 2. ]

Interpretation 3.11 The smallest possible upperbound of the H>-norm of the transfer function can
be calculated by minimizing the criterion trace(Z) over the variables K > 0 and Z that satisfy the
LMI’s defined by the first two inequalitiesin (3.3.5) or (3.3.6).

Ebbdl is lehetne input to state
3.3.4 Generalized H; nominal performance gtgbilitast csinalni...

Consider again the system (3.3.1) and supposethat x(0) = 0 and A hasitseigenvaluesin C~. Recall
that || 7|z, < oo if and only if D = 0. The system then defines a bounded operator from £ inputs
to L outputs. That is, for any input w for which ||w||§ = f0°° lw(r)|2dt < oo the corresponding
output z belongs to £, the space of signals z : R, — R? of finite amplitude?

zlloo := SUE\MZ(I),Z(I))-
1>

The L£2-L+, induced norm (or ‘energy to peak’ norm) of the system is defined as

Izl oo
O<|lwll2<o0 lwll2

2An alternative and more common definition for the Lo, norm of a sgna z : R — RP is |z]lec =
,,,,, p SUP;>0 Iz (7)]. For scalar valued signals this coincides with the given definition, but for non-scalar signals
this is a different signal norm. When equipped with this alternative amplitude norm of output signals, the characterization
(3.3.7) till holds, but Amax(-) needs to be interpreted as the maximal entry on the diagonal of its argument. See [27] for
details.

1T 2,00 :=
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and satisfies ([27])
1 o0
171500 = 5—Hmax ( / T(io)T (iw)* dw) (337)

—0oQ
where Amax (+) denotes maximum eigenvalue. Note that when z is scalar valued, the latter expression
reducesto the H, norm, i.e, for systems with scalar valued output variables

172,00 = 1T || iz
which is the reason why we refer to (3.3.7) as a generalized H» norm. The following result charac-
terizes an upperbound on this quantity.

Proposition 3.12 Suppose that the system (3.3.1) is asymptotically stable and that D = 0. Then
IT|l2.00 < y if and only if there exists a solution K = K" > Otothe LMI's

T T
(A K+ kA KB><0; (IC{ yczl>>o (33.8)

BTK —1
Proof. Firstly, infer from Theorem 2.15 that the existence of K > 0 with

ATK+ KA KB
BTK ;) <0

is equivalent to the dissipativity of the system (3.3.1) with respect to the supply function s(w, z) =
w T w. Equivalently, for all w € £ and r > 0 there holds

t
x(t)TKx(t)ff w(t) w(z)dr.
0
Secondly, using Schur complements, the LMI
K CcT
is equivalent to the existence of ane > O suchthat C'C < (y2 — €2)K. Together, thisyields that
forals>0

(2, 2(0)) = x(1) T CTCx (1) < (¥? — Ax ()T Kx (1)

t

<(?- 62)/ w(t) Tw(r)dr.
0

oo
< / w(t) w(r)dr.
0
Take the supremum over ¢ > 0 yields the existence of € > 0 such that for al w € £2

2 2 2\ 12
lzlI5% = (" —eDlwllz.

Dividing the latter expression by ||w||§ and taking the supremum over al w € £ then yields the
result. [ |

Interpretation 3.13 The smallest possible upperbound of the £2-.L£, gain of a system can be cal-
culated by minimizing y over al variables y and K > 0 for which the LMI’s (3.3.8) are feasible.
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3.35 Lj or peak-to-peak nominal performance

Consider the system (3.3.1) and assume again that the system is stable. For fixed initial condition
x(0) = 0 this system defines a mapping from bounded amplitude inputs w € L to bounded
amplitude outputs z € £, and arelevant performance criterionisthe ‘ peak-to-peak’ or £ .-induced
norm of this mapping

2]l

1T |loo,00 := .
O<lwllso<co IWlloo

We just remark that thisinduced norm isequal to the L, norm of the impulse response of the system.
Thefollowing result gives a sufficient condition for an upperbound y of the peak-to-peak gain of the
system.

Proposition 3.14 If thereexists K > 0, A > 0 and u > 0 such that

T LK 0 c’
(A K ;51? +AK fBI> <0 0 (y—wI DT|>0 (3.3.9)
# C Dy

then the peak-to-peak (or L induced) norm of the systemis smaller than y, i.e, || T |lco.co < ¥-

Proof. Thefirst inequality in (3.3.9) implies that
%x(;)TKx(t)Hx(z)Kx(z)—Mw(t)Tw(z) < 0.

for al w and x for whichx = Ax + Bw. Now assumethat x(0) = 0and w € L With ||w|s < 1.
Then, since K > 0, we obtain (pointwisein ¢ > 0) that

Ezt a lepest nem ertem
x(1)TKx(t) < %

Taking a Schur complement of the second inequality in (3.3.9) yields that 4\

L1:
input-to-state
stability

Legyen:
gamma=1
D=0

Keressuk
C = sdpvar(n,n,'full’)

C-re kell adni valami
menkntect nid

Vagy: keresunk v(x) = x'Qx
fuggvenyt, u.h. v 1.es
szintvonala kitoltse X-et
(trofino) es akkor C = sqrt(Q),
ennek van ertelme, ha Q > 0.

Ezuten ezt a C-t hasznaljuk es

MK 0 1 -
(s (y—w)‘ﬁ(c p)(C D) >0

so that, pointwisein¢ > 0 and for all |w] e < 1 we canwrite

(z(1), 2(1)) < (y —Orx(®) T Kx(t) + (y — wyw(®) "w(z)]

Polyope X (amin belul
vizsgalom az LMi-ket)

>

=yy—9
Consequently, the peak-to-peak gain of the system is smaller than y . [ |
Remark 3.15 Weemphasizethat Proposition 3.14 givesonly asufficient condition for an upperbound
y of the peak-to-peak gain of the system. Theminima y > Ofor whichthethereexist K > 0, A > 0

and u > 0 such that (3.3.9) is satisfied is usually only an upperbound of the real peak-to-peak gain
of the system.
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Ha |u|_inf < M,
akkor |y|_inf = |Cx| < M,
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Ezuten ezt a C-t hasznaljuk es iterativan keressuk gammat.


3.4. FURTHER READING

3.4 Further reading

Lyapunov theory: [6, 15, 28,49]
More details on the generalized H> norm, see[27].

3.5 Exercises

Exercise 1

A pendulum of massm is connected to a servomotor which isdriven by avoltageu. Theanglewhich
the pendulum makes with respect to a vertical axisis denoted by 6. The system is described by the
equations

d?0 .
y =6 (35.2)

where [ denotes the distance from the axis of the servomotor to the center of mass of the pendulum,
J istheinertiaand g isthe gravitation constant. The system is specified by the constants / = 0.03,
m=1,1=0.15and g = 10.

1. Determine the equilibrium points of this system.

2. Arethe equilibrium points Lyapunov stable? If so, determine a Lyapunov function.

3. Linearize the system around the equilibrium points and provide a state space representation of
the linearized systems.

4. Verify whether the linearized systems are stable, unstable or asymptotically stable.

5. A proportional feedback controller isacontroller of theformu = ky wherek € R. Doesthere
existsa proportional feedback controller such that the unstabl e equilibrium point of the system
becomes asymptotically stable?

Exercise 2

Let astability region Cgap be defined as those complex numbers s € C which satisfy

R(s) < —a and
s —c|l<r and
[S(s)] < [N(s)I.

wherea > 0, ¢ > Oand r > 0. Specify a characteristic function F(s), as defined in (3.2.1), such
that Cqap = {s € C | F(s) < 0}.
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Exercise 3

Let 0 < o < 7 and consider the Lyapunov equation AT X + XA + I = O where

A sin(e)  cos(x)
— \—cos(x) sin(x)

Show that the solution X of the Lyapunov equation divergesinthe sensethat det(X) —> oo whenever
oa —> 0.

Exercise 4

Consider the the suspension system in Exercise 4 of Chapter 2. Recall that the variable go represents
the road profile.

1. Consider the casewhere F = 0 and go = O (thus no active force between chassis and axle and
a'flat’ road characteristic). Verify whether this system is asymptotically stable.

2. Determine a Lyapunov function V : X — R of this system (with F = 0 and go = 0) and
show that its derivative is negative along solutions of the autonomous behavior of the system
(i.,e. F=0andgo = 0).

3. Design your favorite road profile go in MaTLAB and simul ate the response of the system to this
road profile (the force F iskept 0). Plot the variables g and ¢2. What are your conclusions?

4. Consider, with F = 0, the transfer function 7 which maps the road profile gg to the output
col (g1, g2) of the system. Determinethe norms ||T'|| g, and || T || i,.

Exercise 5

Consider a batch chemical reactor with a constant volume V of liquids. Inside the reactor the series

reaction

AM,p 2,

takes place. Here k1 and k> represent the kinetic rate constants (1/sec.) for the conversions A — B
and B — C, respectively. The conversions are assumed to be irreversible which leads to the model
equations

CA = —k1Cx
Cp =kiCp — k2Cp
Cc = koCp

where C4, Cp and C¢ denote the concentrations of the components A, B and C, respectively, and
k1 and ky are positive constants. Reactant B is the desired product and we will be interested in the
evolution of its concentration.
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1. Show that the system which describes the evolution of Cg isasymptotically stable.
2. Determine a Lyapunov function for this system.

3. Suppose that at time ¢+ = O the reactor is injected with an initial concentration C40 = 10
(mol/liter) of reactant A and that C(0) = C¢(0) = 0. Plot the time evolution of the concen-
tration Cp of reactant B if (k1, k2) = (0.2, 0.4) and if (k1, k2) = (0.3, 0.3).
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Chapter 4

Controller synthesis

In this chapter we provide a powerful result that allows to step in a straightforward manner from
the performance analysis conditions formulated in terms of matrix inequalities to the corresponding
matrix inequalities for controller synthesis. Thisis achieved by anonlinear and essentially bijective
transformation of the controller parameters.

4.1 Thesetup

Suppose alinear time-invariant system is described as

X A| B -~ B, B x
71 Ci| D1 -+ Dy Ei w1
2q Cq|Dg1 -+ Dg Ey Wq
y C|Fm - F u

We denote by u the control input, by y the measured output available for control, andby w; — z; the
channels on which we want to impose certain robustness and/or performance objectives. Since we
want to extend the design technique to mixed problems with various performance specifications on
various channels, we already start at this point with a multi-channel system description. Sometimes
we collect the signals as

71 w1

2q Wq
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4.1. THE SETUP

Remark 4.1 Notethat we do not exclude the situation that some of the signalsw ; or z; areidentical.
Therefore, we only need to consider an equal number of input- and output-signals. Moreover, it might
seem restrictive to only consider the diagonal channels and neglect the channelsw; — zi for j # k.
Thisisnot the case. Asatypical example, supposewe intend toimposefor z = T w specificationson
L;TR; where L;, R; are arbitrary matrices that pick out certain linear combinations of the signals
z, w (or of the rows/columns of the transfer matrix if 7 is described by an LTI system). If we set
w = Rjw;, z; = Lz, we are hence interested in specifications on the diagonal channels of

21 L1 w1
2 | =|L2|T(R Ry ...) | W2

If T isLTI, the selection matrices L ; and R can be easily incorporated into the realization to arrive
at the description (4.1.1).

A controller isany finite dimensional linear time invariant system described as

<j;c>=(/éi gi)(?) 4.12)

that has y asitsinput and u asitsoutput. Controllers are hence simply parameterized by the matrices
A¢, B¢, Ce¢, De.

The controlled or closed-loop system then admits the description

£ Al B - By £

EY (A B £ a | C1| D1 - Dy w1
()=(e2) )| D= T ] e

24 Cy| Dy -+ Dy wy

The corresponding input-output mappings (or transfer matrices) are denoted as

71 1 * w1
w=7z or : =
—~
2q * Jq Wy

respectively.

One can easily calculate aredlization of 7; as

(5)=(&2)(s) (@14

A+ BD.C BC. | Bj+ BD_.F;
) = B.C Ac B.F;
Ci+E;jD.C EijC.|Dj+ E;D.F;

where
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21

22

2j

Zk

Figure 4.1: Multi-channel closed-loop system
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4.2. FROM ANALYSISTO SYNTHESIS—A GENERAL PROCEDURE

It simplifies some calculations if we use the equivalent alternative formula

A 0| B; 0 B
(é“’_ £{>= 000 |+[7 o0 (2 ?)(2(1)1&9)' (4.15)
J J Cj 0‘ Dj 0 EJ‘ ¢ ¢ J
From this notation it is immediate that the left-hand side is an affine function of the controller
parameters.

4.2 From analysisto synthesis—a general procedure

Asaparadigm example let us consider the design of a controller that achieves stability and quadratic
performancein thechannel w; — z;. For that purpose we suppose that we have given a performance
index
(% SiY with R
P; = < SjT R; with R; > 0.

In Chapter 2 we have revealed that the following conditions are equivalent: The controller (4.1.2)
renders (4.1.4) internally stable and leads to

(N p (w0 g < [,
fo (z./<t>> P’(zj(r)>d’5 €J, wi® w; (1) dt

for somee > Oif and only if
_ I\ I
e ma (L0 Y0 (L0

if and only if there exists a symmetric X satisfying

ATX + XA XB; o 1\ 0 I
X>O,< BT 0 )+<e,» @j> Pif e, :D,-)<O' 4.2.1)

)><0forall w € RU {00}

The corresponding quadratic performancesynthesisproblemamountstofinding controller parameters

( Ae B ) and an X > 0 such that (4.2.1) holds.

Obviously, A depends on the controller parameters. Since X isalso avariable, we observe that X A
depends non-linearly on the variables to be found.

It has been observed only quite recently [17, 30] that there exist a nonlinear transformation

<x<é gﬁ))*”:@’ Y(Z;})) (4.2.2)
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4.2. FROM ANALYSISTO SYNTHESIS—A GENERAL PROCEDURE

and a Y such that, with the functions

X(v) = <II/ )I()

AY+BM A+ BNC | B; + BNF; (4.2.3)
(do oy (MM VI | Ve i
jv j(v C;Y+EM Cj+EjNC\Dj~|—EjNFj
one has
YXYy = X(v)
(yTxAy yTXJB,-) B <A(v) B,-@)) (4.2.4)
CiY Dj ~ \Cjw) D)

Hence, under congruence transformations with the matrices

Yo
Y and < 3 ) (4.2.5)
the blocks transform as

XA XB; AWw) B;(v)
X — X(v), < C; chjj)_><Cj(v) Dj(”))

Therefore, the original blocks that depend non-linearly on the decision variables X and ( ‘éc gc )

are transformed into blocks that are affine functions of the new variables v.

If Y is nonsingular, we can perform a congruence transformation on the two inequalitiesin (4.2.1)
with the nonsingular matrices (4.2.5) to obtain

TIAT X + XA TxB; o 1\’ 0 I
J

what is nothing but

AT + A(v) Bj(v)> ( 0 I )T ( 0 I )
X(”)>0’< B;(v)7 o )" lc;w by ) Bilc; Dy ) =
@.2.7)

Q; S
s7 0
implies that the inequalities (4.2.7) are affine in v. For a general performance index with R; > 0,
the second inequality in (4.2.7) is non-linear but convex in v. It is straightforward to transform it
to agenuine LMI with a Schur complement argument. Since it is more convenient to stay with the
inequalities in the form (4.2.7), we rather formulate a general auxiliary result that displays how to
perform the linearization whenever it is required for computational purposes.

For R; = 0 (asit happensin the positive real performance index), weinfer P; = what
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4.2. FROM ANALYSISTO SYNTHESIS—A GENERAL PROCEDURE

Lemma 4.2 (Linearization Lemma) Supposethat A and S areconstant matrices, that B(v), Q (v) =
Q)T depend affinely on a parameter v, and that R(v) can be decomposed as TU (v) 1T with
U (v) being affine. Then the non-linear matrix inequalities

AN (ow s A
Uw) >0, (B(v)) < R(v))(B(v)><0

are equivalent to the linear matrix inequality

ATQW)A + ATSB(w) + Bw)TSTA BWTT 0
TT B(v) U@ )=

In order to apply this lemma we rewrite the second inequality of (4.2.7) as

I o \'/01]0 O I 0

A() B;v) 1 00 O A() B;®v)

5 i 00(Q S 5 i <0 (4.2.8)
C;(v) D) 00 sj.T R; C;i(v) D)

what is, after a simple permutation, nothing but

I o \'/0 01 O 1 0

0 1 0 0; 0 S 0 1

A(w) B;(v) I 0(0 0 A(v) B;(v) <0 (4.2.9)
C;(v) D;(v) 0 ST |0 Ry Ci(v) D;(v)

Thisinequality can be linearized according to Lemma 4.2 with an arbitrary factorization
T . 00\ [0 T
R; = T;T] leadingto <0 g )=\ 1, (o1).

So far we have discussed how to derive the synthesis inequalities (4.2.7). Let us now suppose that
we have verified that these inequalities do have a solution, and that we have computed some solution

v. If we can find a preimage | X, Ac B ) ) of v under the transformation (4.2.2) and a

C. D,
nonsingular Y for which (4.2.4) holds, then we can simply reverse all the steps performed above to
reveal that (4.2.7) is equivalent to (4.2.1). Therefore, the controller defined by ( éc gc renders

(4.2.1) satisfied and, hence, leadsto the desired quadratic performance specification for the controlled
system.

Before we comment on the resulting design procedure, let us first provide a proof of the following
result that summarizes the discussion.

Theorem 4.3 There exists a controller ‘é" g“ and an X satisfying (4.2.1) iff there existsan v
c c

that solves the inequalities (4.2.7). If v satisfies (4.2.7), then I — XY isnonsingular and there exist
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4.2. FROM ANALYSISTO SYNTHESIS—A GENERAL PROCEDURE

nonsingular U, V with 7 — XY = UVT. The unique X and ( Ac B ) with

C. D,
Yy v 10
<1 o>x=(XU>and
K L U XB A. B, vl 0o XAY 0O
(M N):<0 1 ><CC Dc>(CY 1)+( 0 0) (4.2.10)

satisfy the LMI's (4.2.1).

Note that U and V are square and nonsingular so that (4.2.10) leads to the formulas

-1
Y v I 0
xz(l o) (X U)a”d
Ac B\ _(U XB\ ' K—-XAYy L\( Vvl 0\"
c. oo )= Lo 1 mMm N)\er 1) -

Due to the zero blocks in the inverses, the formulas can be rendered even more explicit. Of course,
numerically it is better to directly solve the equations (4.2.10) by a stable technique.

Proof. Suppose a controller and some X satisfy (4.2.1). Let us partition

(X U a2 (Y V
DC_<UT*>andx _(VT*>

according to 4. Define

y:(JT (I)) and z:<)1( 2) toget Y7 X = Z. (4.2.11)

Without loss of generality we can assume that the dimension of A, islarger than that of A. Hence, U
has more columns than rows, and we can perturb this block (since we work with strict inequalities)
such that it has full row rank. Then Z has full row rank and, hence, ¥ has full column rank.

Dueto XY + UVT = I, weinfer
T (Y 1\
what leads to thefirst relation in (4.2.4). Let us now consider
T T T
Yy o0 XA XBj Y0\ (Y XAY Y XB;
0 I C; D; 0r1) C;Y D; ’
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4.2. FROM ANALYSISTO SYNTHESIS—A GENERAL PROCEDURE

Using (4.1.5), avery brief calculation (doit!) reveals that

YT XAY YT X B ZAY ZB, AOY AA B,
j j 4D ¥ ¢ [ D,

(IR )G - (b e12)

If we introduce the new parameters( Alf[ 1%/ ) asin (4.2.10), weinfer

( YT XAY YT XB; ) _
C;Y D; B

AY A | B; 0 B
(8 i ) (10 ) (5 E) (1 00)-
C;Y C;| Dj 0 Ej /
=<A(v) Bj(u)>
Civ) Djv) J°

AY +BM A+ BNC | B; + BNF;

K AX+LC | XBj +LF,
Hence the relations (4.2.4) are valid. Since Y has full column rank, (4.2.1) implies (4.2.6), and by
(4.2.4), (4.2.6) isidentical to (4.2.7). This proves necessity.

C;Y+E;M C;+E;NC|D;+E;NF,

To reverse the arguments we assume that v is a solution of (4.2.7). Dueto X (v) > 0, weinfer that
I — XY isnonsingular. Hence we can factorize I — XY = UV with square and nonsingular U,
V. Then Y and Z defined in (4.2.11) are, as well, square and nonsingular. Hence we can choose
X, /éf gf such that (4.2.10) hold true; this implies that, again, the relations (4.2.4) are valid.
Therefore, (4.2.7) and (4.2.6) areidentical. Since Y isnonsingular, acongruence transformation with
Y~1and diag(y 1, I) leads from (4.2.6) back to (4.2.1) and the proof is finished. |

We have obtained a general procedure for deriving from analysis inequalities the corresponding
synthesis inequalities and for construction corresponding controllers as follows:

* Rewrite the analysis inequalities in the blocks X, X4, X8;, C;, D; in order to be able to
find a(formal) congruence transformation involving % which leadsto inequalitiesin the blocks
YTXY, YT xAY, Y XB;, C;Y, D;.

 Perform the substitution (4.2.4) to arrive at matrix inequalities in the variables v.

 After having solved the synthesis inequalities for v, one factorizes I — XY into non-singular
blocks U VT and solves the equations (4.2.10) to obtain the controller parameters A, B, Ce,
D, and aLyapunov matrix X which render the analysis inequalities satisfied.
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4.2. FROM ANALYSISTO SYNTHESIS—A GENERAL PROCEDURE

The power of this procedure lies in its simplicity and its generality. Virtualy all controller design
methods that are based on matrix inequality analysis results can be converted with ease into the
corresponding synthesis result. In the subsequent section we will include an extensive discussion
of how to apply this technique to the various analysis results that have been obtained in the present
notes.

Remark 4.4 (controller order) In Theorem 4.3 we have not restricted the order of the controller.
In proving necessity of the solvability of the synthesisinequalities, the size of A, was arbitrary. The
specific construction of a controller in proving sufficiency leads to an A, that has the same size as
A. Hence Theorem 4.3 also include the side result that controllers of order larger than that of the
plant offer no advantage over controllers that have the same order as the plant. The story is very
different in reduced order control: Thentheintentionistoincludeaconstraintdim(A.) < k for some
k that issmaller than the dimension of A. It isnot very difficult to derive the corresponding synthesis
inequalities, however, they include rank constraintsthat are hard if not impossible to treat by current
optimization techniques. We will only briefly comment on a concrete result |ater.

Remark 4.5 (strictly proper controllers) Note that the direct feed-through of the controller D, is
actually not transformed; we simply have D. = N. If weintend to design a strictly proper controller
(i.,e. D, = 0), wecan just set N = 0 to arrive at the corresponding synthesis inequalities. The
construction of the other controller parameters remains the same. Clearly, the same holds if one
wishes to impose an arbitrary more refined structural constraint on the direct feed-through term as
long asit can be expressed in terms of LMI’s.

Remark 4.6 (numerical aspects) After having verified the solvability of the synthesisinequalities,
we recommend to take some precautionsto improve the conditioning of the cal cul ationsto reconstruct
the controller out of the decision variable v. In particular, one should avoid that the parameters v
get too large, and that 7 — XY is close to singular what might render the controller computation
ill-conditioned. We have observed good results with the following two-step procedure:

(3 %)

as extra constraints and minimize «. Note that these bounds are equivalently rewritten in LMI
form as

« Add to the feasibility inequalities the bounds

1XII <o, Y] <o, <a

ol 0 |K L
0O af | M N
KT MT|al O
LT NT| 0 «aI
Hence they can be easily included in the feasibility test, and one can directly minimize « to
compute the smallest bound «.

X<al, Y <al, > 0.

« In a second step, one adds to the feasibility inequalities and to the bounding inequalities for
some enlarged but fixed o > «, the extra constraint

Y BI
(/31 X)>0.
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Of course, theresulting LMI systemisfeasiblefor 8 = 1. One can hence maximize g to obtain
asuprema 8, > 1. The value 8, gives an indication of the conditioning of the controller
reconstruction procedure. Infact, the extrainequality isequivalentto X — 82Y —1 > 0. Hence,
maximizing 8 amounts to ‘pushing X away from Y1, Therefore, this step is expected to
push the smallest singular value of I — XY away from zero. The larger the smaller singular
valueof I — XY, thelarger one can choose the smallest singular values of both U and V inthe
factorization I — XY = UVT. Thisimproves the conditioning of U and V, and renders the
calculation of the controller parameters more reliable.

4.3 Other performance specifications

431 H, Design

The optimal value of the H, problemis defined as

* . -
yi= inf 175 lloo-
J 7 Au Be,Co,D. such that o (A)cC— T

Clearly, the number y; islarger than y]?‘ iff there exists a controller which renders
o(A) CC and [|Tjllec <)

satisfied. These two properties are equivalent to stability and quadratic performance for the index

o Q; §; o vl 0
P"(Sf R,.)—( 0 <wl>—1>'

The corresponding synthesis inequalities (4.2.7) are rewritten with Lemma 4.2 to

AT +Aw@) Bjw) C;wT
X() >0, B;j(w)T -y;I D! | <O.

Cj(v) Dj(v) —)/j[

Notethat thethe optimal H,, valuey j?“ isthenjust given by theminimal y; for which theseinequalities
are feasible; one can directly compute yj?“ by a standard LMI algorithm.

For the controller reconstruction, one should improve the conditioning (as described in the previous
section) by an additional LM optimization. We recommend not to perform this step with the optimal
value y]?" itself but with adlightly increased value y; > y]?k. Thisismotivated by the observation that,
at optimality, the matrix X (v) is often (but not always!) close to singular; then I — XY iscloseto
singular and it is expected to be difficult to render it better conditioned if y; istoo closeto the optimal
value y;.
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4.3.2 Positivereal design

In this problem the goal is to test whether there exists a controller which renders the following two
conditions satisfied:

o(A)CC, Tj(iw) "+ Tj(iw) >0 foral w € RU {oo}.

Thisis equivalent to stability and quadratic performance for

P Q; i\ _( 0 —I
TS Rp) -1 0 )
and the corresponding synthesisinequalities read as

xw=o (JOTHAD O -cor )

B;(v)' —C;(v) —D;w)—-D;w’

4.3.3 Hy-problems

Let us define the linear functional
fi(Z) = trace(Z).

Then werecall that 4 isstableand || 7 [l2 < y; iff there exists asymmetric X with

ATX + XA X B, AT
D;=0, X >0, ( 87X _yj1><o, fie;x7ej) <y (4.3.2)

The latter inequality is rendered affinein X and €; by introducing the auxiliary variable (or slack
variable) Z ;. Indeed, the analysis test is equivalent to

ATX + XA XB; x er
Hp— ,] . . .
D; =0, ( :Bij il ) <0, ( e, 7, ) >0, fi(Zj) <vyj. (4.3.2

This version of the inequalitiesis suited to simply read-off the corresponding synthesis inequalities.

Corollary 4.7 There exists a controller that renders (4.3.2) for some X, Z; satisfied iff there exist v
and Z; with

T . .
D) =0, <A(v) +A(v) Bj(v) ) -0 ( Xw) C;wmT

B, -yl Civ) Z; ) >0, fi(Zj) <y (433

The proof of this statement and the controller construction are literally the same as for quadratic
performance.
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4.3. OTHER PERFORMANCE SPECIFICATIONS

For the generalized Hz-norm || 77 || 2, we recall that 4 is stable and || 7112, < y; iff

ATX + XA XB;

) <0, ¢;x7tel <y;I.

These conditions are nothing but

AT+ XA XB; x ceT
=0 J 0 J 0
D ( B] % —Vj]><’(@j V11>>

and it is straightforward to derive the synthesis LMI’s.
Note that the corresponding inequalities are equivalent to (4.3.3) for the function
fiZ)=12.

In contrast to the genuine Ho-problem, there is no need for the extra variable Z; to render the
inequalities affine.

Remarks.

 If f assignsto Z its diagonal diag(zy, ..., z,) (Where m is the dimension of Z), one char-
acterizes a bound on the gain of L, > w; — z; € Lo if equipping Ly, with the norm
Ix[loo 1= €SSSUP,~.g MaXy |xx (t)| [27,32]. Notethat the three concrete Hp-like analysisresults
for fj(Z2) = trace(Z), fi(2) =2, fj(Z) =diag(zy, . . ., zm) areexact characterizations, and
that the corresponding synthesis results do not involve any conservatism.

« Infact, Corollary 4.7 holdsfor any affinefunction f that maps symmetric matricesinto symmet-
ric matrices (of possibly different dimension) and that has the property Z > 0 = f(Z) > 0.
Hence, Corollary 4.7 admits many other specializations.

» Similarly asin the Hy, problem, we can directly minimize the bound y; to find the optimal
Hy-value or the optimal generalized H»-value that can be achieved by stabilizing controllers.

» Weobservethat it causesno troublein our general procedureto derivethe synthesisinequalities
if theunderlying analysisinequalitiesinvol ve certain auxiliary parameters (suchas Z ;) asextra
decision variables.

* Itisinstructive to equivalently rewrite (4.3.2) as X > 0, Z; >0, f;(Z;) <y; and
I 0\ [/o1I| o I 0
XA XB; I 0] O XA XB; | <0,
0 I 0 0f—y;1 0 I
I 0\’
0 I
Cj D;j
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Note that the last inequality is non-strict and includes the algebraic constraint £; = 0. It can
be equivalently replaced by

T
I -X 0 I
<@j> (0 Z/'_l>(@f><o’ i =0

The synthesisrelationsthenread as X (v) > 0, Z; >0, f;(Z;) <y, and

1o \'[/o1] o I 0
A@) B,@) I 0] O A(v) B | <0, (4.3.4)
0 I 0 0f—y;1 0 1
I \'(-Xw O I
< Cjw) ) < o z* ) < C;(v) > <0, Dj()=0. (4.35)

The first inequality is affine in v, whereas the second one can be rendered affine in v and Z; with
Lemma 4.2, Linearization lemma-t hasznalja

4.3.4 Upper bound on peak-to-peak norm

The controller (4.1.2) renders 4 stable and the bound
lwillo < ¥jllzjlloe foral zj € Loo

satisfied if there exist a symmetric X and real parameters A, u with

ATX + XA +21X XB; 0 1 \'(-ul 0\{O I
A>0’( Bj X 0 )+<@f 1),») ( 0 0><@j @j)<o

(o 1)T00<0 1)<,\x 0 )
1 < .

C; D, 0 )/_jl C; D, 0 (yj—wl

(Notethat X > Qisbuiltin. Where?) The inequalities are obviously equivalent to

AX 0 e’
ATX + XA +L1X XB; U
A >0, ( ;'Bij —ul <0, 0 (yj—wli D; > 0,

Cj Dj vl
and the corresponding synthesis inequalities thus read as

T . AX (v) 0 C;(mT
A >0, (A(”) +AQ) +2X(@©) B;() > <0, ( 0 (yj—mwl D;(v)T) >0

onT _
B;(v) nl Ci(v) Dj) vyl

If these inequalities are feasible, one can construct a stabilizing controller which bounds the peak-
to-peak norm of z; = 7;z; by y;. We would like to stress that the converse of this statement is not
true since the analysis result involves conservatism.
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4.4. MULTI-OBJECTIVE AND MIXED CONTROLLER DESIGN

Note that the synthesis inequalities are formulated in terms of the variables v, A, and u; hence they
are non-linear since AX (v) depends quadratically on A and v. This problem can be overcome as
follows: For fixed 1. > 0, test whether the resulting linear matrix inequalities arefeasible; if yes, one
can stop since the bound y; on the peak-to-peak norm has been assured, if the LMI's areinfeasible,
one has to pick another A > 0 and repeat the test.

In practice, it might be advantageous to find the best possible upper bound on the peak-to-peak norm
that can be assured with the present analysis result. Thiswould lead to the problem of minimizing y;
under the synthesis inequality constraints as follows: Perform aline-search over A > 0 to minimize
yj’.k()»), the minimal value of y; if A > 0 is held fixed, note that the calculation of y]f“(A) indeed
amountsto solving agenuine LMI problem. The line-search |eadsto the best achi evable upper bound

u _ ; *
vj = inf y; ).

To estimate the conservatism, let usrecall that || 7|« is alower bound on the peak-to-peak norm of
7;. If we calculate the minimal achievable H.-norm, say yj[-, of 7, weknow that the actual optimal
peak-to-peak gain must be contained in the interval

) vl

If the length of thisinterval issmall, we have agood estimate of the actual optimal peak-to-peak gain
that is achievable by control, and if the interval islarge, this estimate is poor.

4.4 Multi-objective and mixed controller design

In aredlistic design problem one is usualy not just confronted with a single-objective problem but
one has to render various objectives satisfied. As atypica example, one might wish to keep the
Ho, norm of z; = T3w1 below a bound y; to ensure robust stability against uncertainties entering
as w1 = Az1 where the stable mapping A has Lo-gain smaller than 1/y4, and render, at the same
time, the Hy-norm of zo = TLw» as small as possible to ensure good performance measured in the
Hj-norm (such as guaranteeing small asymptotic variance of z; against white noise inputs w; or
small energy of the output z; against pulses asinputs w;.)

Such a problem would lead to minimizing y» over all controllers which render
o(A4) CCT, [Tillee <1, 17202 < y2 (4.4.2)
satisfied. Thisisamulti-objective Hy/ Hy, control problem with two performance specifications.

Note that it is often interesting to investigate the trade-off between the H.,-norm and the H>-norm
constraint. For that purpose one plots the curve of optimal values if varying y1 in some interval
[v1, i1 where the lower bound y! could be taken close to the smallest achievable Hoo-norm of 7.
Note that the optimal value will be non-increasing if increasing y;. The actua curve will provide
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insight in how far one can improve performance by giving up robustness. In practice, it might be
numerically advantageous to give up the hard constraints and proceed, alternatively, as follows. For
fixed real weights @y and a2, minimize

a1y1 + a2y2

over al controllers that satisfy (4.4.1). The larger «;, the more weight is put on penalizing large
values of y;, the more the optimization procedure is expected to reduce the corresponding bound ;.

Muulti-objective control problems as formulated here are hard to solve. Let us briefly sketch oneline
of approach. The Youla parameterization [16] reveals that the set of all 7; that can be obtained by
internally stabilizing controllers can be parameterized as

7] + TJ QT with Q varying freely in RHZ?.

HereT], T, T{ arerea-rational proper and stabletransfer matriceswhich can be easily computed in
termsof the system description (4.1.1) and an arbitrary stabilizing controller. Recall alsothat R HZ
denotesthe algebra of real-rational proper and stable transfer matrices of dimension p x g. With this
re-parameterization, the multi-objective control problem then amountsto findinga Q € RHL ™Y that
minimizes y» under the constraints

ITE 4+ T0TS o < y1, 1T+ TFOTE|2 < v2. (442

After thisre-formulation, we are hence faced with a convex optimization problem in the parameter O
which variesin theinfinite-dimensional space R H... A pretty standard Ritz-Gal erkin approximation
scheme leads to finite-dimensional problems. In fact, consider for afixed real parameter ¢ > 0 the
seguence of finite-dimensional subspaces

a (s — a)? (s —a)

s
s+a+Q2(s+a)2+m+Qv(S+a)”

/SV::{QQ—{—Q]_ : Q(),...,QVG]RPX[I}
of the space RHE?. Let us now denote the infimum of all y» satisfying the constraint (4.4.2) for
0 € RHL " by y5, and that for Q € 8, by y2(v). Since 8, C RHL?, we clearly have

¥i <v2w+1) < y2(v) foral v=0,1,2....

Hence solving the optimization problems for increasing v leads to a non-increasing segquence of
values y (v) that are all upper bounds on the actual optimum y.5". If we now note that any element of
Q can be approximated in the H.,-norm with arbitrary accuracy by an element in 4§, if v is chosen
sufficiently large, it is not surprising that y,(v) actually convergesto y; for v — oo. To be more
precise, we need to assume that the strict constraint [|7 + 7} QT4 |l < y1 isfeasiblefor 0 € 4,
and some v, and that 71 and 77 or 75 are strictly proper such that |72 + T2 QT2|, isfinite for all

Q € RHE . Thenitisnot difficult to show that
lim y2(v) = 5.
V—>00

Finally, we observe that computing y»2(v) isin fact an LMI problem. For more information on this
and related problems the reader is referred to [8, 33, 41].
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We observe that the approach that is sketched above suffers from two severe disadvantages. First,
if improving the approximation accuracy by letting v grow, the size of the LMI’s and the number
of variables that are involved grow drastically what renders the corresponding computations slow.
Second, increasing v amounts to a potential increase of the McMillan degree of Q € 4, what leads
to controllers whose McMillan degree cannot be bounded a priori.

In view of these difficulties, it has been proposed to replace the multi-objective control problem by
the mixed control problem. To prepareits definition, recall that the conditions (4.4.1) are guaranteed
by the existence of symmetric matrices X1, X2, Z2 satisfying

ATX1+ X1A X181 Cf

X1 >0, X181 —nl ;DlT <0
C1 D1 —nl
AT X2 4+ Xoh X2Bo X, CF
Dy =0, <0, 2 ) >0, trace(Z2) < yo.
2 < B1 %, ol Cr Zo (Z2) < y2

If trying to apply the general procedureto derivethe synthesisinequalities, thereis sometroublesince
the controller parameter transformation depends on the closed-loop Lyapunov matrix; here two such
matrices X1, X2 do appear such that the technique breaks down. This observation itself motivates a
remedy: Just force the two Lyapunov matrices to be equal. This certainly introduces conservatism
that is, in general, hard to quantify. On the positive side, if one can find a common matrix

X =X1=2X2

that satisfies the analysis relations, we can still guarantee (4.4.1) to hold. However, the converseis
not true, since (4.4.1) does not imply the existence of common Lyapunov matrix to satisfy the above
inequalities.

This discussion leads to the definition of the mixed Hz/H, control problem: Minimize y» subject
to the existence of X, Z» satisfying

ATX + XA XB1 Cf

BIxX -yl D] | <0
C1 D1 —nd
_ ATX + XA XBo X ¢
Do =0, ( £2TX ol , Cr Zs > 0, trace(Zy) < y»o.

This problem is amenable to our general procedure. One proves as before that the corresponding
synthesisLMI’s are

Bi(v)T —y1l Di(w)"
Ci1(v) Di(v) —nl

A"+ A@) Bz(v)><0 (X(v) Ca(v)"
Bo(w)T —yal "\ Cav)  Z>

and the controller construction remains unchanged.

AT +A@) Bi(v) Ci1()T
<0
D>(v) =0, (

) > 0, trace(Zy) < yo,

Let us conclude this section with some important remarks.
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 After having solved the synthesis inequalities corresponding to the mixed problem for v and
Z», one can construct a controller which satisfies (4.4.1) and which has a McMillan degree
(sizeof A.) that isnot larger than (equal to) the size of A.

« For the controller resulting from mixed synthesis one can perform an analysis with different
Lyapunov matrices X1 and X2 without any conservatism. In general, the actual Ho,-norm of
71 will be strictly smaller than y1, and the Hz-norm will be strictly smaller than the optimal
value obtained from solving the mixed problem. Judging a mixed controller should, hence,
rather be based on an additional non-conservative and direct analysis.

» Performing synthesis by searching for a common Lyapunov matrix introduces conservatism.
Littleisknown about how to estimate this conservatism apriori. However, the optimal value of
the mixed problem is always an upper bound of the optimal value of the actual multi-objective
problem.

« Starting from amixed controller, it has been suggested in[36,37] how to compute sequences of
upper and lower bounds, on the basis of solving LMI problems, that approach the actual optimal
value. Thisalowsto provide an aposteriori estimate of the conservatism that isintroduced by
setting X1 equal to X 2.

« |f starting fromdifferent versionsof theanalysisinequalities(e.g. through scaling the Lyapunov
matrix), the artificial constraint 61 = 2 might lead to a different mixed control problem.
Therefore, itisrecommended to choosethoseanalysisteststhat areexpected tolead to Lyapunov
matrices which are close to each other. However, thereis no general rule how to guarantee this

property.

« In view of the previous remark, let us sketch one possibility to reduce the conservatism in
mixed design. If we multiply the analysis inequalities for stability of 4 and for ||71]lco < 11
by an arbitrary real parameter « > 0, we obtain

AT (@X1) + (@XDA (@X1)B1 aCF
aXy >0, ( 3{(ax1) —ayrl aler ) <0
aCy a1 —ayrl
If we multiply the last row and the last column of the second inequality with glt (what is
a congruence transformation) and if we introduce Y1 := «a X1, we arrive at the following
equivalent version of the analysis inequality for the H..-norm constraint:

ATY1+Y1A Y181 Cf
Y1 >0, BTy, -yl DI <0.
C1 D1 —yi/al

Performing mixed synthesis with this analysis inequality leads to optimal values of the mixed
H>/ H, problem that depend on «. Each of these values form an upper bound on the actual
optimal value of the multi-objective problem such that the best bound is found by performing
aline-search over o > 0.
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 Contrary to previous approachesto the mixed problem, the one presented here does not require
identical input- or output-signals of the Hy, or H» channel. In view of their interpretation
(uncertainty for H., and performance for Hy), such arestriction is, in general, very unnatural.
However, dueto thisflexibility, it is even more crucial to suitably scale the Lyapunov matrices.

« We can incorporate with ease various other performance or robustness specifications (formu-
lated in terms of linear matrix inequalities) on other channels. Under the constraint of using
for all desired specifications the same Lyapunov matrix, the design of a mixed controller is
straightforward. Hence, one could conceivably consider amixtureof Hy,, H2, generalized Ho,
and peak-to-peak upper bound requirements on more than one channel. In its flexibility and
generality, this approach is unique; however, one should never forget the conservatism that is
involved.

« Using the same Lyapunov function might appear less restrictive if viewing the resulting pro-
cedure as a Lyapunov shaping technique. Indeed, one can start with the most important spec-
ification to be imposed on the controller. This amounts to solving a single-objective problem
without conservatism. Then one keeps the already achieved property as a constraint and sys-
tematically imposes other specifications on other channels of the system to exploit possible
additional freedom that is left in designing the controller. Hence, the Lyapunov function is
shaped to realize additional specifications.

 Finally, constraintsthat are not necessarily related to input- output-specifications can be incor-
porated as well. As a nice example we mention the possibility to place the eigenvalues of 4
into an arbitrary LM region {z : Q + Pz+ P77 < 0}. For that purpose onejust hasto include

p11X () + qu1AW) + quAWT ... puX @) + quA®) + grrAW)T
: : : <0

PiiX (W) + gr1AQ@) + qu AT ... puX ) + quAQ) + g A()T

in the set of synthesis LMI (see Chapter 2).

4.5 Elimination of parameters

The general procedure described in Section 4.2 leads to synthesis inequalitiesin the variables K, L,
M, N and X, Y aswell as some auxiliary variables. For specific problems it is often possible to
eliminate some of these variablesin order to reduce the computation time. For example, since K has
the samesize as A, eliminating K for a system with McMillan degree 20 would save 400 variables.
In view of the fact that, in our experience, present-day solvers are practical for solving problems up
to about one thousand variables, parameter elimination might be of paramount importance to be able
to solve realistic design problems.

Ingeneral, one cannot eliminate any variablethat appearsin at least two synthesisinequalities. Hence,
in mixed design problems, parameter elimination is typically only possible under specific circum-
stances. In single-objective design problems one has to distinguish various information structures.
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In output-feedback design problems, it is in general not possible to eliminate X, Y but it might be
possible to eliminate some of the variables K, L, M, N if they only appear in one inequality. For
example, in quadratic performance problems one can eliminate all the variables K, L, M, N. In
state-feedback design, one can typically eliminate in addition X, and for estimation problems one
can eliminate Y.

To understand which variables can be eliminated and how thisis performed, we turn to a discussion
of two topics that will be of relevance, namely the dualization of matrix inequalities and explicit
solvahility tests for specifically structured LM1’s[9, 34].

45.1 Dualization

The synthesis inequalities for quadratic performance can be written in the form (4.2.9). The second
inequality has the structure

<AI/1)T(?/1S3><AI/I><OandR20. (45.1)

Let us re-formulate these conditions in geometric terms. For that purpose we abbreviate

_( 2 S (k1) x (k+1)
P_<ST R eR

and observe that (4.5.1) is nothing but
P <0on im ! and P>0on im 0
= M = 1)

Since the direct sum of im 1\1/1 and im < (I) ) spans the whole R&Dx&+D e can apply the

following dudization lemmaif P isnon-singular.

Lemma 4.8 (Dualization Lemma) Let P be a non-singular symmetric matrix in R"*", and let U,
V be two complementary subspaces whose sum equals R”. Then

xTPx<Oforal xeU\{0} and x"Px>0foral xeV (45.2)
isequivalent to

x"PIx>0foral x e ut\{0} and x"P~Ix <0 forall x e V' (45.3)

Proof. Since U @ V = R” isequivalent to U+ @ V- = R”, it suffices to prove that (4.5.2)
implies (4.5.3); the converse implication follows by symmetry. Let us assume that (4.5.2) is true.
Moreover, let us assume that U and 'V have dimension k and [ respectively. We infer from (4.5.2)
that P has at least k negative eigenvalues and at least I non-negative eigenvalues. Sincek +1 =n
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and since P is non-singular, we infer that P has exactly k£ negative and [ positive eigenvalues. We
first prove that P~ is positive definite on U-L. We assume, to the contrary, that there exists a vector
y € UL\ {0} with yT P~1y > 0. Define the non-zero vector z = P~1y. Then z isnot contained in
U since, otherwise, we would conclude from (4.5.2) on the one hand z” Pz < 0, and on the other
hand z Ly = Pz what impliesz” Pz = 0. Therefore, the space U, := span(z) + U has dimension
k + 1. Moreover, P is positive semi-definite on this space: for any x € U we have

C4+0TPe+x)=yTP Yy +yTx+xTy+xTPx=yTP Yy +xTPx >0.

This implies that P has at least k + 1 non-negative eigenvalues, a contradiction to the aready
established fact that P has exactly k positive eigenvalues and that 0 is not an eigenvalue of P.

Let us now prove that P~1 is negative semi-definite on 'V--. For that purpose we just observe that
P + €l satisfies

xT(P+ehx <0 foral x e U\ {0} and x'(P+elx >0 foral x e V\ {0}
for al small ¢ > 0. Due to what has been already proved, thisimplies
xT(P+el)™tx >0foralx e Ut \ {0} and x"(P+el)"tx <Oforalx e v\ {0}

for al small €. Since P isnon-singular, (P + €1)~* convergesto P~1 for ¢ — 0. After taking the
limit, we end up with

xTP~ x>0 foral x e ut\ {0} and x"P~1x <0 foral x € V1 {0}.

Since we aready know that the first inequality must be strict, the proof is finished. [ |

Let us hence introduce

P*l — < ~QT ) e R(k+l)x(k+l)
S

=0 Dt

and observe that

im(&)lzker(l MT)=im<_IyT> aswell as im(?)inm<é).

Hence Lemma 4.8 impliesthat (4.5.1) is equivalent to
M\ /0 § —MmT ~
( M ) (SQT ;)( M >>OandQ§O. (4.5.4)

As an immediate consequence, we arrive at the following dual version of the quadratic performance
synthesis inequalities.
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(Q

Sj
J

Wr e

Corollary 4.9 Let P; ST

=

) be non-singular, and abbreviate Pj_1 = < ~TJ'
J

1 0
A B;

év) JI(U) <0, R >0
Ci(v) Dj(v)

. Then
J

07/0 O
100 0
00[0Q; S
0 0|S] R,

isequivalent to

—A(v)T —C(v)T —AW)T —Cw)T
I 0
—Bw)T —Dw)T

0 1

—B(v)T —D(v)T >0 0,=0

J
A(U) j(v) ) (
C; (U) D/(U)

Remark. Any non-singular performance index P; = (

Q; §; ) , -1
can be inverted to P, + =
SJT Rj J

( ?T’ I%jj . Recall that werequired P; tosatisfy R; > Qsince, otherwise, thesynthesisinequalities
j

may not be convex. The above discussion reveals that any non-singular performance index has to
setisfy aswell Q; < 0 since, otherwise, we are sure that the synthesis inequalities are not feasible.
We stress this point since, in general, R; > 0 does not imply Q, < 0. (Takeeg. P; > 0suchthat
-1
>0.)

Similarly, we can dualize the H»-type synthesis inequalities as formulated in (4.3.4)-(4.3.5).

Corollary 4.10 For y; > 0,

1 0
A(v) B;(v)

if and only if

if and only if
—c;T\' ([ -xw™ o —C;)7T
() (T 2 ) () e
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Again, Lemma 4.2 allows to render the first and the second dual inequalities affinein y; and X (v)
respectively.

45.2 Special linear matrix inequalities

L et usnow turnto specific linear matrix inequalitiesfor which onecan easily derive explicit solvability
tests.

We start by atrivia example that is cited for later reference.

Lemma4.11 Theinequality
Pi1 P Pi3
Py Pp+X Pxn | <0
P31 Py Ps3

in the symmetric unknown X has a solution if and only if

P P13
< 0.
( P31 P33 )

Proof. Thedirection ‘only if’ isobvious by cancelling the second row/column. To provethe converse
implication, we just need to observe that any X with

-1
P11 P13 Py
X <—Pp+(Pu P13)<P31 P33> <P32><0

(suchas X = —a/ for sufficiently large « > 0) isasolution (Schur). [

Remark. This result extends to finding a common solution to a whole system of LMI’s, due to
the following simple fact: For finitely matrices Qg, ..., Qn, there exists an X with X < Q;,
j=1...,m.

Thefirst of threemore advanced resultsinthisvainisjust asimpl e consequence of aSchur complement
argument and it can beviewed asapowerful variant of what isoften call ed thetechniqueof * completing
the squares'.

Lemma4.12 (Projection Lemma) Let P bea symmetric matrix partitioned into three rows/columns

and consider the LMI
P11 P+ XT P13

P+ X Py Po3 <0 (4.5.5)
Pz P3 P33
in the unstructured matrix X. There exists a solution X of this LMI iff
P11 P13 Px  Po3
0 and 0. 45.6
<P31 P33>< <P32 P33)< ( )
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If (4.5.6) hold, one particular solution is given by
X = PLPZ Py — P (45.7)

Proof. If (4.5.5) has a solution then (4.5.6) just follow from (4.5.5) by canceling the first or second
block row/column.

Now suppose that (4.5.6) holdswhat implies P33 < 0. We observethat (4.5.5) isequivalent to (Schur

complement)

Py Pp+XT P13 -1

— P. P31 P < 0.
< Pi+X P2 Py ) 33 (Pa Pz )

Due to (4.5.6), the diagonal blocks are negative definite. X defined in (4.5.7) just renders the off-
diagonal block zero such that it is a solution of the latter matrix inequality. [ |

An even more powerful generalization is the so-called projection lemma.

Lemma4.13 (Projection Lemma) For arbitrary A, B and a symmetric P, the LMI

ATXB+BT'XTA+P <0 (4.5.8)
in the unstructured X has a solution if and only if
Ax =00r Bx =0 imply x” Px <0orx =0. (4.5.9)

If Ay and B, denote arbitrary matrices whose columns form a basis of ker(A) and ker(B) respec-
tively, (4.5.9) is equivalent to

ATPA; <0 and BTPB, <. (4.5.10)

We give afull proof of the Projection Lemma since it provides a scheme for constructing a solution
X if it exists. It also reveals that, in suitable coordinates, Lemma4.13 reduces to Lemma4.12 if the
kernels of A and B together span the whole space.

Proof. The proof of ‘only if” istrivial. Indeed, |et us assume that there exists some X with AT X B +
BTXTA+ P < 0. Then Ax = 0 or Bx = 0 with x # O imply the desired inequality 0 >
xT(ATXB+ BTXTA+ P)x = xT Px.

For proving ‘if’, let S = (S1 S2 S3 S4) be a nonsingular matrix such that the columns of S3 span
ker(A) Nker(B), those of (S1 S3) span ker(A), and those of (S2 S3) span ker(B). Instead of (4.5.8),
we consider the equivalent inequality S” (4.5.8)S < 0 which reads as

(ASYTX(BS) + (BT XxT(AS) + ST PS < 0. (45.11)

Now notethat AS and BS havethe structure (0 A2 0 A4) and (B1 00 Bs) where (A2 As) and (B1 By)
have full column rank respectively. The rank propertiesimply that the equation

0 0O 00 O

T _| A7 | Z1 0 0 Zyx
(AS)' X(BS) = 0 X(Bl 00 B4)_ 0 00 0
A£ Zy1 0 0 Zg
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hasasolution X for arbitrary Zo1, Zoa, Za1, Zas. With Q := ST P S partitioned accordingly, (4.5.11)
hence reads as
On Q1w +2ZL 013 Qu+ 2zl
021+ Zn 02 023 Q24+ Zoa
031 Oz 033 Oz
Om+Zm Qa+Z), O \ Qus+ Zan+ 2},

with free blocks Z21, Zoa, Za1, Zas. Since

<0 (45.12)

ker(AS) =im and ker(BS) =1im

OO~

0
0
I

OO ~O
oO~OOo

00

the hypothesis (4.5.9) just amounts to the conditions

Q11 Q13 02 02
<Q31 Q33> <0 and <Q32 Q33) =0

By Lemma4.12, we can hence find a matrix Z»1 which renders the marked 3 x 3 block in (4.5.12)
negative definite. The blocks Z41 and Z»4 can be taken arbitrary. After having fixed Z21, Za1, Z2a,
we can choose Z44 according to Lemma 4.11 such that the whole matrix on the left-hand side of
(4.5.12) is negative definite. [ |

Remark. We can, of course, replace < everywhere by >. It isimportant to recall that the unknown
X isunstructured. If one requires X to have a certain structure (such as being symmetric), the tests,
if existing at al, are much more complicated. There is, however, a generally valid extension of
the Projection Lemma to block-triangular unknowns X [31]. Note that the results do not hold true
as formulated if just replacing the strict inequalities by non-strict inequalities (as it is sometimes
erroneoudly claimed in the literature)! Again, it is possible to provide a full generalization of the
Projection Lemmato non-strict inequalities.

Let

p= ( SQT ; ) withR > 0 havetheinverse P~ = ( fé ) withd <0  (45.13)

and let usfinally consider the quadratic inequality

T
I 1
( ATXB+C ) d ( ATXB+C ) <0 (4514

in the unstructured unknown X. According to Lemma 4.8, we can dualize thisinequality to

_RTxT s _ ' \T Tyl 4o _ v
( BXIA C) P—1< BXIA C)>o. (4.5.15)

It is pretty straightforward to derive necessary conditions for the solvability of (4.5.14). Indeed, let
us assumethat (4.5.14) holdsfor some X. If A; and B, denote basis matrices of ker(A) and ker(B)
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respectively, weinfer

I 1 —BTXTA-C —C'
(arxpac)me= (&) (7779 Ja= (7 )as

Since BT (4.5.14)B, <0and AT (4.5.15)A, > 0, wearrive at thetwo easily verifiable inequalities

T T
I I -cT _1( —=CT
B{<C> P<C>BL<OandAi< / ) Pl( / )AL>O (4.5.16)

which are necessary for a solution of (4.5.14) to exist. One can constructively prove that they are
sufficient [38].

Lemma4.14 (Elimination Lemma) Under the hypotheses (4.5.13) on P, the inequality (4.5.14)
has a solution if and only if (4.5.16) hold true.

Proof. It remainsto prove that (4.5.16) implies the existence of a solution of (4.5.14).

Let us first reveal that one can assume without loss of generality that R > 0 and QO < 0. For that
purpose we need to have information about theinertiaof P. Dueto R > 0, P and P~! have size(R)
positive eigenval ues (since none of the eigenvalues can vanish). Similarly, O < 0 impliesthat P—1
and P havesize(Q) = size(Q) negative eigenvalues. Let usnow consider (4.5.14) with the perturbed

data
(2 S
Pé._<ST R—i—el) where € > 0

is fixed sufficiently small such that (4.5.16) persist to hold for P, and such that P. and P have the
same number of positive and negative eigenvalues. Trivially, the right-lower block of P, is positive
definite. The Schur complement O — S(R + €1)~1ST of this right-lower block must be negative
definite since P. has size(Q) negative and size(R) positive eigenvalues. Hence the left-upper block
of P! which equals [Q — S(R + €I)~18T]17! is negative definite as well. If the result is proved
with R > 0and O < 0, we can conclude that (4.5.14) has a solution X for the perturbed data P..
Dueto Py < P., thevery same X also satisfies the original inequality for Po.

Let us hence assume from now on R > 0 and O < 0. We observe that the left-hand side of (4.5.14)
equals

T
( ! ) P ( ! ) +(ATXB)T (ST + RC) + (ST + RC) (AT XB) + (AT XB)T R(ATXB).

Hence (4.5.14) is equivalent to (Schur)

1\’ I
( ( c ) P < c ) + (ATXB)T (ST + RC)+ (ST + ROT(ATXB) (ATxB)T ) -0
(ATXB) —R1
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4.5. ELIMINATION OF PARAMETERS

or

T T\T T
+(A(S + RO) > X(B °)+<Bo )XT(A(ST+RC) A)<0. (4517)

Theinequality (4.5.17) has the structure as required in the Projection Lemma. We need to show that

(B 0)();>=0, (;‘)aéo (45.18)

’ (AGT+RC) A)(§)=O, (;‘);«éo (4519)
imply

(i)T(<é>T0P<é> _01)(i):xT((I;>TP<é>x—yTy<O. (4.5.20)

In afirst step we show that (4.5.17) and hence (4.5.14) have a solution if A = I. Let us assume
(4.5.18). Then (4.5.20) istrivial if x = 0. For x # 0 weinfer Bx = 0 and the first inequality in

(4.5.16) implies
r(1y p(! 0
X C C X <

what shows that (4.5.20) istrue. Let us now assume (4.5.19) with A = I. We infer x # 0 and
y = —(ST + RC)x. Theleft-hand side of (4.5.20) is nothing but

T
X7 ( é ) P ( é )x —xT ST+ RC)TRYST + RO)x =
1\’ I INT /SN . I
= (e) r(e)=(e) (R)esm o e )a-
T -1
:xT(é) [P—(SRSTST ;)](é)xsz(Q—SR_lST)x

what isindeed negativesince 01 = Q0 — SR~1S7 < 0and x # 0. We conclude that, for A = 1,

(4.5.17) and hence
I r I
(XB+C> P(XB+C><0
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4.5. ELIMINATION OF PARAMETERS

By symmetry —since one can apply the arguments provided above to the dual inequality (4.5.15)—we

can infer that
T
1 1
(ATX+C> P(ATX+C)<O

has asolution X. Thisimpliesthat (4.5.17) hasasolution for B = I. Therefore, with the Projection
Lemma, (4.5.19) implies (4.5.20) for ageneral A.

In summary, we have proved for general A and B that (4.5.18) or (4.5.19) imply (4.5.20). We can
infer the solvability of (4.5.17) or that of (4.5.14). [ |
45.3 Thequadratic performance problem

For the performance index

.S o . S ~
sz(g}f RJJ-)’ R; >0 withinverse le=<%,’] Iéjj>’ Q; <0, (4.5.21)
J

we have derived the following synthesis inequalities:

I o \'/01]0 O I 0
X() > 0, A(()v) B,-I(v) égQOj SOj Aév) Bj[(v) -0 (45.22)
Cj(v) D;(v) 00 S]-T R; Cj(v) D;(v)

Due to the specific structure
. AY A | B; 0 B
(Lotsw) (‘5 il )+ (7 6
SRR C;Y C;| D; 0 E;

it isstraightforward to apply Lemma4.14 to eliminate all the variables <

J(5 5)(h208) ws

K L
M N ) For that purpose

it suffices to compute basis matrices
ot vl
cpj:(q)é)of ker (BT E] ) and wj:(\lf?) of ker(C F;).

Corollary 4.15 For a performance index with (4.5.21), there exists a solution v of (4.5.22) if and
only if there exist symmetric X and Y that satisfy

Y I
( I x > > 0, (4.5.24)

91
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I 0 0 X|0 O I 0
r| A B X 0/0 O A B
] 57 0000, S T, ¥ < 0, (4.5.25)
C;j D;j 0 0|S] R Cj Dj
—AT T T —AT T
b, =Y b =Y
0 I 0 I

Remark. Note that the columns of ( }? ) indicate in how far the right-hand side of (4.1.1) can be
J

modified by control, and therowsof ( C  F; ) determine those functionalsthat provideinformation
about the system state and the disturbancethat isavailablefor control. Roughly speaking, the columns
of & ; or of W indicatewhat cannot beinfluenced by control or whichinformation cannot be extracted
from the measured output. Let us hence compare (4.5.24)-(4.5.26) with the synthesis inequalities
that would be obtained for

X A| B B, X
71 Ci1| D1 --- Dy w1

=\ . . . . (4.5.27)
2q C,|Dp -+ D, wg

without control input and measurement output. For this system we could choose ® = 7 and ¥ = [
to arrive at the synthesisinequalities

(§ }’(>>o, (45.28)
I o\ /0 x|0 O I 0
A B x 0|lo o A B
— 0 ot0, s, —| <o (4.5.29)
Cj Dj 00 S]T Rj Cj Dj
—AT —cT\" /0 ¥[0 o0 —AT T
L0 Y olo 991 1 0 0 (4.5.30)
—— pT _nT 7. Q. — QT T | =Y e
—Bj =Dj 0 010; 5 || =Bj -Dj
0 I 0 0|S; Ry 0 I

Since there is no control and no measured output, these could be viewed as analysis inequalities for
(4.5.27). Hence we have very nicely displayed in how far controls or measurements do influence the
synthesis inequalities through @ ; and ;. Finaly, we note that (4.5.28)-(4.5.30) are equivaent to
X >0,(4529ortoY > 0, (4.5.30). Moreover, if dualizing X > 0, (4.5.29), wearriveat Y > 0O,
(45.30) for Y := x 1.
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4.5. ELIMINATION OF PARAMETERS

Proof of Corollary 4.15. Thefirst inequality (4.5.24) isjust X (v) > 0. The inequalities (4.5.25)-
(4.5.26) are obtained by simply applying Lemma 4.14 to the second inequality of (4.5.22), viewed

as aquadratic matrix inequality in the unknowns < AIfI ]%, ) For that purpose we first observe that

0 1|0 I 0[]0 3 0
i i wl
ker( BT OE]_T ) ker< 0 C|F; ) have the basis matrices q()) , b
J J
respectively. Dueto

1 0
I 0 0 1

0
0 0 0
A(v) B;(v) wl | _| AY A | Bj wl | _ i |w
0 1 wr) |0 xal|xB; |\ &7 | XA x5 ’
1

Ciw) D;wy ) \Yi 0 0 1
CjY Cj Dj Cj Dj

the solvability condition that corresponds to the first inequality in (4.5.16) reads as

T

0 0 0070/0 O 0 0

I 0 0007I[0 O I 0

| A B 1000[0 O A B

Yol xa xB; 07000 o0 || xaxz [¥=0
0 I 0000[Q; S 0 I
C; D; 000O0|SI Ry C; D;
what simplifiesto
I o0\’ I 0
| XA XB; XA XB;
g ) 7 ) 7 ¥ < 0.

Cj D; Cj D

Thisis clearly nothing but (4.5.25). The very same simple steps lead to (4.5.26). Indeed, we have

AW €T g1
I 0 J -
B;(n)T D;w)T N

YA
0 I ;]
-vAT o |-vcT -yAT —yc!
—-AT —ATx| —C ol —AT  —cT
_ I 0 0 J |- 1 0
-BT  —xBT| —-DT J -BT DI
J J J
0 0 1 0 1

93
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such that the solvability condition that corresponds to the second inequality in (4.5.16) is

T

—YAT —ycT 0070|/0 O -YAT —ycT
—AT  —cT 000170 O —AT ¢TI
T 1 0 1 000|0 O I 0
@ 0 0 07000 0 0 o |®=<0
~‘ ~.
—BI" DI 0000|Q; S —BI DI
0 1 000 0[S Ry 0 1
what simplifies to
—YAT —ycl\" —YAT —ycT
T 1 0 1 0
O] —_BlT _D1T —_B1T _DlT d <0
0 I 0 1
and we arrive at (4.5.26). [ |
Starting fromthe synthesisinequalities(4.5.22) inthevariables X, Y, Alfl ]%7 , wehavederivedthe

equivalent inequalities (4.5.24)-(4.5.26) in the variables X, Y only. Testing feasibility of these |atter
inequalities can hence be accomplished much faster. Thisis particularly advantageous if optimizing
an additional parameter, such as minimizing the sup-optimality level y inthe Hy, problem.

To concludethissection, let uscomment on how to computethe controller after having found solutions
X, Y of (4.5.24)-(4.5.26). One possibility is to explicitly solve the quadratic inequality (4.5.22) in
( AIZ 1%/ ) along the lines of the proof of Lemma 4.14, and reconstruct the controller parameters as
earlier. One could aswell proceed directly: Starting from X and Y, we can compute non-singular U
and V withUVT =1 — XY, and determine X > 0 by solving the first equation in (4.2.10). Dueto
(4.1.5), we can apply Lemma 4.14 directly to the analysisinequality

T

I 0 I 0
A Bj A B
0 I o 1 |<°
Cj Dj Cj Dj
if viewing éc gc asvariables. It isnot difficult (and you should provide the details!) to verify

the solvability conditions for this quadratic inequality, and to construct an explicit solution along the
lines of the proof of Lemma4.14. Alternatively, one can transform the quadratic inequality to alinear
matrix inequality with Lemma 4.2, and apply the Projection Lemma to reconstruct the controller
parameters. For the latter step the LMI-Lab offers a standard routine. We conclude that there are
many basically equivalent alternative ways to compute a controller once one has determined X and
Y.
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45.4 Hy-problems

If recalling (4.2.3), we observe that both inequalities in the H»-synthesis conditions (4.3.3) involve
the variables M and N, but only the first one

( AW)T +A@) B;(v) ) -0

BT (4.5.31)

is affected by K and L. This might suggest that the latter two variables can be eliminated in the
synthesisconditions. Since (4.5.31) isaffinein ( K L ), wecanindeed apply the Projection Lemma
toeliminatethesevariables. Itisnot difficult to arrive at the following alternative synthesis conditions
for Ho-type criteria.

Corollary 4.16 There exists a controller that renders (4.3.2) for some X, Z; satisfied iff there exist
X,Y,M,N, Zj Withfj(Zj) < Vj Dj +EjNFj = 0and

Y 1 (C;Y + E;M)T
1 X (Cj+EjNC)T > 0,
C;Y+EiM C;+E;NC Z;
T . T . .
\IJT<A X+ XA XBJ)\IJ<O, <(AY+BM)+(AY+BM) B]+BNF])<0.

BIX  —yjl (Bj + BNF)T —y;
(4.5.32)

Proof. We only need to show that the elimination of K and L in (4.5.31) leadsto the two inequalities
(4.5.32). Let usrecall

AY A B; 0 B K L I 0|0
(A) B,/(v)):<o XAxéj>+(1 0><M N><O CFj>=

_ (AY+BM A+ BNC|Bj+BNF; 0 100
—< 0 XA XB; >+<1 (K L) {0 clr )

Therefore, (4.5.31) is equivalent to
AY + YAT A B; B / olo
AT ATX+XA| XB; |+sym|[| 0 | (M N)<OCF») +
B}T BjTX \—yjl 0 J

+wm((2)(1< L)(é gg>)<o

wheresym (M) := M + M7 isjust an abbreviation to shorten the formulas. Now note that

I 0|0 [0 01

) . !

ker (0 1]0), ker(O CFj> have the basis matrices 8 (I) ; qJE
J
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respectively. Therefore, the Projection Lemma leads to the two inequalities
0\ [ AY+yAT A B, 0
vl AT ATX + XA| XB; vl <o
\IJ% B] BIX |-yl \IJ%

("5 S )rem((6) (o 7))o

that are easily rewritten to (4.5.32). [

If it happens that E; vanishes, we can also eliminate all variables from the synthesis

L
M N
inequalities. The corresponding results are obtained in a straightforward fashion and their proof is
left as an exercise.

Corollary 4.17 Suppose that E; = 0. Then there exists a controller that renders (4.3.2) for some
X, Z; satisfied iff D; = O and thereexist X, Y Z; with f;(Z;) < y; and

Yy 1 ;n’t
I X ch >0,

CjY Cj Zj
ATX + XA XB;  o\' /Ay +YAT B; d 0
T J J
\11( BT X —yj1>‘y<0’<o 1)( B! —yj1><0 1><0

where @ is a basis matrix of ker(B).

Remarks.

+ Oncethesynthesisinequalitieshavebeen solved, thecomputationof ( K L )orof< A[fl II\; )

can be performed along the lines of the proof of the Projection Lemma.

* It was our main concern to perform the variable elimination with as little computations as
possible. They should be read as examples how one can proceed in specific circumstances,
and they can be easily extended to various other performance specifications. As an exercise,
the reader should eliminate variablesin the peak-to-peak upper bound synthesisLMI’s.

4.6 State-feedback problems

The state-feedback problem is characterized by
y=xor (C F, -+ Fg)=(I10--- 0).
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Then the formulas (4.2.3) read as

( A(w) Bj(v) > _
C;i(v) D;(v)

BJ
K AX+L |XB; |.
C;Y+EM C;+E;N| D;

( AY +BM A+ BN

Note that the variable L only appearsin the (2, 2)-block, and that we can assign an arbitrary matrix
in this position by suitably choosing L. Therefore, by varying L, the (2, 2) block of

AT +Aw@) B\ _
Bj(v) 0 -

K +(A+BN)T (AX+ L)+ (AX +L)T
B].T B].TX

(AY + BM) + (AY + BM)T (A+BN)+ KT B;
XB;
\ 0

variesin the set of all symmetric matrices. Thisalowsto apply Lemma4.11 in order to eliminate L
in synthesis inequalities what leads to a drastic simplification.

Let usillustrate all thisfor the quadratic performance problem. The corresponding synthesisinequal-
ities (4.2.7) read as

v 1 (AY + BM) + (AY + BM)T (A+BN)+ KT B;
< )>o, K+ (A+BN)T (AX+ L)+ (AX+ L) | XB; |+
B].T BJ.TX \ 0

I X
0 0 I
+<CjY+EjM Cj+EjN Dj)<0'

1\ 0 0
Dj J CjY+EjM Cj+EjN

These imply, just by cancelling the second block row/column,

T .
0 (AY + BM) + (AY + BM)" B; N
BJ.T 0

N 0 1\ 0 I 0
ciy+emM D; ) "'\ c;y+E;Mm D; )~

or

I o\ /01/0 O I 0
AY + BM  B; 1 0/0 O AY + BM  B;
Y >0, 5 7 000, 5, 0 <0 (461

J
T
OS‘/ Rj CjY+EjM Dj

o

CjY—f—EjM Dj

Thisisadrastic simplification sinceonly thevariables Y and M do appear intheresulting inequalities.
It isno problem to reverse the argumentsin order to show that the reduced inequalities are equivalent
to the full synthesisinequalities.
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However, proceeding in a different fashion leads to another fundamental insight: With solutions Y
and M of (4.6.1), one can in fact design a static controller which solves the quadratic performance
problem. Indeed, we just choose

D =Myt

to infer that the static controller y = D.u leads to a controlled system with the describing matrices

A B;\ _( A+BD. B;\ _[( (AY+BM)Y ! B;
¢; & )\ Cj+Ejp. Dj )~ \ (C;Y+E;M)Y~* D; )

Weinfer that (4.6.1) isidentical to

I o0\'/o0 1 0 0
AY B 1 0 O AY :B,
Y >0, ) 7 0 Qj S, < 0.
C;Y D; 0 S].T R; @ Y :D
-1
If we perform congruence transformations with Y~ and( wearr|veW|thx =y la
T
I 0 07/]0 O I 0
XA XB; I 00 O XA XB;
% >0, 0 1 00/0Q; S o 1 |=°%
C; D; 00 S]-T R; C; D;

Hencethe static gain D indeed defines a controller which solves the quadratic performance problem.

Corollary 4.18 Under the state-feedback information structure, there exists a dynamic controller
/éz gi ) and some % which satisfy (4.2.1) iff there exist solutions ¥ and M of the inequalities
(4.6.2). If Y and M solve (4.6.1), the static state-feedback controller gain
D.=MYy !

and the Lyapunov matrix X := ¥ 1 render (4.2.1) satisfied.

In literally the same fashion as for output-feedback control, we arrive at the following general pro-
cedure to proceed from analysis inequalities to synthesis inequalities, and to construct a static state-
feedback controller:

* Rewrite the analysis inequalities in the blocks X, XA, X8;, C;, £D; in order to be able to
find a(formal) congruencetransformation involving Y which leadsto inequalitiesin the blocks
Y XY, Y XAY, YT X B, €Y, D;.

* Perform the substitutions

T T
’ YT xAY YT XB; AY + BM B
% XY — ¥ and ( ey 9, )7 \cy+EmM D,

to arrive at matrix inequalitiesin the variables Y and M.
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 After having solved the synthesis inequalities for Y and M, the static controller gain and the
Lyapunov matrix

D=My tad x=v1

render the analysis inequalities satisfied.

As an illustration, starting form the analysis inequalities (4.3.2) for H»-type problems, the corre-
sponding state-feedback synthesis conditions read as

(AY + BM)T + (AY + BM) B,
BT i ) <0
j Vi

( Y (C./'Y-f-EjM)T

CjY+EjM Zj >>O, fj(Zj)<]/j, Dj:O.

All our previous remarks pertaining to the (more complicated) procedure for the output-feedback
information structure apply without modification.

In general we can conclude that dynamics in the controller do not offer any advantage over static
controllersfor state-feedback problems. Thisisalso truefor mixed control problems. Thisstatements
requires extra attention since our derivation was based on eliminating the variable L which might
occur in several matrix inequalities. At this point the remark after Lemma 4.11 comes into play:
This particular elimination result also appliesto systems of matrix inequalities such that, indeed, the
occurrence of L isvariousinequalities will not harm the arguments.

As earlier, in the single-objective quadratic performance problem by state-feedback, it is possible to
eliminate the variable M in (4.6.1). Alternatively, one could as well exploit the particular structure
of the system description to simplify the conditions in Theorem 4.15. Both approaches lead to the
following result.

Coroallary 4.19 For thestate-feedback quadratic performance problemwithindex satisfying (4.5.21),
there exists dynamic controller and some X with (4.2.1) iff there exists a symmetric ¥ which solves

T

_AT _C/,T —AT —C/.T
s e
0 1 0 1

Remarks. All these results should be viewed as illustrations how to proceed for specific system
descriptions. Indeed, another popular choiceisthe so-called full information structure in which both
the state and the disturbance are measurable:

y:(;;).
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Similarly, one could consider the corresponding dual versionsthat are typically related to estimation
problems, such as e.g.

B 1
Eq 0
E, 0

We have collected al auxiliary results that allow to handle these specific problems without any
complications.

4.7 Discrete-Time Systems

Everything what has been said so far can be easily extended to discrete time-design problems. This
is particularly surprising since, in the literature, discrete-time problem solutions often seem much
more involved and harder to master than their continuous-time counterparts.

Our general procedure to step from analysis to synthesis as well as the technique to recover the
controller need no change at al; in particular, the concrete formulas for the block substitutions do
not change. The elimination of transformed controller parameters proceeds in the same fashion on
the basis of the Projection Lemma or the Elimination Lemma and the specialized version thereof.

Only as a example we consider the problem discussed in [12]: the mixed H»/H,, problem with
different disturbance inputs and controlled outputsin discrete-time.

Itiswell-known [12] that A hasall its eigenvaluesin the unit disk, that the discrete time Hz-norm of
C1(zl — A) 181+ D1
issmaller than y1, and that the discrete time H,-norm of
Co(zl — A) ' Ba+ D2
issmaller than y» iff there exist symmetric matrices X1, X2, and Z with trace(Z) < y; and
X1 XA X181 X1 0 ef Dgz 01 ’A’ixz GZTT
YT (LD

ATX1 X 0 r )
1Al 0 I D Xok XaBy X» 0 |70

T
By X1 0 y1l C1L D1 Z e Dy 0 vol

(4.7.0)
Note that we have transformed these analysis LMI’s such that they are affine in the blocks that will
be transformed for synthesis.

The mixed problem consists of searching for acontroller that renders these inequalities satisfied with
a common Lyapunov function X = X1 = X». The solution is immediate: Perform congruence
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transformations of (4.7.1) with

diag(y. 4. 1), diag(y.1.1), diag($. 1. Y. 1)

and read off the synthesisLMI’susing (4.2.3). After solving the synthesisLMI’s, we stress again that
the controller construction proceeds along the same steps as in Theorem 4.3. The inclusion of pole
constraints for arbitrary LMI regions (related, of course, to discrete time stability) and other criteria
poses no extra problems.

4.8 Exercises

Exercise 1

Derive an LMI solution of the Hu.-problem for the system

X A B1 B X
z1 = C1 D1 E w1
y cC F O u

c=(8): #=(2) wawer= (5

(Thisisthe so-called full information problem.)

with

Exercise 2 (Nominal and robust estimation)

[)-(¢5))

and inter-connect it with the estimator

Xe¢ A, B X¢
()= ) (V) wss

where both A and A, are Hurwitz. The goal in optimal estimation is to design an estimator which
keeps z — Z as small as possible for all disturbances w in a certain class. Out of the multitude of
possibilities, we choose the Lo-gain of w — z — 7 (for zero initial condition of both the system and
the estimator) as the measure of the estimation quality.

Consider the system

Thisleadsto the following problem formulation: Giveny > 0, test whether there exists an estimator

which renders N
lz —Zl2

(4.8.2)
wely, w#0 w2

satisfied. If yes, reveal how to design an estimator that leads to this property.
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1. Show that the estimation problem isaspecialization of the general output-feedback H..-design
problem.

2. Due to the specific structure of the open-loop system, show that there exists a linearizing
transformation of the estimator parameters which does not involve any matrices that describe
the open-loop system.

Hint: To find the transformation, proceed as in the proof of Theorem 4.3 with the factorization
Tor r (1 Yty _(rto
yx_therey_<[ 0 )’Z_(X U )

and consider as before the blocks Y7 XAY, Y7 XB, CY.

3. Now assume that the system is affected by time-varying uncertain parameters as

X A(A(D)  Bi(A(1) N
z | =] Ci(A@) Di(A®) <w>
y C(A(1) F(A()

A(A)  Bi(A)
C1(A) Di1(A) isaffinein A and A(¢r) € co{Aq, ..., An}.
C(A) F(A)

where

Derive LMI conditions for the existence of an estimator that guarantees (4.8.2) for all uncer-
tainties, and show how to actually compute such an estimator if the LMI’'s are feasible.

Hint: Recall what we have discussed for the state-feedback problem in Section 7.1.3.

4. Suppose that the uncertainty enters rationally, and that it has been pulled out to arrive at the
LFT representation

X A B B Y
Z Ci1 D1 D
Y= F ot e w1 |, wit) = ADz1(1), A@t) € CO{A1, ..., Ay)
z Cy, D Do w
C F1 F

of the uncertain system. Derive synthesis inequalities with full-block scalings that guarantee
the existence of an estimator that guarantees (4.8.2) for al uncertainties and reveal how to
actually compute such an estimator if the LMI’s are feasible. What happens if D1 = 0 such
that the uncertainty enters affinely?

Hint: The results should be formulated analogously to what we have done in Section 7.1.2.
There are two possibilities to proceed: You can either just use the transformation (4.2.10) to
obtain synthesis inequalities that can be rendered convex by an additional congruence trans-
formation, or you can employ the alternative parameter transformation as derived in part 2 of
this exercise to directly obtain a convex test.
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Exercise 3

This is a simulation exercise that involves the synthesis of an active controller for the suspension
system in Exercise 4 of Chapter 2. We consider the rear wheel of atractor-trailer combination asis
depictedin Figure 4.2. Herem 1 representstire, wheel and rear axle mass, mo denotesafraction of the

Figure 4.2: Active suspension system

semitrailer mass. The deflection variables g; are properly scaled sothat g — g1 = 0Oand gy —go = 0
in steady state. The system is modeled by the state space equations

. q0
x—Ax+B<F>

Z=Cx+D<C§9)

where

0 0 1 0 2y 0

1
0 0 0 1 0 0
A=|_kthk k _btbe b2 |3 B=|x bbby 1
k_};’ll _m%_z b_l;’l]_ _mé mq 11112 mi im]_
m2 m2 mo m2 mima my

1 0 0 O -1 0

0 0 0 O 0o 1

C=lk _k b _bl|: D=\ pp, 1

m2 m2  m2 m2 mimz  m2

-1 1 0 0 0 0

Here, x = col(q1, g2, 41 — b1gqo/m1, ¢2) and z = col(q1 — qo, F, G2, g2 — q1) define the state and
the to-be-controlled output, respectively. The control input istheforce F, the exogenousinput isthe
road profile go.

Let the physical parameters be specified asin Table 2.1 in Chapter 2 and let b1 = 1.7 x 10%. The
aim of the exercise is to design an active suspension control system that generates the force F as a
(causal) function of the measured variable y = col(g2, g2 — q1).

The main objective of the controller design is to achieve low levels of acceleration throughout the
vehicle (g2), bounded suspension deflection (g2 — g1 and g1 — go) and bounded dynamic tire force

(F).
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4.8. EXERCISES

1. Let the road profile be represented by go = W,,g0 Where go € £ is equalized in frequency

and W, isthe transfer function
0.01

0.4s +1

reflecting the quality of the road when the vehicle drives at constant speed. Define the to-be-
controlled output z = W,z where W, isaweighting matrix with transfer function

Woo(s) =

200 O 0 0
W.(s) 0 01 0 0
§) = 0.03185+0.4
: 0 0 3.16x 10—4s2irO.0314s+l 0
0 0 0 100

The weight on the chassis accel eration reflects the human sensitivity to vertical accelerations.
Use the routines | t i sys, smul t and sdi ag (from the LMI toolbox) to implement the

generalized plant
qgo Z
P
(¥) = ()

and synthesize with the routine hi nf | mi a controller which minimizes the H,, norm of the
closed-loop transfer function 7 : go +— Z.

2. Construct with this controller the closed-loop system which maps gg to z (not go to z!) and
validate the controlled system by plotting the four frequency responses of the closed-loop
system and the four responses to a step with amplitude 0.2 (meter). (Seetheroutinessl ft,
ssub and spl ot ). What are your conclusions about the behavior of this active suspension
system?

3. Partition the output z of the system into

~(z1). _ (91— qo). . G2
(@) () an ()

and let the weights on the signal components be as in the first part of this exercise. Let 73,
i =1, 2bethetransfer function mapping go — z;. Wewish to obtaininsight in the achievable
trade-offs between upper bounds of || 77 ||« and ||72]|2. To do this,
(a) Calculate the minimal achievable Hy, norm of 77.
(b) Calculate the minimal achievable H, norm of 7.
(c) Calculatethe minimal achievable H> norm of 73 subject tothebound || 71|l < y1 Where
y1 takes some! valuesin the interval [0.15, 0.30].

Make a plot of the Pareto optimal performances, i.e, plot the minima achievable H, norm of
T2 asfunction of y1. (Seetheroutine hi nf mi x for details).

1slightly depending on your patience and the length of your coffee breaks, | suggest about 5.
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Chapter 5

Systems with parametric uncertainty

5.1 Parametric uncertainty descriptions

5.1.1 Polytopic differential systems

In Definition 1.6 of Chapter 1 we introduced the notion of a convex combination of a finite set of
points. Thisnotion gets considerablerelevanceinthe context of dynamical systemsif ‘ points become
systems. Consider atime-varying dynamical system
dx
E(t) = A@®)x(1) + B(Ow()
(1) = C(t)x(t) + D@)w(t)

with input w, output z and state x. Suppose that its system matrix

_ (A@) B@)
5@ = <C(t) D(t))
is atime varying object which for any timeinstant r € R can be written as a convex combination of

the n system matrices Sy, ..., S,. This means that there exist functionso; : R — [0, 1] such that
for any timeinstant r € R we have that

S@t) =Y a;(t)S;

j=1

_(Aj Bj .
S-’_(Cj Dj)’ ji=1..., n

where 27:1 aj(t) =1land



5.1. PARAMETRIC UNCERTAINTY DESCRIPTIONS

are constant system matrices of equal dimension. In particular, thisimplies that the system matrices
S(t), t € R belong to the convex hull of S1,..., S,,i.e,

S(t) € co(S1, ..., Sy, t e R.

Such modelsare called polytopic linear differential inclusionsand arisein awide variety of modeling
problems.

The LMI toolbox in MATLAB provides routines to represent such models and to perform time simu-
lations with models of thistype. See the routines

| tisys toconvertastate space model to a system matrix
Itiss  toconvertasystem matrix to a state space model
sinfo  toextract inquiries about system matrices

spl ot to plot characteristic responses of systems

psys to define a polytopic model

psi nf o toextract inquiries about polytopic models

pdsi mul to simulate time responses of polytopic models.

See the help information of these routines for more specific details on their usage.

5.1.2 Affine parameter dependent systems

Models of physical systems are often expressed in terms of state space systems in which the compo-
nents of the state variable represent a physical quantity. In these models uncertainty about specific
parameters is therefore often reflected as uncertainty in specific entries of the state space matrices
A,B,C,D. Letp=(p1,..., p,) denotethe parameter vector which expresses the uncertain quan-
tities in the system and suppose that this parameter vector belongs to some subset  C R”. Then
the uncertain model can be thought of as being parametrized by p € & through its state space

representation
x\ _ (A(p) B(p)\ (=x
<Z>_(C(p) D(p)) <w> (5.1.1)

One way to think of equations of this sort isto view them as a set of linear time-invariant systems as
parametrized by p € . However, if p istime, then (5.1.1) defines alinear time-varying dynamical
system and it can therefore also be viewed as such. If components of p aretime varying and coincide
with state components then (5.1.1) is better viewed as a non-linear system.

Of particular interest will be those systems in which the system matrices affinely depend on p. This
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5.2. ROBUST STABILITY FORAUTONOMOUS SYSTEMS

means that

A(p) = Ao+ p1A1+...+ prAy
B(p) =Bo+ p1Bi+ ...+ puBy
C(p)=Co+ p1C1+ ...+ puCy
D(p) = Do+ p1D1+ ...+ puDn

or, written in a more compact form

S(P) = SO+P151+ ~--+ann

S(p) = (A(p) B(P))

where

C(p) D(p)
isthe system matrix associated with (5.1.1). Wecall these modelsaffine parameter dependent models.

In MaTLAB affine parameter dependent systems are represented with the routines psys and pvec.
Asan example, for n = 2 and a parameter box

P = {(p1. p2) | p1 € [P, pT*], po € [pI", pT=])
the syntax is

af fsys = psys( p, [sO, s1, s2] );
p = pvec( 'box', [plmn plmax ; p2mn p2max]);

where p isthe parameter vector whose j-th component ranges between p}“i” and p?“ax. Seealsothe
routines

pdsi mul  for time simulations of affine parameter models
af f 2pol  to convert an affine model to an equivalent polytopic model.
pvi nfo  toinquire about the parameter vector.

5.2 Robust stability for autonomous systems

An important issue in the design of control systems involves the question as to what extent the
stability and performance of the controlled system is robust against perturbations and uncertainties
in the parameters of the system. In this section we consider the linear system defined by

&= A@)x (5.2.1)

where the state matrix A(8) isafunction of areal valued parameter vector § = col (81, .. ., &) € RX.
Let X = R" bethe state space of thissystem. If you like, you can think of this (autonomous) system
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5.2. ROBUST STABILITY FORAUTONOMOUS SYSTEMS

as a feedback interconnection of a plant and a controller. We will analyze the robust stability of the
equilibrium point x* = 0 of this system. More precisely, we analyze to what extent the equilibrium
point x* = Oisasymptotically stablewhen § variesin aprescribed set, say A, of uncertain parameters.

There are two particular cases of this robust stability problem that are of special interest.

1. the parameter vector § is afixed but unknown element of a parameter set A C R¥.

2. the parameter vector § isatime varying function § : R — R* which belongs to some set A of
functions which map R to R¥. The differential equation (5.2.1) isthen to be interpreted in the
sensethat 25 (1) = A(8(1))x(1).

The first case typically appears in models in which the physical parameters are fixed but only ap-
proximately known up to some accuracy. Note that for these parameters (5.2.1) defines a linear
time-invariant system. The second case involves time-varying uncertain parameters. For this case
one can in addition distinguish between the situations where A consists of one element only (known
time varying perturbations) and the situation where A is a higher dimensional set of time functions
(arbitrary timevarying perturbations). Robust stability against time-varying perturbationsisgenerally
amore demanding requirement for the system than robust stability against time-invariant parameter
uncertainties. This, because 1 is obviously a special case of 2. We will mainly consider the general
case of time-varying parametric uncertainties in the sequel.

Remark 5.1 We emphasizethat in the case of constant uncertain parameters, the system x = A(8)x
isasymptotically stableif and only if the eigenvalues of A(8) liein the open left-half complex plane
for all admissible perturbations. However, such a test for stability does not hold for time varying
systems. In particular, for time-varying perturbations it is not true that the asymptotic stability of
x() = A(S())x(t) is equivalent to the condition that the (time-varying) eigenvalues A(A(5(z)))
belong to the stability region C~ for al admissible perturbations 5 (-).

5.2.1 Quadratic stability

A sufficient condition for x* = 0 to be an asymptotically stable equilibrium point of (5.2.1) is the
existence of a quadratic Lyapunov function

Vix)= xKx

with K = KT > 0 such that
dV(x(®))
=<
dt
along state trajectories x of (5.2.1) that originate in a neighborhood of the equilibrium x* = 0.

1% 0

Definition 5.2 (Quadratic stability) The system (5.2.1) is said to be quadratically stable for per-
turbations A if there existsamatrix K = K ' > 0 such that

AGBM) 'K +KAGB®) <0
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5.2. ROBUST STABILITY FORAUTONOMOUS SYSTEMS

for al perturbations s € A.

Interpretation 5.3 If the system (5.2.1) is quadratically stable for perturbations A then V(x) =
x T Kx is a quadratic Lyapunov function for (5.2.1) for all § € A. See Chapter 3 for details on
Lyapunov functions. By the Lyapunov theorem (Proposition 3.3 in Chapter 3), the existence of
a quadratic Lyapunov function implies that the equilibrium point x* = 0 is asymptotically stable.
Quadratic stability for perturbations A istherefore equival ent to the existence of aquadratic Lyapunov
function V(x) = x " Kx, K > 0such that

dve) _

T [AG@)TK + KAGB®1)]x <0

foral s € A.

Note that in general quadratic stability of the system for an uncertainty class A places an infinite
number of constraints on the symmetric matrix K . It isthe purpose of this section to make additional
assumptions on the way the uncertainty entersthe system, so asto convert therobust stability problem
into a numerically tractable problem.

5.2.2 Quadratic stability of affine models

Suppose that the state matrix A(§) is an affine function of the parameter vector §. That is, suppose
that there exist real matrices Ao, ... Ay adl of dimension n x n such that

A() = Ao+ 81()A1+ ... + 6 (1) Ax

foral § € A. Thisisreferred to as an affine parameter dependent model. Note that these do not
impose restrictions on the rate of changesin the parameters, i.e., arbitrary fast time variations in the
parameters are allowed.

Suppose that the uncertain parameters §;(¢), j = 1,...,k, t € R assume their valuesin an interval
8j(r) €18, 6,1

This means that the uncertainty of each independent parameter is assumed to be bounded between
two extremal values. Define the set of corners of the uncertainty region as

Ao:=1{8=(61,....8) | 8, €8;,8;}j=1,....k} (5.2.2)

and observe that this set consists of afinite number of elements. In particular, we observe that in this
case the uncertainty set A eguals the convex hull of Ag, that is, A = co(Ap).

Proposition 5.4 If (5.2.1) is an affine parameter dependent model where A = co(Ap), then it is
quadratically stableif and only if thereexists K = K T > 0 such that

AB®)TK+KA@®) <0
for all § € Ag.
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5.2. ROBUST STABILITY FORAUTONOMOUS SYSTEMS

Proof. The proof of thisresult isan application of Proposition 1.19 in Chapter 1. Indeed, fix x € R”
and consider the mapping fy : A — R defined by

fx(®) :=xT[AG@) K + KAG®))]x.

Thedomain A of this mapping isaconvex set and by definition A = co(Ag). Further, since A(S) is
an affine function of § it followsthat f,(§) isaconvex function of 8. In particular, Proposition 1.19
(Chapter 3) yields that f,(8) < Oforal § € A if andonly if f,(§) < Oforal § € Ag. Sincex is
arbitrary it follows that

AG() K + KAGB(®t)) <0, seA

if and only if
AGBM) K + KA(S(1)) <0, 3 € Ao

which yields the result. [ |

Obviously, theimportance of thisresult liesin the fact that quadratic stability can be concluded from
afinite test of matrix inequalities whenever Ag consists of afinite number of elements. In that case,
the condition stated in Proposition 5.4 is afeasibility test of a (finite) system of LMI’s.

5.2.3 Quadratic stability of polytopic models

A second case of interest amounts to considering uncertainty defined by convex combinations of the
form
AB@) = a1(t)A1 + ap () Ag (5.2.3)

where o () > 0 and Z';.:loej(t) = 1foral: € R. Here, Ay, ..., A, are fixed real matrices of
dimension n x n and the «; are to be interpreted as coefficients of a convex decomposition of the
uncertain time-varying matrix A(8(z)) over the set of vertices (Ay, ..., Ag), thatisforal é§ € A and
t € R we assume the existence of (time-varying) coefficients o (r) > 0 with Z’;zl o () = 1such
that (5.2.3) holds. We refer to such a model as a polytopic model. The state evolution matrix of a
polytopic model istherefore equivalently specified as

A(5(t)) € cO(Aq, ..., Ap)

for all time-varying perturbations§ € A. In particular, these polytopic models do not impose restric-
tionson therate of changesin the parameters, i.e., arbitrarily fast time variationsin the parametersare
allowed. The main result concerning quadratic stabilization of a class of uncertain polytopic models
isasfollows.

Proposition 5.5 If (5.2.1) isapolytopic parameter dependent model where A(§(2)) € co(Aq, ..., Ag)
for all § € A thenitisquadratically stableif and only if there exists K > 0 such that

AJK+KAj <0
forall j=1,...,k.
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5.3. PARAMETER DEPENDENT LYAPUNOV FUNCTIONS

Instead of proving Proposition 5.5 it ismore useful to understand the rel ation between Proposition 5.4
and Proposition 5.5. In fact, the class of affine models as introduced in the previous subsection can
be converted to a class of polytopic models. To seethis, suppose that themap A : A — R"*" with

A:z{(Sl,...,Sk) | §; €[

8,81 j=1....k) (5.2.4)

is affine. Let Ag be the set of corners as defined in (5.2.2). Then Ag has 2% elements and since
A = co(Ag) we have

A(Co(Ap)) = A(A) ={A(d) | 6 € A} =co{A(d) | & € Ao} = CO(A(Ap)).

The ‘corner elements’ § € Ag in the parameter space are mapped by A onto a set of vertices A(S),
8 € Ag of apolytopic model. In other words, the affine model X = A(8)x withd € A = co(Ap) can
equivalently be viewed as a polytopic model where A(8) € co(A(Aop)).

5.3 Parameter dependent Lyapunov functions

The main disadvantage in searching for one quadratic Lyapunov function for a class of uncertain
models is the conservatism of the test to prove stability of a class of models. Indeed, the test of
quadratic stability does not discriminate between systems that have slow time-varying parameters
and systems whose dynamical characteristics quickly vary in time. To reduce conservatism of the
quadratic stability test we will consider quadratic Lyapunov functions for the system (5.2.1) which
are parameter dependent, i.e., Lyapunov functionsV : X x A — R of theform

Vix,8) :=x'K(@)x

where the Lyapunov matrix K (8) is allowed to dependent on the uncertain parameter §. More
specifically, we will be interested in Lyapunov functions that are affine in the parameter 3, i.e.,

K@) =Ko+ 66 Ki+...4+ 68K
where Ko, ..., K; arereal matrices of dimensionn x n and § = col(éy, ..., 8;). Clearly, with
Ki=Ky=...=K;=0

we are back to the case of parameter independent quadratic Lyapunov functions as discussed in the
previous section.

Definition 5.6 (Affine quadratic stability) Thesystem (5.2.1) iscalled affinely quadratically stable
if there exists matrices Ky, . .., K such that

K@) =Ko+68K1+...5r,Ky >0 (5.3.1a)
T dK (8)
A(S) K(G)+ K(6)AG) + T <0 (5.3.1b)

foral § € A.
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Interpretation 5.7 The affinefunction K (§) which satisfies (5.3.1) for all § € A definesaquadratic
Lyapunov function
Vi(x,8) =x' K(@©)x

for the system (5.2.1). Indeed, from (5.3.1) weinfer that V (x, §) > Ofor al x # 0 and

V) _ v

dt dt

dK (§
(A(S)TK(S) + K(8)A(5) ( )> x<0
for all non-zero x so that the equilibrium point x* = 0 is (globally) asymptoticaly stable if the
conditions (5.3.1) are satisfied.

Remark 5.8 Asin the previous section, we emphasize that the conditions (5.3.1) impose in general
an infinite number of constraints on the matrices Ko, ..., K.

Givenasystem (5.2.1) with aset A of uncertain parametersthe affine quadratic stabilization problem
therefore amounts to finding matrices Kj, ... K; such that the conditions (5.3.1) are satisfied. In
solving this problem we will distinguish between the two cases of time-invariant and time-varying
uncertainty descriptions as introduced in section 5.2.

5.3.1 Time-invariant uncertainties

If the uncertainty set A ¢ R¥ contains constant uncertain parameters then obviously the Lyapunov
matrix K (8) does not vary in time, so that for any § € A we have that

dK
() -0
dt

in (5.3.1b). We can therefore guarantee affine quadratic stability of thesystem x = A(§)x withé € A
if we can find matrices Ky, . . ., K such that (5.3.1a) and

A TK(S) + K(8)A®) <0

holdfor al § € A. Let theuncertainty set A again be aconvex set asdefined in (5.2.4) and let Ag be
the corresponding set of vertices as defined in (5.2.2). Note that the expression

L) := AG)TK () + K(8)A(S)

isin general not affinein  not even when A isan affine mapping. Asaconsequence, for fixedx € R”,
thefunction f, : A — R defined by

f(@®) :=xTL(©)x (53.2)

isin general not convex so that the negativity of thefunction f, at A isnot equivalent to its negativity
at the vertices Ag of A.
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5.3. PARAMETER DEPENDENT LYAPUNOV FUNCTIONS

To achieve that f, is a convex function (for any x € R”") we will impose additional constraints.
Suppose that both the system matrix A(§) and the Lyapunov matrix K (§) are affinein §. Expanding
L(5) thenyields

k k k k
L) =[Ao+ ) _8;A;1"[Ko+ ) 8;K;jl+[Ko+ Y 8;K;jl[Ao+ ) 8;A,l
j=1 j=1 j=1 j=1
k
= A Ko+ KoAo + Zaj[AJTKo + KoAj + AJ K + K Aol

j=1
k -1 k
+Y Y SSA K+ KjAi+ AT K + KiAjl+ ) S5ATK; + KjAj].
j=li=1 j=1

Now, let x € R" befixed and consider the function f, asdefinedin (5.3.2). Thenfor any § € A this
function takes the form

k koj—1 k
Sfx(8) = co+ ZSJCJ' + ZZ&'(S/‘C,'/ + ZSJZ-dj
j=1 j=1li=1 j=1
where co, ¢j, ¢;; and d; are constants. A sufficient condition for the implication

{fx(8) <Ofordlé e Ag} = {fx(8) <Oforalése A}

isthat f,(81,...,8;,...,8¢) isconvex in each of its arguments §;, j = 1, ..., k. Thisisthe case
when
82fx TraT 0
dj = 552 ) =x [Aj K;i+KjAjlx >

J
for j =1,..., k. Sincex isarbitrary, we obtain that

T .
AjKj+KjAjZO, j=1 ...k

isasufficient condition to infer the negativity of f, over the uncertainty set A from the negativity of
fx athevertices Ag of A. Thisleadsto the following main result.

Proposition 5.9 If (5.2.1) is an affine parameter dependent model and A C R is the uncertainty
set defined in (5.2.4) then the system x = A(§)x, § € A isaffinely quadratically stable if there exist
real matrices Ko, . .., Kj such that

AB)TK () + K(§)A(S) < Oforall § € Ag (5.3.39)
K(8) > Oforall § € Ag (5.3.3b)
AjKj+KjAj=0forj=1..k (5.3.3c)

Here, A(8) = Ao+ Y5_;8;A; and K (8) = Ko+ Y_5_; 8;K ;. Moreover, in that case V (x, ) :=
x T K (8)x isa quadratic parameter-dependent Lyapunov function of the system.

113
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Proof. It sufficesto prove that (5.3.3) implies (5.3.1) for all § € A. Let x be anon-zero fixed but
arbitrary element of R”. Since K (8) isaffinein §, the mapping

§— x K(&)x

with$ e A isconvex. Consequently, x ' [K (8) — I']x islarger than zerofor all § € A if itislarger than
zerofor all § € Ag. Asx isarbitrary, thisyields that (5.3.1a) holdsfor al § € A whenever (5.3.3b)
holds. Since for time-invariant perturbations dK (§)/dt = 0 it now suffices to prove that (5.3.33)
and (5.3.3c) imply that (5.3.1b) holds for al § € A. This however, we showed in the arguments
preceding the proposition. [ |

Interpretation 5.10 Proposition 5.9 reduces the problem to verify affine quadratic stability of the
system (5.2.1) to afeasibility problem of a(finite) set of linear matrix inequalities. Thelatter problem
isanumerically tractable one and is readily implemented in the LMI toolbox.

5.3.2 Timevarying uncertainties

We conclude this section with a result on robust stability of the system (5.2.1) for time-varying
parameters. Let the uncertainty set A be defined as
A= {(81,...,8k) | wherefor j =1...,k:4§; : R — Risdifferentiableand for all 7 € R,
8;(1) €8, 5;1, andd;(1) e [Aj,ij]}. (5.3.4)

This means that we assume the uncertain parameters to have bounded variation and bounded rate of
variation. We further introduce the vertex sets

o= {06150 18, € 18,5} ]
Aoi= {0 k) 12y € G |

Thus Ag representsthe vertices of the convex hull in which the uncertain parameterstake their values,
whereas Ag isaset of vertices whose convex hull represents the admissible rates of variation of the
parameters.

Remark 5.11 There are two extreme cases of uncertainty sets (5.3.4) worth mentioning. Firstly, if
therate of variation of the uncertain parameter §; isset to zero, §; representsaconstant, time-invariant
perturbation as treated in the previous section. If all perturbations are known to be time-invariant
then; = Aj =0forj=1,...,kinwhichcase Ag becomesasingleton. Secondly, arbitrarily fast
perturbations of §; are obtained by putting 2 ; = —oo and ; = oo.

] The reason for considering this type of uncertainty sets lies in the fact that the last term in the
left-hand side of (5.3.1b) can be evaluated exactly whenever the Lyapunov matrix K (8) is affinein
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8. Specifically, if K (8) isaffinein § weinfer that

dK () . . .
T:SlKl—F...—}—SkKk:K((S)—Ko

which is an affine function in §. The main result is now as follows.

Proposition 5.12 If (5.2.1) is an affine parameter dependent model and A is the uncertainty set as
defined in (5.3.4) then the systemx = A(8)x, § € A isaffinely quadratically stableif there exist real
symmetric matrices Ko, . .., K; such that

AB)TK(©S) + K(S)A®) + K(\) < Koforall § € Agand A € Ag (5.3.5a)
K@) > Iforall § € Ag (5.3.5h)
AlKi + KiA; > 0fori=1,...,k (5.3.50)

Here, A() = Ag + Z’;Zl 8;A; and K (8) = Ko + Z']le 8K ;. Moreover, in that case V (x, §) :=
x T K (8)x isa quadratic parameter-dependent Lyapunov function of the system.

Proof. The proof of this proposition is basically a generalization of the proof of Proposition 5.9 to
the time-varying case. First fix A € R¥. Then asimilar argument asin the proof of Proposition 5.9
yields that (5.3.5) implies

K@) >0
A TK(@S) + KGB)AGB)+ KAL) — Ko <0
foral § € A. Since K () isaffinein A and this last inequality holds for any A € A we conclude
from the definition of A that (5.3.5) implies
K@) >0
AG) K@)+ K©B)A@) + K@) — Ko <0

forall 5 € A. Now usethat K (§) — Ko = dK (8)/dt to conclude that (5.3.1) holdsfor all § € A
which implies the affine quadratic stability of the system. [ |

Interpretation 5.13 Proposition 5.12 reduces the problem to verify affine quadratic stability of the
system x(t) = A(8(¢))x(¢) with time-varying perturbations (5.3.4) to afeasibility test of afinite set
of LMI's.

Remark 5.14 It is interesting to compare the numerical complexity of the conditions of Proposi-
tion 5.9 with the conditionsmentioned in Proposition 5.12. If the uncertainty vector § isk-dimensional
then the vertex set A has dimension 2 so that the verification of conditions (5.3.3) requires afeasi-
bility test of

2+ 2 +k
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linear matrix inequalities. In this case, also the vertex set Ag has dimension 2 which implies that
(5.3.5) requires afeasibility test of

2% 4k p =442k 4k

linear matrix inequalities.

5.3.3 Some softwar e aspects

In MaTLAB both affine and polytopic models are implemented with the routine psys. Withk = 2
the syntax is

 af f rodel psys( pv, [SO, S1, S2] ) forthespecification of affine modelsand

* pol nodel psys( [S1, S2] ) forthe specification of polytopic models.
Here, pv isaparameter vector which is supposed to be specified by the routine pvec, i.e.,

pv = pvec(’ box’, [dlmi n dlmax; d2mn d2max]);

implements the ranges of the uncertain parameters. SO, S1 and S2 are system matrices which are
supposed to be defined by expressions of the form

S0 = Itisys(A0, BO, C0, DO, EO);
S1 = Itisys(Al, Bl1, Cl1, D1, El);
S2 = Itisys(A2, B2, C, D2, E2);

where (A, B;, C;, D;, E;) define the state space parameters of the model*

Ejx =Ajx + Bjw; z=Cjx+Djw. (5.3.6)

Remark 5.15 The presence of the E matrix in the system representations of the LM toolbox can be
pretty disturbing. In particular, an affine combination of models of theform (5.3.6) withj =0, ..., k
resultsin a model

Ex = Ax + Bw; z=Cx+ Dw

1The matrix E ;j inthe state space descriptions fagilitates the handling of descriptor systemsinthe LMI toolbox. By default
the E-entries are put to the identity matrix if you omit the last argument.
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where

k
E=Eo+ ) 8Ej;
j=1

k k
A:A0+Z5jAj; B:BQ~I—Z§ij

j=1 j=1
k k

C=Co+) 8;C;i  D=Do+ Yy 8;Dj.
j=1 j=1

If E issupposed to beindependent of parameter variationsthen you needto explicitly set E1 = ... =
E, =0.

Information concerning the implemented models and parameter vectors can be retrieved via the
routines psi nf o and pvi nf o, respectively. The routine

af f 2pol

converts affine models to polytopic ones. The routine
pdsi mul

simulates time responses of polytopic models and the routine
quadst ab

tests the quadratic stability of the affine or polytopic models. With nodel denoting either the affine
system af f nodel or the polytopic system pol nodel , the syntax is

e quadst ab( nodel ) to verify the quadratic stability of nodel

« [t,K = quadstab(nodel) tocaculateaquadratic Lyapunov function V (x) = x ' Kx
for the class of models specified in nodel .

Parameter dependent Lyapunov functions can be cal culated with the procedure pdl st ab. Fork = 2
the syntax is

[t, Q0, QL, @] =pdl st ab( af f rodel )
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where af f nodel isasan affine model as specified above. This resultsin the parameter dependent
function

Q(8) := Qo+ 8101+ 6202
which defines the Lyapunov function
Vix,8) :=x' Q@) x
for the uncertain system af f nodel . Note that the LMI toolbox therefore computes the inverses of

our Lyapunov function K (§). For more details on the software we refer to the corresponding help
filesin the LMI toolbox.

5.4 EXxercises

Exercise 1

Give aproof of Proposition 5.5.

Exercise 2

Time-invariant perturbations and arbitrary fast perturbations can be viewed as two extreme cases of
time-varying uncertainty sets of the type (5.3.4). (See Remark 5.11). These two extreme manifesta-
tions of time-varying perturbations reduce Proposition 5.12 to two special cases.

1. Show that the result of Proposition 5.9 is obtained as a special case of Proposition 5.12 if

Aj=2j=0; j=1... k.

2. Show that if
= —00, ijzoo; j=1 ...,k
then the matrices Ko, . . . , K satisfying the conditions of Proposition 5.12 necessarily satisfy

Ki=...=K;=0.

Thelatter property impliesthat with arbitrary fast perturbations the only affine parameter-dependent
Lyapunov matrices K (§) = Ko + Z’;Zl ;K ; are the constant (parameter-independent) ones. Itis
in this sense that Propostion 5.12 reduces to Proposition 5.4 for arbitrarily fast perturbations.
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Exercise 3

Reconsider the suspension system of Exercise 3 in Chapter 4. Suppose that the road profile go = 0
and the active suspension force F = 0. Let k = 50000 and » = 5000. The suspension damping isa
time-varying uncertain quantity with

bo(r) € [50 x 10° — b, 50 x 10> +b], >0 (5.4.1)
and the suspension stiffnessis a time-varying uncertainty parameter with
ko(t) € [500 x 10° — k, 500 x 10° + k], > 0. (5.4.2)

Let

be the vector containing the uncertain physical parameters.

1. Let x = col(q1, g2, 41, g2) denote the state of this system and write this system in the form
(5.2.1). Verify whether A(8) is affine in the uncertainty parameter §.

2. UseProposition 5.4 to verify whether this systemis quadratically stable. If so, giveaquadratic
Lyapunov function for this system.

3. Cdlculate vertex matrices Aq, ..., Ax such that
A(8) € CO(A1, ..., Ap)
for all § satisfying the specifications.
4. Suppose that b, and k; are time-varying and that their rates of variation satisfy
|ba| < B (54.39)
lko| < & (5.4.3b)

where 8 = 1 and k = 3.7. Use Proposition 5.12 to verify whether there exists a parameter
dependent Lyapunov function that proves affine quadratic stability of the uncertain system. If
so, give such a Lyapunov function.

Exercise 4

In Exercise 5 of Chapter 3 we considered the batch chemical reactor where the series reaction

A, g,

takes place. k1 and k» are the kinetic rate constants of the conversions from product A to B and from
product B to product C, respectively. We will be interested in the concentration Cp of product B.
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. Show that C satisfiesthe differential equation C g + (k1 +k2)Cp +k1k2Cp = 0 and represent
this system in state space form with state x = col(C4, Cp).

. Show that the state space system is of the form (5.2.1) where A is an affine function of the
kinetic rate constants.

. Verify whether this system is quadratically stablein view of jointly uncertain kinetic constants
k1 and k2 intherange[.1, 1]. If so, calculate a Lyapunov function for the uncertain system.

. At time r = 0 the reactor is injected with an initial concentration C49 = 10 (mol/liter) of
reactant A while the concentrations Cz(0) = C¢(0) = 0. Plot the time evolution of the
concentration Cg of reactant B if

k1(t) = 1 —0.9exp(—1); ka(t) = 0.1+ 0.9exp(—1t)
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Chapter 6

Analysis of input-output behavior

6.1 Basic notions

The main concern in control theory is to study how signals are processed by dynamical systems and
how this processing can be influenced to achieve a certain desired behavior.

For that purpose one has to specify the signals (time series, trgjectories) which are of interest. This
is done by deciding on the set of values which the signals can take (such as R") and on the time set
on which they are considered (such asthe full time axis R, the half axis [0, co) or the corresponding
discrete time versions Z and N).

A dynamical system is then nothing but a mapping that assigns to a certain input signal an output
signal. Very often, such amapping is defined by a differential equation with afixed initial condition
or by an integral eguation, such that one considers systems or mappings with a specific description
or representation.

The first purpose of this section is to discuss stability properties of systemsin the general setting. In
asecond step we specify the system representations and investigate in how far one can obtain refined
results which are amenable to computational techniques.

Note that we take a specialized point of view by considering a system as a mapping of signals. It
is not very difficult to extend our results to a more general setting by viewing a system as a subset
of signals or, in the modern language, as a behavior. Note that this point of view has been adopted
also inthe older literature on input-output stability where systems are relations instead of mappings.
Obvioudly, if thereisno clear cause-effect between signals, this latter viewpoint is more appropriate.

To be concrete let us now specify the signal class. We denote by L” the set of all mappings x :
[0, c0) — IR" that are L ebesgue-measurable. Without bothering too much about the exact definition,
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one should recall that all piece-wise continuous signals are contained in L™,

For any x € L" one can calculate the integral in

o0
lxllz == /0 ()2t

of the signal x; ||x||2 is either finite or infinite. If we collect al signals with afinite value, we arrive
at the space
LY :={xeL": |x|2 < oo}.

It can be shown that L’ is a linear space, that ||.||2 is a norm on L%, and that L’ is complete.
Mathematically, L% is aBanach space. |x||2 is often called the energy of the signal x.

Remark. If the number of components# of the underlying signalsis understood from the context or
irrelevant, we simply write L instead of L5.

Thereis an additional structure. Indeed, define the bilinear form
o0
(x,y) = /O x()y(1)dt

on LY x L%. Bilinearity just meansthat (., y) islinear for each y € L% and (x, .) islinear for each
x e LY. Itisnot difficult to seethat (., .) defines an inner product. Moreover, the norm on L% results
from thisinner product as ||x||§ = (x, x). Therefore, L} isin fact aHilbert space.

For any x € L% one can calculate the Fourier transform x which is afunction mapping theimaginary

axis CO into C" such that o

Y(iw)*x(iw) do isfinite.
—00
Indeed, afundamental resultsin the theory of the Fourier transformation on L,-spaces, the so-called
Parseval theorem, states that

/Oox(t)Ty(t) dt = 1 /OO T(iw)F(iw)do.
0 21 J

(Notethat the Fourier transformx has, infact, auniquecontinuationinto C°UCT thatisanalyticinC+.
Hence, X isnot just an element of L»(CP, C") but even of the subspace H>(C*, C"), one of the Hardy
spaces. Indeed, one has L»(C2, C") = Ho(C~, C") + Ho(Ct, C"), the sum on theright is direct,
and the two spaces are orthogonal to each other. This corresponds viathe Payley-Wiener theorem to
the orthogonal direct sum decomposition Lo(R, C*) = La((—o00, 0], C*) + L2([0, c0), C"). This
isonly mentioned for clarification and not required later. The beautiful mathematical background is
excellently exposed in [29].)

Stability of systems will be, roughly speaking, related to the property that it maps any signal in Lo
intoasignal that isalso containedin Lo. Sincewe also need to deal with unstable systems, we cannot
confine ourselves to signals with finite L,-norm. Hence we introduce a larger class of signals that
have finite energy over finite intervals only.
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For that purpose it is convenient to introduce for each T > 0 the so-called truncation operator Py :
It assigns to any signal x € L" the signal Prx that isidentical to x on [0, T] and that vanishes
identically on (T, 00):

x(t) for re[0,T]

. n n -—
Pr:L —>L,(PTx)(t).—{ 0 for te(T,o0)

Note that L" is a linear space and that Py is a linear operator on that space with the property
Pr Py = Pr. Hence Pr isaprojection.

Now it is easy to define the space L5, It just consists of all signalsx € L" such that Prx hasfinite
energy foral T > O:
% ={xelL": Prx e L fordl T > 0}.

Hence any x € L%, hasthe property that

T
I Prxll2 =/0 llx(0)]12 dt

is finite for every T. (This is nothing but an integrability condition.) Note that || Prx|2 does not
decrease if T increases. Therefore, || Prx|2 viewed as a function of T either stays bounded for
T — o0, such that it converges, or it is unbounded, such that it diverges to co. We conclude for
x € Ly || Prx|l2 isbounded (i.e. there existsa K such that || Prx|2 < K foral T > Q) iff x is
contained in L. Moreover,

x € L5 implies |lx[l2 = lim || Prx]|2.
T—o0

A dynamical system S isamapping
S: L — L),

The system S is causal if
PrS(u) = PrS(Pru) fordl T >0, u € L%,

It iseasily seenthat Py S = PrS Py isequivalent to the following more intuitive fact: If u1 and u2
aretwo input signalsthat areidentical on [0, T'], Pru1 = Pru2, then Su; and Suz are also identical
on [0, T, PrS(u1) = PrS(up). In other words, the future values of the inputs do not have an effect
on the past outputs. This matches the intuitive notion of causality.

Our main interest in this abstract setting is to characterize invertibility and stability of a system.
Among the many possibilities to define stability of a system, two concepts have turned out to be of
prominent importance: the finite gain and finite incremental gain property of a system.

Definition 6.1 The Lp-gain of thesystem S : L, — L. isdefined as

PrS(u)
1Sle = supdET3WN2 o yk S0 Prula £ 0) =
| Prull2

= inf{y eR|Vue Lk, T>0: |PrSwllz < yllPrulla).
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If ||S]l2 < o0, S issaid to havefinite Lo-gain.

(Why does the equality in the definition of || S||2> hold?) Clearly, S hasfinite Lo-gain iff there exists
areal y > 0 such that

| PrS@)ll2 <yl Prullz foral T >0, u e L, (6.1.1)
If S hasfinite Lo-gain, we conclude
IS@)l2 < yllullz foral u e L. (6.1.2)

Hence, if theinput hasfinite energy, then the output hasfinite energy and the output energy isbounded
by a constant times the input energy. If S iscausal, the converseistrue: then (6.1.2) implies (6.1.1).
Indeed, causality implies || PrS(u)ll2 = || Pr S(Pru)|l2 < |S(Pru)l|l2 and (6.1.2) shows (since Pru
isin L’é) that |S(Pru)ll2 < y || Prull2. Combining both inequalities gives (6.1.1).

If S iscausal, we henceinfer
1S)ll2

I1Sll2 =
uely, ullz>0 Null2

The Lo-gain of S is the worst amplification of the system if measuring the size of the input- and
output-signals by their L»-norm.

For nonlinear systemsit is often more relevant to investigate how theincrement S(u1) — S(u2) relates
to the increment of the input signals u1 — uy. Indeed, one wishes to have the outputs close to each
other if the inputs are close what amounts to a certain continuity property. We arrive at the notion of
incremental L>-gain.

Definition 6.2 Theincremental Lp-gain of the system S : L, — L., isdefined as

| PrS(u1) — PrS(u2)l2
[IS1l2: := sup{ |ut,up € L,, T >0, | Prus — Pruzllp # 0} =
| Prug — Pruz|l2

=inf{y e R|VYuy,up € L5,, T > 0: [|PrS(u1) — PrSu2)ll2 < vl Prus — Pruzl2).

If |S]l2; < oo, S issaid to havefiniteincremental Lo-gain.
Similarly as before, the system S hasfiniteincremental L,-gain if thereexistsareal y > 0 such that
| PrS(u1) — PrSu2)ll2 < y || Prus — Pruz|2 fordl T >0, ug,uz € LY, (6.1.3)

Thisreveds
ISu1) — S(u2)ll2 < yllus — uzll foral uy,uz € L. (6.1.4)

If Siscausa, (6.1.4) implies (6.1.3). Moreover, for causa S, we have

1Slla = ap [1S(u1) — Su2)ll2

u1,u2€ly, |lur—u2|2>0 lug — uzll2
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If Sislinear, it is obvious that

[Sll2 = ISz

and, hence, S hasfinite L,-gainiff it hasfiniteincremental L,-gain. Only for nonlinear systems, the
two notions are different. Even for nonlinear S, on can related both concepts if §(0) = 0; then one
has

I1Sll2 < [IS1l2i

hence S hasfinite L-gain if it has finite incremental L,-gain. The converseis, in general, not true.
(Construct an example!)

In the remainder, stability of S will be mostly related to the property that S hasfinite L,-gain or finite
incremental Lo-gain.

All these concepts can be extended in literally the samefashionto all L ,-spacesfor 1 < p < co. Let
us briefly comment on p = oo sinceit will emerge later. The space L% is constructed on the basis of

[xlloc = €sSSUp,ollx(@)| for x e L".

(We don't discuss the exact definition of the essential supremum. For piece-wise continuous and
right-continuous signals x € L", the essential supremum is nothing but sup,..q [|x(¢)||.) Contrary to
what is often done in the literature, we use the Euclidean norm ||x(1)]|2 = x(¢)” x (¢) to measure the
size of thereal vector x(r) € R". Now L isdefined as

Ll :={xeL"||xllec < 00.}

It is well-known that L%, with the norm ||.||. defines a Banach space. The space L” , and the
Loo-gain or incremental Loo-gain ||S|leo OF [|Sloc; fOr asystem s : L%, — L., aredefined literally
as before, and similar properties hold true.

L et usmention afew modificationsor generalizationsin variousrespects. Assaid before, theextension
toall L,-spacesfor 1 < p < oo isstraightforward. The time-axis can be chosen as all nonnegative
integers to discuss discrete-time systems. A mixture of continuous- and discrete-time allows to
consider hybrid systems or systemswith jumps. Finaly, the set on which the signalstake their values
can be an arbitrary normed space; this allows to discuss infinite dimensional systems.

In addition, the stability concept used hereis one out of amultitude of possibilities. Often, it isonly
required that S maps L into L, without necessarily having afinite L>-gain. Indeed, thetheory can be
extended to general designer chosen stability properties that only obey certain (technical) axiomatic
hypotheses. We just include these remarks to stress that we somehow artificially confine ourselves
to pretty specific cases for reasons of space.
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20 <

Figure 6.1: Uncertainty feedback configuration

6.2 Robust input-output stability

6.2.1 A specific feedback interconnection

In robust control, one encounters systems that are affected by uncertainties (parametric variations,
unmodeled dynamics). In order to study the effects of uncertainties, one has to start with a structure
that captures how variations in the uncertainties affect the system to be investigated. Although one
could think of abroad range of such structures, the technique of * pulling out the uncertainties allows
to reduce many of these variants to one common setup that is represented in Figure 6.1.

Here, M isviewed asthenominal model and A capturesthe (varying) uncertainties. Both the nominal
system and the uncertainty are interconnected viafeedback. M is usually viewed as a fixed system,
whereas A isallowed to vary in acertain class A.

Typical examples include the case of linear time-invariant systems that are affected by additive or
multiplicative uncertainties. If looking at alargeinterconnection of such small uncertain components,
one arrives at structured uncertainties as they are considered in p-theory. The set A should hence
be seen as capturing both the nature of the uncertainty (linear/nonlinear, time-invariant/time-varying,
static/dynamic), their size (bounds on norm, gain or incremental gain) and their structure (block-
diagonal, full-block). We will not repeat how to pull out the uncertainties in specific feedback
interconnections what should have been presented in a basic course on robust control.

Having specified M and the class A, one of the central tasksis to characterize whether the feedback
interconnection of the stable systems M and A remains stable for all A € A. Let us nhow be more
specific by introducing the mathematical setup.

Here are the standing hypotheses.

126



6.2. ROBUST INPUT-OUTPUT STABILITY

Assumption 6.3 The mapping
M : L% — L., iscausal, of finite L,-gain, and linear.
The uncertainty set A isaset of systems
A: Lh, — L%, that are causal and of finite Lo-gain.
Moreover, it is star-shaped with star center O:
AeA= tA e A fordl r €[0,1].

Note that the third property impliesO € A; thisis consistent with viewing A as an uncertainty where
A = 0 isrelated to the unperturbed or nominal system. Recall that 1 — 7 A just definesalinein
the set of all causal and stable systems connecting O with A what justifies the terminology that A is
star-shaped with center O.

Let usfinaly stressthat linearity of M isnot crucial at all for the resultsto follow; they can be easily
extended with minor variations to nonlinear systems M.

For any A € A, we investigate the feedback interconnection in Figure 6.1 that is defined by the

relations <A14 __ﬂ(lg>:=<Jw)_<A§z>)=<?§). (6.2.1)

Here, the signals I;O are viewed as external inputs or disturbances, and ( lg ) constitutes the
0
response of the interconnection.

A first important property of the feedback interconnection is well-posedness: Does there exists for
each wo, zo aunique response w, z satisfying (6.2.1) such that the mapping

wo w
(=)~ (") 622

Secondly, one is interested in the stability of the feedback interconnection: If the interconnection
is well-posed, does the mapping (6.2.2) have finite Ly-gain or finite incremental L,-gain? If the
interconnection is stablefor all A € A, itissaid to be robustly stable.

is causal?

Thirdly, one might look at uniform robust stability: The interconnection is well-posed and robustly
stable, and the L»-gain or the incremental L,-gain of the mapping (6.2.2) is bounded by a constant
forall A € A. (Thelatter property just means that the (incremental) L»-gain is uniformly bounded
inNA € A)

It simplifies notations if we introduce the abbreviations

K+ k- . I —A
X, =L x =15+, 1M(A).:<M _1).
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Consequently, any signal x € X, is partitioned as x = lg ) and we note that the system £,(A)

captures both the subsystems M and A and the specific interconnection structure that we are con-
sidering. (M and A are asymmetrically entering the notation 4, (A) in order to stressthefact M is
fixed whereas A isalowedtovary in A.)

Recall that the loop is required to have a a unique response x to any external input xo: For each
xo € X, thereexistsauniquex € X, with £,;(A)(x) = xo. Mathematically, this smply amountsto
the mapping 4y (A) : X, — X, having aninverse £,,(A)~L. If thisinverseis, in addition, causal,
d(A) issaid to be well-posed.

Definition 6.4 {y(A) : X, — X, iswell-posed if it has a causal inverse.

Well-posedness can be often assured by standard results about the existence of solutionsof differential
equations. However, we will also provide simple explicit conditionson M and A that imply well-
posedness.

If we impose a certain stability property on M and A, the composed system Jf,,(A) shares this
stability property, whereas this is usually not true for the inverse £,,(A)~1. In stability theory, it
is hence of fundamental interest to find additional conditions to guarantee that this inverse indeed
sharesits stability propertieswith M, A, and 4, (A).

In these notes we obtain sufficient conditions for the following facts:

+ Under the hypothesis that J,;(A)~1 exists and is causal, we characterize that there exists ac
with |4 (A)~L| < cforal A € A; inparticular, any 4,,(A)~? then hasfinite Ly-gain.

« If dl systemsin A have finite incremental L»-gain, we characterize that £ ,,(A) does have a
causal inverse and that there exists a ¢ with [|4/(A)1|l2 < ¢ foral A € A; in particular,
any 4 (A)~1 has afinite incremental L»-gain.

It isimportant to observe the difference in these two characterizations. In the first scenario one has
to assume that the interconnection is well-posed, whereas in the second situation one can conclude
this property.

Our main god is to summarize many of the results that are available in the literature in two basic
theoremsthat are related to the two differing hypotheses and conclusions sketched above. Let usfirst
turn to a very simple auxiliary observation that simplifies the proofs.

6.2.2 An elementary auxiliary result

Suppose W and Z are arbitrary subset of the normed space X. Our god isto characterize that

[wl2 + lIz||?
lw — z||2
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remains bounded for all w € W, z € Z suchthat w # z. Thisimpliesthat W and Z can have at
most the vector 0 in common, and that the squared distance of any two vectorsis at least as large as
a constant times the sum of the squared norms of these vectors. If W and Z are subspaces, there are
very close relations to the gap or angle of these subspaces.

The desired characterization is provided in terms of a mapping X : X — R that is quadratically
continuous [24].

Definition 6.5 X : X — R isquadratically continuousif for every § > O thereexistsaos > 0 with

|Z(x1) — S(x2)| < osllx1 — x2/12 + 8llx2/1? foral x1,x2 € X.

Asatypical important example, let (., .) : X x X — R beany biadditive form that is bounded: there
existsao > 0such that

(x+y,.2) =2+ y+D=x )+, [yl <olxlliyl. (623
Then Z(x) := (x, x) isquadratically continuous. Indeed, we have
1=+ ) = ZE)| = 8lIxl2 = (v, ¥) + (x, ¥) + (¥, )] = 8l|x)1? <
<allyl®+20|xllllyll — 8llx[1? < osllyl?

with o5 := max{o + 201 — §¢2: t € R} suchthat o +20”’;—,” —8%; < o for || y|| # 0.

Lemma 6.6 Suppose X : X — R isquadratically continuous. If
Y(z)>0foral ze€Z
and if there existsan € > 0 such that
T(w) < —€ljw|? foral we W,
then one can find a ¢ > 0 (that only dependson ¥ and ¢) with

lwl® + Izl < ?|lw —z||? forall we W, z € Z. (6.2.4)

Proof. The proof istrivial: We have Je||w|? < S(z) — Z(w) — 3ellw|? < o¢/2llz — w||? and hence

2 _ 92 2
lwl* < —=llz — w|*.

€/2
In addition, we infer

O¢/2

2
6/2)||Z —w|”.

Izl12 < (lz — wll + [wID? < 2(lz — w|® + |w]?) < 2(1 +
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Hence (6.2.4) holdswith ¢ = /2 + 3‘3/2 : m

Note that the choice of the square of the norms in all these definitions is completely arbitrary and
only made for |ater, more concrete, applications. One can replace ||.||% everywhere by o(|.||) where
a : [0, 00) — [0, 0o) isany function that is monotone and for which there exists a constant «g > 0
with a(r1 + 2) < ap(a(t1) + a(t2)). The proof remains unchanged.

6.2.3 An abstract stability characterization

In this section we assume that £,,(A) iswell-posed for all A € A. Hence, 44(A)~! existsand is
causal. We intend to get criteria that this inverse admits a uniform bound on its Ly-gain. It is not
difficult to provide an abstract criterion on the basis of Lemma 6.6.

Theorem 6.7 Let = : L5™ — R be quadratically continuous. Suppose that for all A € A
. i A(z) l
Ly (A) iswell-posed and X p >0 forall zeLs. (6.2.5)
If there existsan e > O with
w
) ( M > < —¢llw|3 forall we L5, (6.2.6)

there exists a constant ¢ such that || £y (A) 1|2 < cfor all A € A.

Proof. Fixany A € A. Recal thatall t A areaso containedin A if t € [0, 1]. For any such 7 define
- wo k o TA@ . I

w

w
Dueto || ( Muw ) 15 = A+ IMID) w3 wehave —€ w3 < -5l ( Muw

to apply Lemma 6.6. Then (6.2.4) implies

(a0 (T Yz, ) - (49 )03

foral w € L5 and z € LL. Sincethe left-hand side bounds || ( f ) I3 from above, we arrive at

) 15 what allows

lxll2 < clldm(zA)(x)|2 foral x € X. (6.2.7)

If we pick xg € X and we know that x = £;(t A)~1(xp) iscontained in X (and not only in X.,), we
can conclude
4 (zA) " (x0)ll2 < cllxoll2- (6.2.8)
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Consequently, if 447(rA)~1 has finite L,-gain (such that it maps any vector xo € X into a vector
x € X), weinfer (6.2.8) for al xg € X. Thisimplies that the Ly-gain of £,;(t A)~1 is bounded by
the constant c:

I4pm(zA) 2 <e.

Note that ¢ only dependson X, ¢, || M ||2; it isindependent of the particular A or !

Let us now prove the following statement:

140 (oA |2 < 00 = 14y (tA) L2 < ¢ for |t — 10| < tel0,1]. (629)

clAll2’
Indeed, if 4 (toA)~1 hasfinite Ly-gain, we get || 4y (toA) L2 < c. Let us now take any xo € X
and set x = £ (tA)"L(xg). Weinfer

Lu(r0A)(x) = ( 0 oA ) () + L (T A) () = ( 0 oA ) (x) — xo.

Thisleads to

0 (r —10)A
0

I1Prallz = ||PT1M(roA)1[< 0 ) (Prx) = Prxolllz <

0 (t —w)A
scu(o( 0 )(PTX)||2+C||PTX0||2§
< cfr — 7ol [ Al Prxll2 +cll Prolz

and hence
A —clt —wlllAll2D I Prxll2 < cll Prxoll2 < cllxoll2.

Since the factor on the left is positive for al t that satisfy the hypothesis in (6.2.9), we infer that
|| Prx|l2 is bounded what implies x € X. As argued above, we obtain (6.2.8), and since xo was
arbitrary, we get || 4a(tA) L2 < c.

Let usnow set §; := min{1, j/(2c||A|l2)} suchthat §; € [0, 1] and |[§; — §;_1] < 1/(cl|A[l2). For
8o = 0,wehave || 4, (80A) 1|2 < cosuchthat ||4(51A) || < c. Inthisway we can successively
conclude that ||1M(8jA)‘1||2 <cforall j. Since; = 1for some j, the proof is finished. [ |

Theorem 6.7 is applied as follows. For the given system M and for the set of uncertainties A, one
tries to find a quadratically continuous X that guarantees (6.2.5) and (6.2.6). Then we can conclude
that £, (A)~1 admits a uniform bound on its L>-gain. In more concrete situation, we will later see
how the search of such amapping X can be performed by solving an LMI problem.

However, one can al so changethe viewpoint: Givenaquadratically continuous mapping X, definethe
class of uncertainties A as those that satisfy (6.2.5). Then al systems that have the property (6.2.6)
cannot be destabilized by this class of uncertainties. Classical small-gain and passivity theoremsfall
in this class as will be discussed Section 6.3.

Remarks.
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« To characterizethat £, (A) 1 hasfinite L,-gain for afixed A requiresthe stronger hypotheses
(Pr < AS) )) >0 foral zeLh, T>0
and, with somee > 0,
(Pr < A;”w )) < —¢||Prw|? foral weLs, T>0.

Thisresult is very easy to prove and, in fact, closer to what is usually found in the literature.

+ Theproof of thetheorem proceeds viaahomotopy argument: The L»-gain of f,(0) L isfinite.
Then oneprovesthat £, (A) 1 hasfinite L»-gain by showing that thegain || 44 (t A) 1| stays
below a constant ¢ and, hence, does not blow up if ¢ variesfrom 0 to 1.

Theline [0,1] > © — A can be replaced without difficulty by any continuous curve y :
[0, 1] — A connectingOand A asy (0) = 0, y (1) = A. Hence, instead of being star-shaped,
it sufficesto require that A contains 0 and is path-wise connected.

Note that all this is very similar to proving the usual Nyquist-based stability results for LTI
systems.

6.2.4 A characterization of well-posedness and stability

In the last section we required £/ (A) to have acausal inverse. In this section weintend to get rid of
this hypothesis. Asaprice to be paid, we have to assumethat all A have finite incremental L»-gain,
and we have to replace the second condition in (6.2.5) on ( AEZ) ) by the same on the increment

( A;zl) ) — ( AZZ) ) (If M isnonlinear, the same holds for (6.2.6) what is not pursued here.)

Instead of a bound on the Lo-gain of £,,(A)~1 we then obtain a bound on the incremental L»-gain
of this mapping.

If both M and A arelinear but otherwise still general, both criteriacoincide. Hence, only for nonlinear
uncertainties A we require a stronger hypotheses to get to the desired stronger conclusions.

Technically, we exploit the fact that X = L is a Banach space and we apply Banach'’s fixed point
theorem to derive well-posedness.

Theorem 6.8 Let = : L5™ — R be quadratically continuous. Supposethat all A € A have finite
incremental L,-gain and satisfy

> ( A(z1) — A(z2)

0 for all LL. 6.2.10
22 )z oral zi1,z2€ Ly ( )

If there exists an ¢ > 0 with (6.2.6), then 1,,(A) does have a causal inverse and there exists a
constant ¢ with || £/ (A) 1|2 < cforall A € A.
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Proof. Similarly as in the proof of Theorem 6.7 we pick A € A, t € [0, 1] and define W :=
w . k . TA(z1) — TA(z2)

{ Muw w e Ly}, Z = - 2o

6.6 and to infer from (6.2.4) that

w 2 TA(z1) —TA(Z2) \ 2 _ 2 w TA(z1) —TA(z2) \ 2
II(Mw)II2+|I( -2 )I|2§C|I<Mw)—< - 2o >|I2

foral w e L5 and z1, z2 € L),. Thisrelation leadsto

) : 21,22 € LL}. Again, we can apply Lemma

lx1 — x2l13 < Al dp(tA)(x1) — Iy (tA)(x2)]I5 foral x1,x2 € X.

Let ustemporarily assumethat £/ (tgA) : X — X withtg € [0, 1] hasaninverse. Thenwe conclude

14 (10A) " (y1) — Im(r08) (32115 < cPllyr — y2ll3 foral yi,y2 € X. (6:2.11)
It is essential to observe that ¢ on the right does does neither depend on A nor on t!

Now we take another T € [0, 1] that is close (we will specify how close) to 7p. To verify that
Iy (tA) : X — X hasan inverse amounts to checking that for al y € X thereisaunique x € X
satisfying 4 (t A)(x) = y. Let usnow bring in the mapping of which we know that it hasan inverse;
we rewrite the equation to

I (TA)(x) — I (T0A)(x) + Ly (10A) (x) = y.
Thisiseasily rearranged to the fixed-point equation
x = Iy () Ty — In(TA)(X) + Ly (10A) (x). (6.2.12)

Let us abbreviate
F(x) := I (108) 7y — (T A)(x) + Ly (10A) (x)).

Note that F maps X into X. We have reduced the original problem to the question of whether there
existsauniquex € X with F(x) = x, i.e, whether F hasauniquefixed pointin X. If X isaBanach
space, and if thereexistsa f < 1 with

|F(x1) — F(x2)|l2 < fllx1 — x2| foral xi1,x2 € X, (6.2.13)

Banach'’sfixed point theorem leads to the desired conclusion; it is then guaranteed that F' indeed has
exactly one fixed point. In our case, X is Banach. The only thing to be assured is (6.2.13). Using
(6.2.11), we arrive at

IF(x1) — F(x2)l15 <
< Ay — In(TA)(x1) + Iy (0A) (x1)] — [y — Ly (TA)(x2) + Ly (T0A) (x2)]1I3 <
< Plum(r0A) (x1) — Iy (TA) (xD)] + [ (10A) (x2) — Iy (TA) (x2)]113 <

<2 ( oo ) (en) + ( o o a ) ()IZ < ¥t — wl2AG) ~ A3 <

2 20 A 112 2 _ 2 20 A2 2
= clt —wl”lAll5l1z1 — 2202 = |t — wl7I[All5; lIx1 — x2l3.
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Hence

lto— 1| <
cllAllz

implies (6.2.13) with f = 2|t — 10/2||A||3, < 1. Then F has aunique fixed pointin X. Therefore,
Iy (tA) : X — X hasaninversethat satisfies, a posteriori, (6.2.11).

Obvioudly, £)/(0) : X — X does have an inverse. Therefore, we can successively conclude that
Iu(r;A) : X — X hasaninversesatisfying (6.2.8) for r; = min{1, j/(2c||All2)}, j =0,1,2, ...,
and henceaso for r = 1.

Sofar, wehaveshownthat £ (A) : X — X hastheinverse £3,(A)~1: X — X withbound ¢ onits
incremental Ly-gain. Itisasimple exerciseto provethat the causal mapping £,(A) : X, — X, then
also hasacausal inverse 4, (A)~1: X, — X, with the same bound ¢ on itsincremental L»-gain. m

Even if dealing with nonlinear uncertainties A, they often have the property A(0) = 0. Then we
infer that 4,7 (A)(0) = 0 such that the same must hold for itsinverse. Therefore, we have

1 (A) Y2 < 1 (D)2

and Theorem 6.8 also provides a bound on the L,-gain of the inverse.

Since Theorem 6.8 aso guarantees the existence of the inverse of {3 (A) and, therefore (Exercise
1),adsoof I — MA, wewill mainly build in the sequel on this result under under the additional

Assumption 6.9 All A € A havefiniteincremental L-gain and satisfy A(0) = 0.

We stress again that these properties are trivially satisfied if the uncertainties are linear.

6.3 Small-gain and passivity tests

Asanillustration, let us consider for a symmetric matrix IT the bilinear mapping
o
(x,y) = / x(0) Ty () dt (6.3.1)
0

on L5t Sincethismapping satisfies (6.2.3), T (x) := (x, x) isquadratically continuous. We assume
IT to be partitioned as

ST
according to the size of the signals w and z.

_ ( Q ; ) ¢ REHDXEAD) (6.3.2)

Let us make the specific choice

= ( _oI ?) X < Z) > = /Oooz(t)Tz(t) —w(®) w(r)dt.
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Obviously, the set of al causal uncertainties that satisfy (6.2.5) is given by all
causal A : Lj, — Lo, With ||A]2 < 1. (6.3.3)

We immediately arrive at the following classical small Lo-gain result.

Corollary 6.10 Suppose that, for all A with (6.3.3), 4)(A) has a causal inverse. If |[M|2 < 1,
there existsa ¢ such that || £ (A) 1|2 < ¢ for all A asin (6.3.3).

Similarly, the set of al causal uncertainties with (6.2.10) is nothing but all
causa A : Ly, — Lo, With ||All2 < 1. (6.3.4)

This leads us to the following standard small incremental L»-gain result.

Corollary 6.11 Suppose that |M|2 < 1. Then {,/(A) has a causal inverse, and there exists a ¢
with [|437(A) 1|2 < ¢ for all A satisfying (6.3.4).

_ 0 l-[ w _ 00 -
“—<%, D ) E( B )—/0 2 w(r)dt (6.3.5)

leads to the standard passivity tests for robust stability.

The choice

Corollary 6.12 Supposethere existsan e > 0 with

f ” wn) (Mw)(@t)dt < —e|lw||3.
0

» Let £,/(A) have a causal inversefor all causal A : Ly, — Ly, with
o
/ 2" A(z)(1)dt > 0.
0

Then there exists a ¢ such that || £/ (A) 1|2 < ¢ holdsfor all these uncertainties.

« The mapping 4, (A) has a causal inverse, and there exists a ¢ with || 47(A) || < ¢ for all
causal uncertainties A : Ly, — Lo, that satisfy

/0 [22(1) — 221" [A(z1) (1) — A(z2) ()] d1 = 0.

We have obtain with ease four classical resultsthat are usually formulated and proved independently.
Even better, the approach taken here allows much further reaching generalizations that can only be
partially addressed in these notes.
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Remark. The small-gain theorem for L, spaces can be recovered with the mapping

5 < . ) =/ 1z = w1 d
0

and with a(r) = ¢ instead of a(r) = 2 in Section 6.2.2. The details are only variations of what has
been presented and can be |eft as an exercise.

6.4 Integral quadratic constraints

6.4.1 Stability testswith integral quadratic constraints

In this section we assume that the uncertainties A are general but that z = Mw is defined with a
proper stable rational matrix M as

Ziw) = M(io)i(iw), ioe CO.
Recall that x denotes the Fourier transform of the signal x € Lo.

Instead of general quadratically continuous mappings, let us consider so-called integral quadratic
forms. Suppose IT : iw — Il(iw) is any (measurable) mapping that assigns to every iw € C° a
Hermitian matrix I1(iw) of dimension (k + 1) x (k + 1) that is bounded:

IM(iw)| < p fordl iwe CO.

(Note that we will consider in most cases mappings that are defined with a rational matrix valued
function T1(s); then it is just required that this rational matrix is Hermitian on the imaginary axis,
and that it has neither apolein C° nor at infinity such that it is proper.)

For any x, y € L5*" we can define with their Fourier transforms X, 3 the mapping

(x,y) = /00 X(iw) ' TIiw)yiw)dow

—00

which satisfies (6.2.3) with bound o = p.

Condition (6.2.6) then amounts to

/ w(iw)* ( M(Iiw) ) (i w) ( M(Iia)) ) wiw)dw < —%/ wiw) ' wiw)dw

—00

foral w e L’é. Thisisobviously implied by the frequency domain inequality (FDI)

I o I € . 0
<1\7[(ia)) ) M(iw) < Mo ) < _Z[ foral iw e C".
It is not required for our arguments and not difficult to see that the converse holds as well; both
characterization are in fact equivalent.
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Lemma 6.13 Suppose IT is a (measurable) bounded Hermitian valued mapping on C°. Then the
following two statements are equivalent:

o0 (o)
. / T(iw) ' Hiw)x(iew)do < —a/ X(iw)*x(iw)dw for all x € L.

—00 —00

e M(iw) < —al forall iw e CO.

The reason for this re-formulation: the frequency domain inequality is easier to check.

Now we get as immediate corollaries to Theorems 6.7 and 6.8 the following stability results using
integral quadratic constraints (IQC’s).

Theorem 6.14 SQupposethat, for all A € A, 43/(A) iswell-posed and that

/Oo < A@(w) ) M(iw) ( A)(iw) ) do >0 forall z e L), (6.4.1)
o0 Z(iw) zZ(iw)

If there existsan € > 0 with

I o I
< A//i(ia)) ) MGiw) < A?(ia)) ) < —¢l foral welR, (6.4.2)

thenthe Lo-gain of 4, 1(A) is bounded uniformly in A € A.

Theorem 6.15 Supposethat any A € A hasfinite incremental L-gain and satisfies

/°° ( AGD) (i) — A (iw) ) M(iw) ( Aie) B2 ) ) do20 (643

21(iw) — 22(iw) i) — 22(iw)

forallz1,z2 € L’z. Ifthereexistsane > Owith (6.4.2), then £, (A) iswell-posed, andtheincremental
Lo-gain of itsinverseis uniformly bounded in A € A.

Remarks.

» One should read A(Z)(la)) correctly Take z, let it pass through A to get the sgnal A(z),

take its Fourier transform A(z) and evaluate this Fourier transform at i  to obtain A(z)(la))
Therefore, the signal z with power distribution Z is mapped into the signal A(z) with power

distribution K(z\) (In general, of course, thereis no nice operation - such asthe multiplication
by atransfer matrix - that maps?z directly into A(z). However, sinceweonly transform signals,
no complication arises.)

The inequality (6.4.1) defined via I hence restricts how the power distribution of z can and

cannot be rearranged in Z(z\); (6.4.1) could be called a power distribution constraint. The
constraint (6.4.3) admits the same interpretation for increments.
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« Inprincipal, theinequality (6.4.2) iseasy to verify: onejust needsto plot thelargest eigenvalue
of the left-hand side over frequency and read of the maximum that this curve takes. Thiscould
be viewed as a generalization of plotting the largest singular values of a certain transfer matrix
to apply the small-gain theorem.

If TT is real-rational and proper, the Kalman-Yakubovich-Popov Lemma allows to reduce this
condition to the solvability of alinear matrix inequality; thisisthe reason why 1QC’s play such
prominent role in the LMI approach to robust control. We will elaborate on these points in
Section 6.6.

6.4.2 Thephilosophy for applying IQC’s

So far we have considered one quadratically continuous mapping ¥ and one IQC to characterize
stability. For small-gain and passivity conditions, this was sufficient to arrive at standard stability
results. However, if one has a more detailed picture about the uncertainty, one can often find more
than one |QC that are satisfied by the uncertainties.

For the purpose of illustration let us look at a simple example. Consider the structured nonlinear
uncertainties A : L), — L5 that are defined for fixed partitions

(where the signals z/ and w/ can have different sizes) with the causal mappings A; : Ly, — Lo,
A;j(0)=0,as
! A1(zh
w=A@, A(] : D= :
" A (™)
Furthermore, it is assumed that || A ;||; < 1 suchthat, aswell, [[Aj2 < 1.

Note that the set of all these uncertaintiesis star-shaped. Dueto ||Allz < 1, theincremental small-
gain theorem applies. Then | M|l < 1 implies that £,,(A)~! exists, is causal, and uniformly
incrementally bounded. However, thisalso holdsfor the much larger class of all uncertainties A with

IAll2; < 1, evenif they do not have the specific structure considered here.

Hencewe should find more | QC’ sthat provide away to capturethis structure. Motivated by p-theory,
we consider the |QC’s defined with the constant matrices IT given as

M= ( SQT Ii ) S=0, Q= diag(—ril. ... —rul), R = diag(ril.....rnl), rj > O (6.4.4)

where the sizes of the identity blocksin Q and R correspond to the sizes of the signals w/ and z/
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respectively. We infer

/°° < A(z1)(1) — A(z2) (@) >T o ( A(z1)(1) — A(z2) (@) ) di —
0 z1(8) — z2(1) z1(t) — z2(1)

= fo D —rillAj D) = AjDONP +rjllza(t) — z22() |2 dt =
j=1

- Z/o rillza®) — 2212 = 1A (zD)(1) — Aj(z2)®)[?]dt = 0
j=1

such that the incremental 1QC’s (6.4.3) hold for al uncertainties and for al IT.

We have found awhole family of 1QC’sfor our class of uncertainties, parameterized by the numbers
r;. If we just find among these infinitely many 1QC's one for which, in addition, the FDI (6.4.2)
holds, we conclude exactly the same stability properties of £,/ (A) as before.

Again, we stressthat all IQC's (6.4.3) must be satisfied by the uncertainties, but only for one IQC we
need to assure (6.4.2)! Hence, the more 1QC’s we find for the uncertainties, the more freedom we
haveif trying to fulfill the FDI and the better the chances are to verify robust stability.

Let usnow haveamore detailed look at (6.4.2) for the specific scalings (6.4.4). Theineguality simply
reads as R R
M(@iw)*RM(iw) — R < 0 foral w e RU {cc}. (6.4.5)

(Since we have replaced < —el by < 0, we have to include w = oo in the condition. Why?) The
goal isto find some R (structured asin (6.4.4)) that satisfies this FDI. It will turn out that the search
for R can be cast into an LMI problem.

In order to relate to w-theory, re-parameterize
R=D'D

with D inthesameclassasR. Then M (iw)* DT DM (iw)—DT D < Oisequivalentto || DM (iw)D~L| <
1if ||.|| denotes the maximal singular value for complex matrices. Therefore, (6.4.5) is nothing but

IDMD Yo <1 (6.4.6)

which isascaled Hy condition. Such conditions - possibly with frequency dependent scalings D
- appear in p-theory. Note, however, that the conclusions made in p-theory are usually only valid
for linear time-invariant uncertainties that admit a Fourier transform with suitable properties. Our
conclusions hold for amuch larger class of uncertainties since our proof was not based on a Nyquist
type argument in the frequency domain.

We have shown that we can replace | M ||, < 1 by the scaled small-gain condition (6.4.6) to come
to the same robust stability conclusions. The scalings D capture the knowledge about the structure
of the uncertainties and provide us extra freedom to satisfy (6.4.5). Hence, the scalings reduce the
conservatism that isinvolved in the simple but rough condition | Mo, < 1.
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Let us introduce a terminology: We will call the matrices IT that define the 1QC’s scalings or
multipliers. The first name is motivated by the above mentioned relation to u-theory. The second
name reminds of the relation to classical multipliers that have been used in loop transformation
arguments.

The example reveal sthe philosophy in applying the robust stability results discussed here: Try tofind
asmany multipliers IT as possible such that the IQC’s (6.4.1) (or (6.4.3)) hold for the considered class
of uncertainties. Then find, among all these multipliers, one that also satisfiesthe FDI (6.4.2). If this
is possible, one can conclude (existence and) uniform boundedness of the (incremental) Lo-gain of
Iu(A)~L

A simple trick often allows to increase the number of multipliers. Indeed, if 1y, . .., I1; are multi-
pliers that satisfy (6.4.1) (or (6.4.3)), the same istrue of all

k
erl'lj if Tj = 0. (6.4.7)
j=1

One can hence easily construct out of finitely many multipliers an infinite family of multipliers
parameterized by ;. The same trick applies to an infinite set of multipliers. (Those familiar with
the corresponding concepts will recognize that we just need to take the convex conic hull; any set of
multipliers can, therefore, always assumed to be a convex cone.)

Finding multipliers such that a specific class of uncertainties satisfies the corresponding 1QC is
not really supported by theory; this is indeed the hard part in concrete applications. For suitable
parameterizations of the family of considered multipliers (such as (6.4.7) or more general versions),
the second step of finding one multiplier that also rendersthe FDI (6.4.2) satisfied will turn out to be
an LMI problem.

6.4.3 Examplesof IQC’s

In what follows we provide a non-exhaustive list of uncertainties and suitable multipliers. We recall
that one needs to aways verify Assumption 6.3, in particular star-shapeness with center 0, in order
to apply Theorem 6.7, Theorem 6.8 or their IQC counterparts.

» The structured nonlinear uncertainties

7t A1(zh)
" Ap(2™)
with causal A; that satisfy [[Ajll2 < 1or ||Ajll2; < 1fulfill (6.4.1) or (6.4.3) for the class of
multipliers
Q0 0 : .
I:.={ o r ) Q =diag(—r1l, ..., —ryl), R =diag(r1l, ..., rnl) > 0}. (6.4.9)
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* In(6.4.8) we can confine the attention to linear causal mappings A ; only. Beautiful results by
Shamma and Megretsky [18, 40] show that, then, the resulting scaled H.-condition (6.4.2) is
not only sufficient for robust stability (as we have proved) but even necessary (what is harder
to show).

» We can specialize further and use (6.4.9) also for the block-diagonal time-varying parametric
uncertainties . _
w! (1) = A7 (1)

with (measurable) matrix valued functions satisfying
A0 <1 fordl r>0.
Equivalently, we have
w(t) = A)z(t), A@) =diag(A1(1), ..., An(®)), |A@®] <1 for r>0.

Inthiscase, for any I in the class (6.4.9), the uncertai nties even satisfy the quadratic constraint

T
( A;t) ) - ( A;t) ) > 0. (6.4.10)

(Wewill seein Section 6.7 that thisimplies exponential stability.) The quadratic constraint still
holdsif using atime-varying multiplier. Let P : [0, co) — IT be (measurable and essentially)
bounded. Notethat P(r) admits exactly the same structure as the constant multipliers above.
For any such time-varying scaling we infer

T
< A;t) ) P ( A;f) > >0 forall 1 > 0.

With the quadratically continuous mapping (why?)
o
(x) = f x()T P(t)x(t) dt
0

on L5™, weinfer (6.2.10) by linearity. Hence, if there existsan ¢ > 0 with

00 T
/0 < Ml(uu()t))(t) > P() ( Mlé)u(f))(,) ) dr < —€|wl3, (6.4.12)

we can apply the more abstract Theorem 6.8 to infer that £, (A) ! exists and has auniformly
bounded L>-gain. Again, (6.4.11) amountsto a scaled small-gain condition with time-varying
scalings. If M can be described by

i =A@)x + B()w, z=C{t)x+ D)w, x(©0) =0,

where x = A(t)x is exponentially stable, the validity of (6.4.11) can be characterized by a
differential linear matrix inequality.
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» The so-called repeated structured uncertainties are defined as
w(t) = At)z(1), A@) =diag6r()1,...,8,NI), 18;(1)| <1 for t > 0.

Here the blocks on the diagonal of A(¢) are repeated scalar valued functions. If we choose the
multipliers IT in the partition (6.3.2) as

R =diag(Ry..... Ry) >0, @ =—R, S=diag(S1.....Sn). Sj +S; =0,

we infer

T m m
< AW ) n ( AW ) =3 —5;02R; +8;(1)(S; + ST+ R; = Y (1= 5;(0))R; = 0.
j=1 j=1

Again, we have found a class of multipliers for which (6.4.1) or (6.4.3) hold, and we could
generalize to time-varying scalings.

« Note that there exists a§(r) with [8(r)| < Land w(r) = §(1)z(¢r) iff w(Ow()T < z(t)z()T.
Thisleads to the notion of structured repeated nonlinear uncertainties. They are defined asin
(6.4.8) where the diagonal maps A ; satisfy

/ Aj(zj)(t)Aj(zj)(t)Tdtsf ()7 dr.
0 0

The same scalings as in the previous item can be used to infer (6.4.1). If we ask the property
to hold for the increments, we obtain (6.4.3). Then we arrive at robust stability results against
repeated nonlinear uncertainties.

* In the above examples we have used for parametric uncertainties and the corresponding non-
linear uncertainties the same class of scalings. However, for parametric uncertainties, one can
work with a class of scalings that is only indirectly described but larger than that considered
so far; since thisresultsin more 1QC's, it reduces the conservatism in the stability results.

L et us assume that the uncertainty is defined as
w(t) = A(1)z(r)
where (the measurable) A : [0, co) — R¥*/ satisfies
A(t) € cO{Aq, ..., Ay} fordl r > 0.

Here, A ; arefixed matrices which generate the convex hull that defines the set of valueswhich
can be taken by the time-varying uncertainties; these generators capture the structure and the
size of the parametric uncertainty. Obviously, the repeated diagonal structureis a special case
of thismore general setup (Why?). Thegoal isto definethe scalingsin order to assure (6.4.10).
We just ask the condition (6.4.10) to hold at the generators of the convex hull:

T
(AIJ) H(AIJ)zOforalljzl,...,N. (6.4.12)
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If we impose an additional constraint on IT such that these finitely many inequalities imply
(6.4.10), we are done. The simplest possible condition isto require the left-upper block of IT
being negative definite; this leads to the class

T
n;:m:(SQT 1Se>: Q<O,<A1j> H(A1j>> for j=1,...,N}.

A very simple convexity argument revealsthat any IT € IT indeed satisfies (6.4.10). Instead of
what we have done previously, the multipliersare now only indirectly described. Sincewehave
strengthened the non-strict inequality to a strict inequality, however, one can easily implement
this indirect description as constraints in an LMI solver. That alows to reduce, again, the
search for amultiplier satisfying (6.4.1) to an LMI problem. As a considerable advantage of
this latter technique we observe that we do not need to bother at all about the specific structure
of the uncertainties and theoretically derive the corresponding structure of the multipliers - the
numerical agorithm does thejob for us.

6.5 Guaranteeing robust performance

So far we have considered robust stability. However, the techniques presented so far allow asimple
extension to provide sufficient conditions for robust performance.

6.5.1 An abstract condition for robust performance

Let us consider the uncertain system in Figure 6.2 where the blocks M and A € A satisfy the
Assumptions 6.3 and 6.9.

Asindicated we assume that M is partitioned as

Zu My Mup ) ( Wy )
_ . (65.1)
( Zp ) < Mpu Mpp Wp

Thesignalsw, and z,, form the uncertainty channel w, — z, andw, — z, denotesthe performance
channel. Thereason for thisterminology issimple. The uncertain system is described by (6.5.1) and
by closing the upper loop with any uncertainty A € A as

Wy = A(zy). (6.5.2)

This leads to z, = My, A(zy) + Mypwp. If I — M, A has a causal inverse, we arrive at z, =
I - MWA)‘l(MW,wp). The perturbed system hence admits the description

p = MPPwP + MpMA(I - MuuA)_l(Mupwp)‘ (653)
The performance specification under considerationsisthen specified intermsof thechannel w, — z,.
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Figure 6.2: Uncertain System with Performance Channel

As atypical performance specification, the L,-gain from w), to z,, should not exceed one (or any
other number what can be always brought back to one by scaling); this specification amounts to

o o0
/ 2,0z, (t) dt 5/ w,() T w, () dt foral w, € Ly.
0 0

For technical reasons (to arrive at necessary and sufficient conditions) one often tries to characterize
that the L»-gain is strictly smaller than one. Contrary to what is often stated in the literature, we
cannot just replacethe < by < intheaboveinequality! (Why?) The correct formulation isasfollows:
there existsan € > 0 such that

o0 o
/ 2y z2p(t) —wp) wy(1) dt < —e/ w,( T w, () dt foral w, € L.
0 0
Similarly, alternative performance specifications are passivity
o
/ 2, w,(t)dr <0 foral w, € L
0

or strict passivity: there existsan e > 0 with

(0.¢] oo
/ 2, w, (1) dt < —e/ w0 w,(t)dt foral w, € L.
0 0

These cases are easily seen to be specialization of the following general performance specification:
there existsan € > 0 such that

2, ( LZ“;’ ) < —€lw,|3 foral w, € Ly. (6.5.4)
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20 z
— + A
Zu Wy wo
- +
M
ip Wp
Figure 6.3: Setup for Robust Performance
Here, X, isan arbitrary mapping
ZP:L29<wp>—>Ep<wp)eRsatisfyingE,,(0)20. (6.5.5)
ip Zp Zp

(The second condition is of technical nature - it isrequired in the proof of the next theorem.)

The goal is to characterize robust stability and robust performance. For the precise definition of
robust stability, we need to introduce (as earlier) the auxiliary signals wg and zg asin Figure 6.3.

Theinterconnection (6.2) is said to be uniformly robustly stableif the relations

Zu _ wu _ f— —
<Zp>_M<wp>’ wy = A(2Z) +wo, Z=2u — 20

that correspond to Figure 6.3 define, for each A € A, acausal mapping

wo Wy
Lo, > 20 — Z € Lo,
Wp Zp

and if the incremental L»-gain of this mapping is bounded uniformly in A € A.
Since M and A have finite (incremental) L»-gain, it is very simple to verify that robust stability is

equivalent to £, (A) or (Exercise1) I — M, A having acausal inverse whose incremental L»-gain
isbounded uniformly in A € A.
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Theorem 6.16 Suppose ¥ : L, — Lo is quadratically continuous and that all A € A satisfy
(6.2.10). Moreover, suppose there exists an € > 0 such that

w w 2 2
hy u z P < - 6.5.6
( Muuwu ~|—Mupwp ) + P ( MpuwM + Mppwp ) - G(ku”Z + ||wp||2) ( )

for all w, € L», w, € Lp. Then I — M, A has a causal inverse whose incremental Ly-gain is
bounded uniformly in A € A, and the uncertain system (6.5.3) satisfies (6.5.4).

Proof. The proof is extremely simple. We can set w, = 0 to infer by the second property in (6.5.5)

from (6.5.6) that
Wy . 2
)y < M., w, ) < 6||wu||2

foral w, € Ly. Hencewecan apply Theorem 6.8to concludethat 4, (A) or, equivalently (Exercise
1), I — M, A have causal inverses with uniformly bounded incremental Lo-gain.

Note that, in particular, the uncertain system system (6.5.3) then defines a mapping with uniformly
bounded incremental L>-gain. Even more, for any w, € Lp, we use w, = A(z,) and (6.2.10) to

infer
Wy . Wy _ A(Zu)
z:<luuuwu"'A}Mupwp)_E<Zu)_E< Zu )20
(where we require Assumption 6.9). Then (6.5.6) leadsto (6.5.4). [ |

It is straightforward to generalize Theorem 6.7 aong the same lines. One needs to assume that
Ly, (A)or I — M, A haveacausa inverses, and one can work with the weaker hypothesis (6.2.5)

uu

to concludein asimilar fashion robust stability and robust performance. The details can beleft to the
reader and are omitted.

6.5.2 Guaranteeing robust quadratic performance with IQC’s

After this abstract motivating introduction, we turn our attention to the case that (6.5.1) is described
by afinite dimensional stable LTI system; the corresponding transfer matrix is again denoted as M.

Let uslook at the quadratic performance index
w % w (1) )T < w, (1) )
b )= P P P dt
p( Zp ) /0 < 2p(1) P\ zp(®)
where P, isafixed symmetric matrix that satisfies

P, = . R,>0 6.5.7
P (S; R, P (6.57)

to guarantee (6.5.5).

146
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If ¥ isdefined by an 1QC based on IT, (6.5.6) amountsto

N Wy (iw)
/_Oo ( * ) Miw) < Mo (i), (iw) + Mup(iw)ﬂ?p(ia)) ) do+
[ % Wy (iw)
+ [m ( * > Py ( M (i) (i) + My (i) (iw) ) 9@ =
€ [ ( Wlio) " [ Dulio)
=" ). ( (i) ) yliw) ) 1
We can apply Lemma 6.13 to arrive at the equivalent condition

I 0 \" I 0 o I\ 0o I €
A n{ ~ -~ +| = ~ P ~ ~ <——1 (658
< Muu Mup ) ( Muu MMP ) < MPM MPP > P ( MP“ MPP ) T 2n ( )

on C°. Again, this amounts to a simple frequency domain condition for which we provide an
aternative formulain the following result.

Theorem 6.17 Suppose that any A € A satisfies the incremental 1QC (6.4.3) for the multiplier
= ( oS ) Moreover, suppose there existsan € > 0 with

S* R
I 0 \"/0 o]|s o0 I 0
0 I 0 0,|0 S, 0 I € 0
<——1 on C". 6.5.9
%uu Aﬁup s 0|R O %uu Zl‘{up - 2n ( )
Mp, My 0 ST|0 R, My My,

Then the interconnection (6.2) is robustly stable, and for any w, € L» one has
o0 T
wp(2) wp (1) _ 2
/0 (Zp(t)> P,,< on(t) dt < —ellw,||3.
6.5.3 Guaranteeing robust H, performancewith IQC’s

For astrictly proper stable rational matrix M, the squared Ho-norm is defined as
o 1 [ " .
M3 = — / trace(M (iw)* M (iw)) dw.
2r J_o

We have mentioned that there are many interpretations and motivations why to consider thisnormin
design problems. Therefore, there are different manners to define the robust H> analysis problem.

In these notes we concentrate on one of these possible generalizations. For that purpose we charac-
terize || M||2 < y by requiring the existence of a symmetric matrix Q such that

%/ M(io)*M(iw)do < Q, trace(Q) < y2.
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Thefirst of these two inequalities admits asimple signal based interpretation; indeed it is equivalent
to

o
/ O z(t)dt —w’ Qw < —e|lwl|?
0
for all real vectors w and Z(iw) = M (iw)w. (Why?)

We intend to generalize this characterization to uncertain systems that are again described using a

linear mapping
Zu My Myp > < Wy )
= 6.5.10
( p > ( Mpu Mpp Wp ( )

. i
w, € Lé‘;, wy € R* into z, € le"e, zp € Ly,

that takes

We assume that M,,,,, M,,, are causal and of finite L»-gain, and that M,,,, M, have finite gain as
mappings from R¥» to L; this means that there exists a constant m with

M, ,w k
| ( M“pwp ) l2 <mllw,| foral w, e R*.
ppWp

(The theory presented so far does not directly encompass this case since we considered time-signals
asinputs. Although one could easily extend the setup - by simply admitting the time-set {0} for some
components of the signals, - we view, instead, M,,,w, and M,,w, as L» disturbances and directly
apply the techniques devel oped up to now.)

Robust stability is defined analogously as earlier, and the uncertainty system is said to have arobust
H-level y > 0 if there exists asymmetric Q with

trace(Q) < y? (6.5.11)

such that, for somee > 0,

oo
—w] Qw, +/O 2,07z, (1) dt < —€|wp||? fordl w, e RF». (6.5.12)

It is now straightforward to arrive at the following 1QC test for robust H» performance.

Theorem 6.18 Supposethat every A € A satisfies (6.4.3) and that Q isa symmetric matrix. More-
over, suppose there existsan ¢ > 0 such that

/ ( Quite) ) Miw) ( Quite) ) + 2 i) Zp10) do — wh Quy < (w3 + 1)
- (65.13)

for all w, € L'é“, wy € R*» and the corresponding outputs as defined in (6.5.10). Then I — My, A
has a causal inverse with uniformly bounded incremental L2-gain, and the uncertain system (6.5.3)
satisfies (6.5.12).
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Proof. Asfor robust quadratic performance, the proof is asimple exercise and left to thereader. m

In aconcrete test we have to view Q as an extravariable (besides IT) with (6.5.11) in order to satisfy
(6.5.13). Hence Q can be viewed as a varying performance multiplier.

All thiscanbeappliedif M isan LTI system; thenitisdefined withreal rational proper stable matrices
My, Mpy, My, M, Where My, (00) = 0, M, (00) =0, as

(a,(ia» ) _ ( Mu(io) Mypio) ) ( D (i) )
o) )~ \ Mp,(io) Mp,(io) w, )°
Remarks.
» Obvioudly, our robust H> property isan immediate extension of robust quadratic performance
if equipping the space R» x L with the norm ,/|lw,,[|? + [|w, |13 and defining the quadratic
foms, : Rk x LY — Ras

2, < Wr ) = —w) Qw, +/ 2,0 7, (1) dt.
0

Zp
As earlier, one can also consider ageneral mapping X, that satisfies ( zO ) > 0.
p

e Suppose M isLTI. Paganini [21] hasobserved that the H>-norm can be approximated by thegain
of the underlying system for acertain class of finite power signal sthat approximate white noise.
He shows that this concept can be then extended to uncertain systems similarly as done here,
and derives necessary and sufficient conditions for robust H»-performance against arbitrarily
fast and arbitrarily slow time-varying uncertainties (similarly as Shamma[40], Megretsky [18],
Poolla, Tikku [23] did for therobust L»-gain problem). The conditions of [21] can be extended
to the more general setting considered here and then read as follows. There existsane > 0
and a measurable Hermitian valued ® on C°

1 e . 2
—/ trace(®(iw))dw < y
27 J_oo

such that
I o \"/0 0|s o I 0
0o I 0 —®[0 0 0o I —£71 0
27 0
My My S 0 (R O || Mu M, 5( 0 0) on €,
My, My, 0 0|01 My, My,

where IT is again partitioned as in Theorem 6.17. (Note that the latter inequality implies
M, Mp, < @ suchthat @ is positive semi-definite. If the (2,2) block of the matrix on the
right-hand side was negative definite, the L>(C®)-norm of & could not be finite!) Again, the
proof of sufficiency of these conditionsis straightforward and |eft to the reader.

* Intherobust quadratic performance problem, onecanview P, asan extraparameter that varies
in acertain given class of matrices. D’ Andrea[4] has worked out interesting variations of the
Hoo-performance criterion that are amenable to this technique.
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6.6 1QC’sin the state-space

Let usnow look at multipliers I that arereal-rational. Thenwe can assume IT to be givenin aspecific
form.

Lemma6.19 If IT isreal rational and bounded on CP, there exists a P and a real rational proper

stable & with
Hiw) =VY(iw)*PV¥(iw).

Proof. Since IT isbounded, itisproper and thereexistssomea > Osuchthat IT(iw) +al > Ofor al
o € RU{oo}. Hencethereexistsaproper stablerational matrix 7 withTT(iw) +al = T (iw)*T (iw).

Thisimplies T (i) = ( re ) ( Lo ) ( re ) "
ThelQC
| Z ( 2o ) ) ( 2o ) do = /Z ( 2o ) V) P Ge) ( 2o ) do=0
can, therefore, be rewritten as a static quadratic constraint

fo ” 2o Pzy(t)dt > 0 (6.6.1)
on the output of

Z

y =V ( v ) . (6.6.2)

The system W can be interpreted as a filter which encompasses the dynamics in the multiplier TT.
Non-dynamic multipliers are simply obtained with & = [ such that the only possibly freedom is|eft

in P. Withaminimal redization
v — Ay | By
| Cy|Dy |’

we arrive at yet another parameterization of the multiplier IT in the state-space. Indeed, the system
(6.6.2) now admits the description

Xy [ Ay By w _
()= (e )we(B0)(1) oo

6.6.1 Robust stability

In order to apply Theorems 6.15 or 6.14 to guarantee robust stability, we need to check the FDI

(1\%) M(iw) ( A% ) = [V ( 1{7 )]*P[\Il ( A]? )] <0 on COU {oo}. (6.6.3)
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For a state-space characterization, we choose a realization of
w\ 1
)7 \m )"

x = Ax + Bw, (?):Cx—i—Dw

such that A is Hurwitz. (Note that C and D have a specific structure due to the fact that the first
component of the output equals the input w.) Then we infer

I A 0 B
\I/(M> =| ByC Ay | ByD | = I:—‘—]
DyC Cy ‘ Dy D

The Kalman-Yakubovich-Popov Lemma reveals that the FDI (6.6.3) is equivalent to the solvability
of alinear matrix inequality.

O
T oo

Lemma 6.20 The FDI (6.6.3) holds iff there exists a symmetric solution X of the LMI

< ATX + XA XB

Xpxa X >+(é pY P(E D)<o0.

6.6.2 Robust quadratic performance

The FDI (6.5.8) that characterizes robust quadratic performance is treated similarly. Indeed, it is
equivalent to

o I\ 0o I o I\ 0 I
~ < vrpw( ~ =< + ~ = P ~ = 0 (664
( M”“ M“I’ ) ( MM“ 1‘4’417 ) ( MP” MPP ) P < MP” MI’P ) = ( )
on CO U {oo}.

Introduce the minimal realization

< 0 i ) = (6.6.5)
Mpu Mpp
with an A that is Hurwitz to arrive at
U 0 A 0 B B ~ ~ -
Ui = = “ 4 Al B, B
( M“” M”p > — B\I’CM Aq’ B‘I’Duu B\IJ Dup _ C~, ‘ b - B ld
AO AI DlI/Cu ClI/ D\I/ Duu D\I/ Dup C‘\I/ bwu Dq/'”
Mpu Mpp C,D 0 Dpu Dpp p pu pp (666)
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Again, the Kalman-Yakubovich-Popov Lemma allows to characterize this FDI in terms of the solv-
ability of an LMI.

Lemma 6.21 The FDI (6.6.4) holdsiff there exits an X satisfying

ATX + XA XB, XB . - ~ T . - -
BT X o o +<Cﬂ’ Dy 12%7) (P 0)<Qw Dy, Q‘“P><o
BMTX 0 0 Cp Dpu Dpp 0 Pp Cp Dpu Dpp
p

6.6.3 Robust H2 performance

For robust H> performance we have to guarantee (6.5.13). We introduce the realization (6.6.5) (with
stable A) and recall that M,, and M, are strictly proper such that D,, = 0 and D, = 0. This
implies Eu,, = 0 and D,,,, = 0 for the redlization (6.6.6) that incorporates the dynamics of the
multiplier. Let usintroduce the abbreviation

00
P,,::(OI)
w T w
T, _ P p
szp_(@) PP<ZP>.

Then (6.5.13) is equivalent to the existence of some ¢ > 0 with

o Zu(t) ! P 0 Zu(t) T 2 2
/o (z,,m ) ( 0 P ) ( Zp(0) ) Ay Qup = ezt eplS - (667

forall w, € L5, w, € R*» and for the output of

i A B, .
Zu = C\Ij D\.Iju < w ) ) X(O) = BpU)p (6.6.8)
z CP DP” !

ip

such that

Again, by the Kalman-Yakubovich-Popov Lemma, this condition turns out to be equivalent to the
solvability of an LMI.

Lemma 6.22 Theconditions(6.5.13) for robust H»-performance holdsiff thereexistsan X satisfying
~ ~ ~ ~ ~ T ~ ~
“r = ATX + XA XB Cy Dy P 0 Cy Dy
BTXB , - u ~ ~ u - ~ u O.
i P<Q ( BEX 0 )+<Cp Dpu 0 P[’ Cp Dpu =
One should compare with robust quadratic performance.
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6.7 A summary and extensions

In this section we intend to merge robust quadratic performance and the robust H; specification into
oneresult. Furthermore, we summarize the required hypotheses, we provide alternative proofs based
on Lyapunov arguments whenever possible, and we discuss the consequences of strengthening the
I|QC hypotheses on the uncertainties.

With a set A of systems A : L, — L5 that are causal and of finite L-gain, we consider the
uncertain system

X A| B. B x
2w | =1 Cu|Duu Duyp wy |, x(0) =x0, w, =A(zu), A€A. (6.7.1)
Zp Cp | Dpu Dpp Wp

P, isthe performance index matrix that satisfies

(2) 7 (9)=0 672

The dynamics of the considered IQC is given as

<§$>:<2i>xw+<g:><lg>’xw(0)=0 (6.7.3)

and P istheindex matrix of the IQC.

L et us now interconnect (6.7.1) with (6.7.2) as

(1)-(2)

The dynamics of the resulting system admits the state-space description

2w = 0 I 0 . (6.75)
<w,,> D*(@)“ D“’(%)”‘P(m) o
p




6.7. A SUMMARY AND EXTENSIONS

Finally, suppose that the symmetric matrix X satisfiesthe LMI

I 0 0o\ /o0 x 1.0 0,
igd ) \xo)lia s

~ ~ ~ T ~ ~ ~
C\I/ D\llu D\llp > ( P 0 > < C\p D\yu D\yp )
&~ 7 ~ =~ = ~ <0. (6.7.6

< Cl’ Dlm DPI’ 0 Pp C[’ Dlm DPP ( )

Note that the first term in this LMI just equals
ATX + XA XB, XB,
BI'x 0 ©
BT
B, X 0 0
but the formula given above is dightly moreillustrative for our purposes.

This list of ingredients is motivated by the discussion in Section 6.6. At this point we have not yet
specified the exact relation of the uncertainties and the IQC dynamics what will be done in the next
subsections. We first proceed with some preparatory remarks.

For somesmall € > 0, wecan replacethematrix P, in (6.7.6) by P, + €1 andtheright-hand side 0 by
—el without violating the LMI (6.7.6). For any trajectory of (6.7.5), we right-multiply the resulting

inequality with
( x(1) >
xy (1)

wy (1)
Wwp @)
and left-multiply with its transpose. We obtain

d (x0)\ [ x® r TNORY w, (1)
E(x\y(t)) X<x\p(t)>+zw(t) Pzw(f)+( Z:(t)) (Pp+€1)( Z,f(ﬂ)f

x(t) 2 wu () \ 2
§—e||<xw)>|| _6”<wp(t))” foral 1 >0 (6.7.7)

and, after integration on [0, T'],

x(T) \' x(T) x(0) \" x(0)
(xw(T) ) X ( 2y (T) ) - ( x4 (0) ) X ( x4 (0) )*

+/T ®"P (t)dt+fT w® ) (p ery (0D ar <
; 2w Zy 5 2, (1) p 2p(1) <

T
< —e/ ||< x(1) >||2+|| ( wull) ) I2dr foral T >0. (6.7.8)
0

xy (1) wp (1)

We further exploit (6.7.2) to find aé > 0 with

81 0O
( 0 O>+(P,,+el)>0
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(why?) such that we can conclude

wy(®) \" wp (1) 2
_< Z;’(t) > (P,,+el)< Z:(t) ) < Sllwp (. (6.7.9)

All new (Lyapunov based) argumentsin this section are based on these three relations.

6.7.1 Waell-posednesswith soft incremental IQC’s

We assume that A and Ay are Hurwitz and that A is star-shaped with star center 0. Moreover, for
each A € A and z1, z2 € L, the output of (6.7.3) for

w\ _ Az — Alz2)
z )] 71— 22

/ 2w ()T Pzy(t)dt > 0. (6.7.10)
0

satisfies

Then a suitable adaption of the proof of Theorem 6.8 reveals that the solvability of (6.7.6) implies

Well-posedness: For each xg € R" and w, € L., the system (6.7.1) admits a unique response
X, wy € L.

Recall that this proof heavily relies on the fact that L, is a Banach space. However, for al the
remaining statements in this section, this property will not be exploited. Hence, one could e.g.
guarantee well-posedness by standard results on the existence of solutions of differential equations
(suchasLipschitz conditions pluslinear boundedness properties) that are derived by other techniques.
Itisthen no problemto adapt the considered classof signals- such astothe set of piece-wisecontinuous
(and continuous/piecewise continuously differentiable x) or continuous signals of finite energy - to
the result that has been applied. Hence, the ‘smoothness’ properties of the trajectories is mainly
dictated by those results that are available to show well-posedness. Once well-posedness has been
established (by whatsoever technique), one can often restrict the attention to signal subspaces that
aretechnically easier to handle.

Let us mention a situation in which well-posedness is easy to verify. Suppose that the uncertainty
w = A(z) isdescribed by an LTI system

. D
XA = Apaxa + Baz, <I;>=(COA>XA+< IA)Z, xa(0) =0.

Then (6.7.1) iswell-posed if

I Dj . .
< Dy, I ) isnonsingular. (6.7.11)

(Why?)
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The soft 1QC condition on A now reads as (6.7.10) on the output of

Aa 0 Ba
XA Ca Da XA
iy | = B“’( 0 ) Ay B‘"( ! ) xw |, ("A><0>=0.
7y Ca D z v
() el ()
On the one hand, taking the resulting FDI at w = oo reveas
[Dy ( Da )]TPD\I, < Da ) >0, (6.7.12)

On the other hand, (6.7.6) implies
0> f)\llu ! P 0 [)\I—’u _
Dpu 0 PP [)pu B
T
_ 1 T I 0 0
=ou (g, Jreee (o, )+ (0, ) 2 (00, )

I \.r I
[Dy ( Dy >] P[Dy ( Dy )] < 0. (6.7.13)
The two inequalities (6.7.12) and (6.7.13) imply that

(2e(n) (7))

has full column rank what leads to well-posedness (6.7.11).

Dueto (6.7.2), weinfer

Similar arguments apply for time-varying uncertainties if one can assure (6.7.12) to hold. Note that
we used afrequency domain argument to infer (6.7.12) from the soft 1QC; thisargument breaks down
for time-varying uncertainties.

From now on we assume that well-posedness has been verified.

6.7.2 Soft 1QC'’s

Again, suppose A and Ay are Hurwitz, that the LMI (6.7.6) holds, and that A is star-shaped with
center 0. For each A € A and for any z, w € Ly suchthat w = A(z), the output of (6.7.3) satisfies
(6.7.10). Similarly as Theorem 6.7 one proves

Robust Stability: For al xo € R"” and w, € Lo, the unique system response of (6.7.1) satisfies
X, wy € Lo.
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For the remaining properties of uniform robust stability and robust performance we provide indepen-
dent (very elementary) proofs.

Uniform Robust Stability: There exist constants K1, K> such that for every xo € R” and every
wp € L2
el + w3 < Kallwp I3 + Kallxoll® and lim x() = 0.

We could add (after possibly modifying K1, K2) llzul13, llz, /15 and ||lxg |3, lzw |13 on the left-hand
side and the inequality still remainstrue. (Why?)

Proof. For xo € R", w, € L2, we conclude for the unique system response that w,, x € L, and

hence (with the system’s differential equation and since L, is alinear space) x, z,, z, € Lo, this
implies lim;_, o, x(¢) = 0. For the interconnection of (6.7.1) and (6.7.3) according to (6.7.4), we

infer 4 )
Xy _ ] By A(zy _
()= (e )we (B )(557) wo-o

Since Ay is stable, we infer xy, Xy, zy € Lo and lim,— » xg(t) = 0. Moreover, (6.7.10) holds
true. If wetakethelimit T — oo in (6.7.8), and if we combine with (6.7.10), we get

© w, ) ' w, (1)
p )4
/o ( 2p(0) ) (P"“”( 2p(®) )d’ :

T 00
X0 X0 x(1) 2 wy (1) 2
5(0) X(0>—6/0 ”(x\p(t))” +”<wp(t)>” dt. (6.7.14)

Exploiting (6.7.9) leads, as required, to
© o x0 Y2 wa () 2 > 2 20\, ( x(0)
e/o ||<xw))|| +”<wp(t)>” drssfo lwp dr+< 0 ) X( 0 )

Robust Performance: The system is (uniformly) robustly stable, and for all xo € R and w,, € L»

one has , ,
o
wp (1) wp (1) x0 x0
/o<zp<r>> P”(zpm “=\o) *lo)
Proof. Thisimmediately follows from (6.7.14). [ |

For somegiven symmetric Q € R"*"* and some subspace X of R", we canimposethe extraconstraint

T
(5) x()<0mx
f"o wp (1) TP wp (1) dt < xI Ox
o \z,(0) P\ z,@) =0 270

for every w, € Lo and every xg € X; this revedls that we have indeed merged the previous robust
H> and robust quadratic performance specification into one result.

to infer
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6.7.3 Hard1QC's

Recall that we assume well-posedness of (6.7.1). Supposethat, foreach A € A andz, w € Ly, with
w = A(z), the output of (6.7.3) satisfies

T
/ 2o Pzy(t)dr >0 foral T > 0. (6.7.15)
0

We say that A satisfiesahard IQC. In addition, we include the hypothesis that the LMI (6.7.6) has a
solution
X > 0.

Remark. Notethat the set A isnot necessarily star-shaped; it can even bejust asingleton. Moreover,
note that A and Ay are not necessarily stable. Whether positivity of X impliesor isimplied by the
stability of A, Ay depends on the specific matrices P and P,,, and no general claim is possible.

Now we can provide a direct proof of robust stability and we can strengthen the uniform robust
stability and robust performance conclusions.

Robust Stability: For xg € R”, w, € Ly, the unique response of (6.7.1) satisfiesx, w, € Lo.

Proof. The proof is directly based on (6.7.8) and (6.7.9). Indeed, weinfer from (6.7.8) that
™\, [ x(D) /T ( w (1) )T (w,;(r))
<m(T>) X<xu11(T))+ o Lo ) Bt ) 4=
T T
X0 X0 x(1) 2 w, (1) 2
5( 0) X( 0 )—6/0 II(W(I)>II +”<w,,(t))” dr (6.7.16)
and combining with (6.7.9) gives
( x(T) )TX< x(T) )+€/T”< x(1) )”2+”<wu(r>>”zdt<
xu(T) xy(T) 0 xy (1) wp (1) -

T T
= < o ) X ( 0 ) +8/ lw, I dr (67.17)
0

for al T > 0. Since the right-hand side is bounded for T — oo, we infer the same (dueto X > 0)
for [ Ix@l2dt, [y I @ %de, and [ [|w, ()% dt; thisshows x, xg, wy € Lo.

Uniform Robust Stability: The systemisrobustly stable, and there exist constants K1, K» such that
for every xo € R" and every w, € L»

T T
||x(T)||2+/O lx(OI1% + lw, (1) 12 dr < Klfo llw,(0)|I1%dt + Ka|lxol? foral T >0

and lim;_, o, x(¢) = 0. Again we could add (for possibly other constants) fOT lzu (D)% + lzp(®) 1%+
lxw (OI12 + llzw (1) |2 dt and || xy (T)| on the left-hand side. (Why?)
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6.7. A SUMMARY AND EXTENSIONS

Proof. Thisisimmediate from (6.7.17). [ |

Robust Performance: The system is (uniformly) robustly stable, and for al xo € R and w,, € L»
one has

x(1) \' x(T) T ( w, (1) )T < w (1) )
<x\y(T)> X<X\IJ(T))+/0 oo ) T\ m )9S
T
X0 X0
§<0> X( 0) foral T > 0.

Proof. Immediate with (6.7.16). [ |

6.7.4 QC's
Again, we assume well-posedness of (6.7.1). Furthermore, suppose that foreach A € A and w, z €
Lo, with w = A(z), the output of (6.7.3) satisfies

2o Pzy(t) > 0 foral r > 0. (6.7.18)

Thisis a quadratic constraint (QC) in time. Moreover, let us suppose that the LMI (6.7.6) has the
solution X > 0.

Notethat this QC impliesthehard |QC (6.7.15) such that all conclusionsfrom the previous subsection
aredtill true. However, dueto the constraint point-wiseintime, we can now arguedirectly with (6.7.7);
this leads to uniform exponential stability.

Uniform Exponential Stability: There exist constantsa > 0, K3, K4 such that

T
Ix(T)1? < Kallx(to) [|Pe™*T 0 + K4 / lw,()|3dt foral T > 19> 0.
to

If w, = 0, thisimpliesthat the system state x (7') converges exponentially to zerofor T — oo. Since
the constants K3 and « do not depend on the specific A, the exponentia stability is uniform in the
uncertainty.

Proof. Let usintroduce the abbreviations

o x \" x(1) __ €
v = (xw(t) ) * ( xy (1) ) 0

Then (6.7.7) clearly implies

d TNORY wp (t)
Ev(t) +av(t)+< (1) ) (Pp +el)< 2 (0) <0 fordl r > 0.
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Combining with (6.7.9) gives
d
yrlORL O 8llw, ()| foral 1> 0.

For any 7o > 0 we conclude

T
v(T) < v(tg)e ¥ T~ +5/ e T, (1)) dr.

fo

We conclude that there exist constants K3, K4 such that

T
lx(T)1? < Kallx(t0)]|2e™ T~ 4 K4 /0 llwy (013 dt.

Remarks.

» Typica examplesfor thelatter resultsto apply aretime-varying parametric uncertainties, static
non-linearities, or non-linearities defined by differential equations. Often, mild Lipschitz-type
conditions suffice to guarantee that (6.7.1) has a solution for each initial condition and for each
disturbance. Usually, such solutions are only given localy in time. (Recall that nonlinear
differential eguations can have a finite escape time.) The stability results for hard IQC'’s or
QC’'s might allow, however, to exclude e.g. a finite escape time such that solutions can be
extended to the whole interval [0, co). Hence, apart from stability, also certain aspects of
well-posedness could be shown with the arguments that we presented in this section.

* Further weakening the IQC’s. We have assumed the hard 1QC’s or the QC’s to hold for all
w, z € Lo, With w = A(z). However, it is obvious that all proofs given in this section only
required them to be satisfied if, in addition, (6.7.4) holds for some trgjectory of the uncertain
system (6.7.1).

* Weinclude two exercises about the multi-variable circle criterion and the Popov criterion that
reveal the subtleties discussed here and, nevertheless, allow to re-prove classical results in
a straightforward manner without the need for technical hypotheses that often occur in the
literature [13].

6.8 Other performance specificationsin the state-space

In this section we want to clarify how to extend the results to other performance criteria different
from robust quadratic or Ho-performance. Asarule, al those criteriathat can be formulated in terms
of aquadratic Lyapunov function on the system extended with the IQC dynamics can be considered.
In[2, Chapter 5 and 6] one finds many variations of these criteriawhich are not listed since, after an
understanding of the basic IQC principle, al these results can be easily derived not only for polytopic
and LFT parametric uncertainties, but they can be effectively extended to much larger classes of
uncertainties described by dynamic 1QC's.
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6.8. OTHER PERFORMANCE SPECIFICATIONS IN THE STATE-SPACE

We just confine ourselves to the generalized H», and peak-to-peak upper bound specifications; we
employ the same setup asin Section 6.7.

6.8.1 Robust generalized H,-performance

-1 0 00
Pp1=< 0 0) and Pp2=<0 I)

with a partition according to those of the rows of C » N (6.7.5). (This choice will be motivated by
the considerations to follow). Supposethat X > 0 satisfies

Let us define

_l’_
(g 0 )(é" D, pr><0 (6.8.1)

Cp Dpu Dy Y Pp1 Cp Dpu Dpyp
and
- - - 1 - - -
(Cp Dy D,,,,)T; 2(Cp Dpu Dpy )< (1 00) X(100). (6.8.2)

Then the conclusions about well-posedness and robust stability remain unchanged.

If the uncertainty satisfies the hard IQC as in Section 6.7.3, we infer for x(0) = 0 and x¢(0) = 0

from (6.7.8) by
T T .
wp (1) wy (1) _ -
/o (Zp(f) ) PPl( z2p (1) )‘“—/0 wp (1) wp(t) dt

(what motivates the definition of P,1) that

xT \' ., ( x(T) oo
(m(T) ) X < xw(T) ) < —E)/O w,() wpy(r)de foral T >0.

Hence, we have

(1) \" x(T) )
<qu(T) ) X < xw(T) ) < (y —ellwpls foral T >0

such that the state-trajectory is caught in an ellipsoid defined by X. The second inequality implies

1wy w1 O\ x®
;( 2p(1) ) Pp2< 2p(1) > = ;Zp(l) z7p(t) < (xw(t) ) X < 2o (0) ) forall >0
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6.8. OTHER PERFORMANCE SPECIFICATIONS IN THE STATE-SPACE

(what motivates the choice of P,2.) Withthe Lo-norm definition ||z, [loc = SUP,>0 llz,(1)1l, weinfer
by combining both inequalities that

lzpli3e < 7 (v = Ollwpl3.
Hence, thegainof w, > L, — z, € L isrobustly strictly smaller than y .

Dueto P, > 0, we note that (6.8.2) is equivalent to the relations
. - 1.7 -
PyoDy, =0, PpoDp, =0, ;Cp Py,oC, < X.

Hence, the non-strict inequality (6.8.2) indeed comprises certain strict properness conditionsthat are
required to render thegain w, > Lo — z, € L finite.

Suppose we know (as for parametric perturbations) that the uncertainties even satisfy a QC as in
Section 6.7.4 for the indices Py and P,. Then we can replace (6.8.2) by

~ ~ ~ T ~ ~ ~
(Qw Dy, Qw) <P2 i~ )(Qw Dy, D~\PP>5(100)TX(IOO)
Cp Dpu Dpp O ;sz C[? D[’M Dpp (6 8 3)

and, till, infer that the generalized H»-gain is robustly smaller than y .

Note that we have used different multipliers P, and P, in both inequalities (what will be relevant if
searching for suitable multipliersin awhole family as discussed in Section 6.9.) The extramultiplier
P> leadsto extrafreedom to render the inequality satisfied; hence it reduces conservatism. Contrary
to what we could conclude previously, the inequality does not necessarily leadto D, = 0, D, = 0
but, still, it implies that the gain w, > Lo — z, € L isfinite. Hence, (6.8.3) alows a more
complicated dependence on the uncertainties at the expense of a non-strict inequality that cannot be
easily re-formulated to a strict one.

Remark. The presented techniques do not apply for soft IQC’s. In addition, it might be more suitable
tolook at uncertainties A that map L, causally into L»; the abstract theory developed earlier can be
easily extended to cope with such situations.

6.8.2 Robust bound on peak-to-peak gain

Let us assume that the class of uncertainties A consists of causal mappings A : Looe — Looe Of
finite Lo-gain. We assume that, for each A € A, the perturbed system (6.7.1) is

well-posed: For each xg € R" and w), € Lo, the system (6.7.1) admits aunigque response x, w, €
Le-

Let us now assume that for any z, € Lo, andany A € A, the QC (6.7.18) holds for w, = A(zy)
andfor P = Py, P = P> (similarly asin Section 6.7.4).
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6.8. OTHER PERFORMANCE SPECIFICATIONS IN THE STATE-SPACE

Let X, A > 0, u € R satisfy the inequalities

_(100\ (xx 0 I
—\0 01 0 (y—wl 0
This leads to uniform exponential stability, for every w, € L

)‘-maX(X)e—ka(O)+ K Sup wp(t)Twp(t)v

x(T) < —
Amin(X) Amin(X)A te[0,T]

and to the robust peak-to-peak norm bound y: for every w, € Ly

”Zp”oo =< V”wp”oo-

o xo0\ L x0
v() = (xw) ) X ( x (1) )

Then thefirst inequality shows

Proof. Again, set

%v(r) +av(t) < pw, () wy(r) foral >0

and hence u
o(T) < e *Dy0) + ~ sup w,)Tw, () fordl T >0.

te[0,T]
This clearly implies the statement on robust stability. Moreover, x(0) = O reveds
2(T) < pllw, |2, fordl T > 0.

Now we exploit (6.8.4) to infer

212y @12 < 20 + (7 = w2 forall £ > 0.

Y 14 = p =
Combining both inequalities implies

2p (" 2p(1) < ¥Pllwpl3

163
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what revealsthat y isabound on the peak-to-peak gainof Ly, 3 w), — 7 € Leo. [ |

Remark. The above inequalities imply well-posedness if A, Ay are Hurwitz, if all A € A are of
finiteincremental L..-gain, if A isstar-shaped with star center O, andif each A € A satisfies(6.7.10)
foral z1,z20 € Lo and z = z1 — z2, w = A(z1) — A(z2). The proof is based Banach's fixed
point theorem that exploits the completeness of L., and just requires a slight modification of that of
Theorem 6.8.

Remark. Asfor the generalized H> norm, we can reduce (6.8.4) to a strict inequality with algebraic
constraints if setting P, = 0; we can replace (6.8.4) equivaently by

- 1, . - T ~ A X 0
Pp2Dpy =0, ;(CP Dpp) PPZ(CP Dpp)<( 0 (V—M)1>'

6.9 Multiplel QC’sin the state-space

Although most of the results provided so far have been given for one 1QC, it is aways important to
keep in mind that one usually considers awhole family of IQC’s that is parameterized in a suitable
fashion.

In the latter sectionswe have considered |QC’ s that are described by adynamical part (6.7.3) defined
through Ay, By, Cy, Dy, and an index matrix P. In principle, al of these parameters could be
varied in specific classes to describe a set of 1QC’s. However, the final task is to find one of these
parameters and an X (possibly with X > 0) such that the LMI (6.7.6) is satisfied. Hence we will
prefer those parameterizationsfor which the search for X and asuitable |QC turnsout to be astandard
LMI problem.

Obvious cases include those where the dynamic part of the IQC isfixed and only the quadratic index
variesinaclass P. If thisclass P isdescribed by infinitely many LMI’s, asemi-infinite LM problem
results; although convex, such problems cannot be directly handled with existing software. However,
if theset P isdescribed by finitely LMI’s, standard software can be used to search for X and asuitable
multiplier.

As asimple example, suppose that
M;(s) = Cj(sI —A;) 1B, + D;

(A; Hurwitz) are finitely many rational multipliers. Searching in the set of all multipliers parame-
terized as (6.4.7) with t; > 0 hasindeed the form as just described. (Derive the dynamics and the
classof indices P.)
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6.10 Parametric uncertainties

In this final section we would like to briefly return to the situation that A in (6.7.1) is time-varying
parametric and can vary arbitrarily fast.

6.10.1 LFT representations

The set of values of the parametric uncertainties is assumed to be given by finitely many generating
points
Ay ={Ag, ..., Ay}

A, =C0A; =co{Ayg, ..., Ay}

WeassumeO € A.. The set of uncertaintiesisgiven by all curves A(¢) defined on [0, co) and taking
their valuesin A.:
A:={A|A:[0,00) — A. iscontinuous}.

Notethat any A € A actsin (6.7.1) as amultiplication operator
w(t) = A(t)z(t).
If, for A € A,

I A®)
Duu I

) isnonsingular for al ¢ > 0,

the uncertain system (6.7.1) admits the alternative representation

i\ _(({ A B By 1 x _
()& & (B oo ma)(, ) s

This motivates to define the functions

Axn Ba\ . ( A+B,AU-DyAN7C,  B,+ B,A(I — Dy, A)ID,,
CA DA ' Cp + DpuA(I - DuuA)_lcu Dpp + DpuA(I - DuuA)_lDup

Note that these functions are rational in the elements of A, and they are affineif D,,, = 0. However,
weareinterested in thisfunction only onthe set A .. Depending on the structure of the matricesin A,
and on D,,,, it might happen that det(/ — D,, A) vanishesidentically on A.. Even if not vanishing
identically, this function can have zeros on the set A.. We call the LFT well-posed, if

det(I — D, A) #0 foral A € A,. (6.10.1)

Then (I — Dy, A)~Yand Aa, Ba, Ca, DA are well-defined rational functions that are continuous
on the set A.. (Continuity even implies that these functions are smooth. In fact, the essence is that
they don't have poles on this set.)
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If the well-posedness condition (6.10.1) holds, we arrive at the aternative LFT description

X AA(,) Bag) ) < X >
= s O =
(Zp ) (CAm Dagy )\ w, ) ¥ O =0
of the uncertain system (6.7.1).

Let usrecall thefollowing conversefact from w-theory: Suppose F (), G(8), H(8), J (§) arerational
functionsof § = (81 -+ 8 ) that are continuous on the parameter box

dc:={6=(1,....8m) | 6j € [-1,1]}.

(Asusual, we can shift and re-scal e the uncertainties to such they take their valuesin [—1, 1] without
without loss of generality.) Then there exist matrices

A B, B,

Cu Duu Dup

Cp Dpu Dpp
and nonnegative integers

such that, with
A(S) = diag(81lay, ..., Smla,). (6.10.2)

we have the following two properties:

_ Aaw) Bae) N\ _ [ F©) G@©)
det(I — Dy A(5)) # 0 and (CA(B) e ) - ( H®) 1) ) on §..

Consequently, we can summarize:

e Onevery set A. wheredet(I — D,,,A) does not vanish, Ax, Ba, Ca, D define continuous
rational functions of the elements of A.

« Arbitrary continuous rational functions F(8), G(8), H(8), J(8) without poles on §. admit a
well-posed LFT representation; they can bewritten as A a sy, Ba(s), Cas), Dacsy where A(S)
is ablock-diagonal matrix whose blocks admit the form §; 7.

Remarks. This result shows that choice of ablock-diagona structure (as usually made in p-theory)
is a specific case of the general formulation we started out with. In concrete applications, the extra
freedom of not being forced to use block-diagonal matrices should be exploited to arrive at more
efficient LFT representations, in particular with respect to the size of A. Note also that one is not
bound to parameter boxes of the form §. but one can also choose for more general sets that are
described as A...
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6.10.2 Robust quadratic performance

Let us now return to robust quadratic performance analysiswith anindex P, that satisfies, as earlier,
the condition (6.5.7). We have given two seemingly different sufficient conditionsto guarantee robust
performance; oneisrelated to finding acommon quadratic Lyapunov function, and the other proceeds
viascalings and quadratic constraints.

Indeed, robust quadratic performance isimplied by the existence of an X such that

T T
X >0, (AAX+XAA XBA)+< 0 1 ) P,,( 0 1 ><0fora|IAeAv.

BIXx 0 Ca Da Ca Da
(6.10.3)
Moreover, it is also guaranteed if there existsan X and ascaling
T
P:(ﬁi)sﬁisfying(?) P(?)>Of0rallAeAc (6.10.4)

such that

o o 1\ < 0 0 I )
+ P <0. (6.105)
(CP DP” DPP) b CP DP” DPP

A simple exerciserevealsthat (6.10.4)-(6.10.5) imply the non-singularity of I — D, A foral A € A,
and the validity of (6.10.3) with the same X. (Why?) It isnot so trivial to see that the converse holds
true aswell; in fact, both conditions for robust quadratic performance are equivalent.

Theorem 6.23 The matrix I — D,, A isnonsingular for all A € A, and there exists an X with
(6.10.3) iff there exist symmetric X and P satisfying (6.10.4)-(6.10.5).

The proof of this theorem is found in [35]. Since based on a more general result about quadratic
forms, similar statements can be obtained with ease for all the other performance criteria (such as
H>, generalized H», and peak-to-peak upper bound performance) that have been considered in these
notes.

Testing the first condition amounts to reducing (6.10.3) to finitely many LMI’s that can be based
on convexity arguments or gridding techniques. In the second characterization, (6.10.5) poses no
problem and only the parameterization of the scalings as in (6.10.4) has to be given with a finite
number of LMI’s.

If D, vanishes, the picture becomes clear. Thenthefunctions Aa, Ba, Ca, D areaffinein A, and
one just has to solve the inequalities in (6.10.3) for the finitely many generatorsin A,. Similarly,
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D,,, = 0impliesthat any multiplier P that satisfies (6.10.5) has, in fact, the property

0 <O

(Why? The alert reader recalls that the required argument appeared earlier in thetext.) Hencewe can
introduce this extra constraint without conservatism. Under this constraint, however, (6.10.4) holds
iff it holds already for the generators A,. Hence, both robust performance characterizations reduce
without conservatism to standard LM problems.

The situation is more complicated for D,,, # 0 such that A, Ba, Ca, DA could (depending on
the structure of A) be genuinely nonlinear. Then (6.10.3) offers no clear hint how to perform the
reductionto afinite number of LMI's. The second characterization, however, allowsto give - possibly
at the expense of conservatism - certain reduction recipes. We provide three possibilities:

Just introduce the extra constraint 9 < 0 and replace A. by A, in (6.10.4). If the resulting
LMI’'s are feasible, robust performance is guaranteed. Hence thisis a sufficient condition for
the two tests (6.10.3) or (6.10.4)-(6.10.5) that is, generally, stronger due to the extra constraint
for the scaling.

One can take the specific structure of the set A, and of the function

A—><?>TP<?> (6.10.6)

into account to refine the pretty rough extra constraint O < 0. Just as an example that admits
immediate extensions, suppose that

611 0
Ac={A= |6; € [-1,1]}.
0 Sl

Then it sufficesto restrict Q only as

Qu -+ QO
0= e , 0jj<0, j=1....m
Om1 -+ Qmm
(in the same partition as that of A.) Thisrenders the function (6.10.6) ins = (81 --- &u )

partially convex on the parameter box §., and it suffices to describe the scalings only through
inequalities on the extreme points

Sg:={8=(01 -+ 6m) |8 €{-11}

of this box. Clearly, this extra constraint on Q is less stringent than Q0 < 0 what reduces
conservatism.
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 Finally, we mention avariant that is even more conservativethan Q < 0. Onejust uses, for the
classof uncertaintiesasin the previousitem, the scalings adjusted to the uncertainty structureas
definedin (6.4.3). Thisprovidesasubset of all scalings satisfying (6.10.4) that admit an explicit
(implementable) description. If the diagonal blocks are not repeated, Q = —R are diagonal
and S vanishes; thisisthe case that reappears throughout the book [2] by applying the so-called
S-procedure. Although the restriction to asmaller class of scalingsintroduces conservatism, it
al so reduces the number of variablesin the LMI test what speeds up the calculations.

This discussion reveals that the introduction of scalings allows to provide guarantees for robust
guadratic performance even if the parameters enter in a rational fashion. Moreover, for the least
conservatism, one should employ scalings that are full and can only be indirectly described. Using
the usual structured scalings as appearing in w-theory introduces extra conservatism that should be
avoided.

Thereis, however, one point that seems not sufficiently stressed in the literature: No matter by which
technique, solving (6.10.4)-(6.10.5) or (6.10.3) amountsto guaranteeing robust performance not only
for the systems described with matricesin

Aa Ba
(e by )raeaf

co{( Aa Ba ) A€ Ac}. (6.10.7)

but even for those described with

CA Dp

(Why?) If Ax, Ba, Ca, DA are affine on A, both sets coincide since A, is convex. However,
if these functions are nonlinear, taking the convex hull might increase the set considerably such
that the desired spec is guaranteed for systems which are not included in the origina description.
Note that this observations suggests another approach to guarantee robust performance: Try to find
adescription of (6.10.7) as the convex hull of finitely many generators. The computation of such a
re-parameterization, however, might be very expensive.

Remarks.

« Ingeneral, A entersthe constraints (6.10.3) in arational fashion, whereas (6.10.5) is indepen-
dent of A and (6.10.4) isquadraticin A. Through the auxiliary variable P, the dependence on
A has been simplified. The variable P isclosely related to Lagrange-multipliers as appearing
in constraint optimization theory.

« In[2] theauthorsapply the so-called S-procedureto derive (6.10.5) from (6.10.3) for the specific
class of scalings described above; the constraint (6.10.4) does not appear explicitly since the
corresponding multipliers satisfy it automatically. In the present notes we have provided two
version of robust performance tests: One directly based on the parameter dependent system
description, and one based on QC’s. We avoided to refer to the S-procedure since the QC results
alow powerful generalizations and since our approach provides a better insight in the choice
of various classes of scalings and the resulting conservatism. Therefore, the S-procedure only
plays aminor role in our notes.
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» The discussion in this section is particularly important for the synthesis of robust controllers.
Controller synthesis seems not directly possible on the basis of (6.10.3), but one can eas-
ily provide variations of the standard D/K-iteration from p-synthesis if characterizing robust
performance by (6.10.4)-(6.10.5).

6.11 Exercises

Exercise 1

a) Suppose that M (linear) and A are systems that have finite gain. Show that £ ,,(A) has a causal
inverse with finite gain iff the same is true of the mapping I — M A. Show that the same holds if
‘finite gain’ is replaced with ‘finite incremental gain’.

b) Suppose S : Lo, — Lo, is causal and has finite incremental gain. Moreover, assume that the

restriction S : L, — Lo hasan inverse whose incremental gainisfinite. Then S : Ly, — Lo, itself
has an inverse with finite incremental gain.

Exercise 2

Suppose w and z are two vectorsin R". Prove:
ThereexistsaA € R™" with |A|| < landw = Az iff wTw < z7z.

Thereexistsas € R with [§] < 1and w = 8z iff ww” < zz7.

Exercise 3

For given A; € R¥/, definethe set A := co{Aq, ..., Ay}. Withfixed 0 = @7, S, R = RT

consider the function ;
(A 0 S A

1. Q <0impliesthat A — f(A) isconcave.

Prove that

2. if f isconcave then

f(Aj)>0foral j=1,...,N = f(A) >0 foral A€ A. (6.11.1)

3. Find weaker conditions on Q that lead to the the same implication (6.11.1).
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Exercise4 (MIMO Circlecriterion)

Consider the system
% = Ax + BA(1, Cx)

where A : R x R/ — R¥ isany continuously differentiable function that satisfies, for two matrices
K, L, the multi-variable sector condition

[A(t,2) — Kz]T[A(t,z) — Lz] < O fordl (r,z) e R x R, (6.11.2)
Note that this is nothing but a static QC. Find a multiplier and the corresponding LMI that proves
exponential stability. With M(s) = C(sI — A)~1B define G(s) = (I + LM (s))(I + KM (s))~L.
Show that the LMI you found has a solution iff
A+ BKC isgtableand G(iw)* + G(iw) > 0 foral w € R.

(Hence G is strictly positive real. Note that this terminology is often used in the literature for a
different property!) Is stability of A required for your arguments?

Exercise 5 (Popov criterion)

Consider the system
X = Ax + BA(Cx) (6.11.3)

with A Hurwitz and A a continuously differentiable nonlinearity A : R — R that satisfies
0<zA(z) <z? fordl z e R.
Prove the following statements:

1. A satisfiesthe static quadratic constraints

A\ (-2 1\ /[ AR
(A7) (o) (%)=0
foralzeRandt > 0.

2. Foranyz e R
/OZ A)d¢ =0, fozg —AQ)dE = 0.
If z : [0, 00) — Riscontinuously differentiable, then
T 1 T 1
o [ 2020 = AR dr = —nZ 02w [ a0 d = —r5:07
for 71, T2 > 0. (Substitution rule!)
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3. Supposethereexist X and 7, 71, 2 > 0 such that

1 o\' [0 x IO+OIT—21:1: 0 7Y,

A B X 0 A B c 0 Tt O c o0
+C0T0r1 C 0N\ (0 1 —1’1

CA CB 1 O CA CB CA CB 71 C C

0o I 0 o 0
+<CA CB) (m 0>(CA CB><0

Then the equilibrium xg = 0 of (6.11.3) isglobally asymptotically Lyapunov stable. What can

you say about exponential stability? Hint: Use asimple hard 1QC argument. Note that, along
trajectories of (6.11.3), onehasz = Cx, z = CAx + CBw and w = A(2).

4. Show that the condition in the previous exercise is equivalent to the existence of a symmetric
K,v e R, t > 0with

ATK+KAKB+ o I\ /0w 0 7\,
BTK 0 CA CB v 0 CA CB
(01 Tr 2t ¢ 0 I 0
c 0 t o)\co)="
5. With G(s) = C(sI — A)~1B, the LMI in the last exercise is solvable iff there existsag € R

with

Re((1+ giw)G(iw)) < 1 foral w € RU {oo}.
This reveals the relation to the classical Popov criterion. Note that ¢ is often assumed to be
nonnegative what is, actually, a redundant hypothesis. Show with an example that the extra

constraint g > 0 (or v > 0in the LMI) introduces conservatism. (Think of a smart test using
LMI-Lab to find an example.)

6. Find an LMI condition for global asymptotic stability of

k
i=Ax+) BjAj(Cjx)
j=1

where the continuously differentiable A; : R — R satisfy the sector conditions ;72 <
zAj(z) <ajz?foralz e R.
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Chapter 7

Robust controller synthesis

7.1 Robust controller design

So far we have presented techniques to design controllers for nominal stability and nominal per-
formance. Previous chapters have been devoted to a thorough discussion of how to analyze, for a
fixed stabilizing controller, robust stability or robust performance. For time-invariant or time-varying
parametric uncertainties, we have seen direct tests formulated as searching for constant or parameter-
dependent quadratic Lyapunov functions. For much larger classes of uncertainties, we have derived
tests in terms of integral quadratic constraints (1QC’s) that involve additional variables which have
been called scalings or multipliers.

Typicaly, only those 1QC tests with a class of multipliers that admit a state-space description as
discussed in Sections 6.6-6.10 of Chapter 4 are amenable to a systematic output-feedback controller
design procedure which is a reminiscent of the D/K -iteration in u-theory. This will be the first
subject of this chapter.

In a second section we consider as a particular information structure the robust state-feedback de-
sign problem. We will reveal that the search for static state-feedback gains which achieve robust
performance can be transformed into a convex optimization problem.

The discussion is confined to the quadratic performance problem since most results can be extended
in apretty straightforward fashion to the other specifications considered in these notes.
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7.1. ROBUST CONTROLLER DESIGN

7.1.1 Robust output-feedback controller design

If characterizing robust performance by an IQC, the goal in robust design is to find a controller and
amultiplier such that, for the closed-loop system, the corresponding 1QC test is satisfied. Hence, the
multiplier appears as an extra unknown what makes the problem hard if not impossible to solve.

However, if the multiplier is held fixed, searching for a controller amounts to a nhomina design
problem that can be approached with the techniques described earlier. If the controller is held fixed,
the analysistechniques presented in Chapter 6 can be used to find asuitable multiplier. Hence, instead
of trying to search for a controller and a multiplier commonly, one iterates between the search for a
controller with fixed multiplier and the search for a multiplier with fixed controller. This procedure
is known from p.-theory as scalings/controller iteration or D/K iteration.

To be more concrete, we consider the specific example of achieving robust quadratic performance
against time-varying parametric uncertainties as discussed in Section 6.10.

The uncontrolled unperturbed system is described by (4.1.1). We assume that w1 — z1 is the
uncertainty channel and the uncontrolled uncertain system is described by including

wi(r) = A(1)z1(r)
where A(.) variesin the set of continuous curves satisfying
A(t) € A, :=CO{A1, ..., Ay} fordl ¢ > 0.

We assume (w.l.0.g.) that
0 € co{A1, ..., Ax}.

The performance channel is assumed to be given by wy — z2, and the performance index

— QP SP : i 5—1 Qp Sp ~
P _<S; R, )’ R, >0 withtheinverse P~ = SZ R, ) 0,<0

is used to define the quadratic performance specification
OO wa(t) r wo(t) )
0 ) e () o= et

Thegoal isto design acontroller that achieves robust stability and robust quadratic performance. We
can guarantee both properties by finding a controller, a Lyapunov matrix X, and amultiplier

T
P=<SQT ;) 0 <0, (AI./> (SQT ;)(AIA")>Of0raIIj=1,...,N (7.1.1)
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that satisfy the inequalities

T

I 0 0 07/0 0[O0 O I 0 0
XA XB1 XBp 1 0/0 0/0 O XA XB1 XBp
%0 0 I 0 00[Q S[0 © 0 I N
’ C1 D1 Do 00lST RO O C1 D1 D2 ’
0 0 1 00[0 0[Q, S, 0 0 1
Co Dy Dy 00/0 0[S R, Co Dy Dy

(Recall that the condition on the |eft-upper block of P can be relaxed in particular cases what could
reduce the conservatism of the test.)

If we apply the controller parameter transformation of Chapter 4, we arrive at the synthesis matrix
inequalities

~

" 07/0 0/l0 O I 0 0
« 7170lo o0o/lo o A@W) Bi(v) Ba(v)
ko 00/Q S|0 O 0 I 0
X(@) >0, B 00[s” Rl 0 0O Civ) Diw) Dp@) | <©
. 000 0/0, 5, 0 0 1
* 00/0 0|S] R, C2(v) D2(v) Da(v)

Unfortunately, there is no obvious way how to render these synthesis inequalities convex in all
variablesv, 0, S, R.

Thisis the reason why we consider, instead, the problem with a scaled uncertainty
wi(t) = [rA®)]z1(@), A@) € Ac (7.1.2)

where the scaling factor is contained in the interval [0, 1]. Dueto

rAN (0 rSN\(rAY_ (AN [ Q S\[(A
I rST r2R 1 )77\ sT R 1)
we conclude that the corresponding analysis or synthesis are given by (7.1.1) and

T

I 0 0 070 0|0 O I 0 0
XA XB1 XBp 100 0|0 O XA XB1 XBz
%0 0 I 0 00[ Q0 rS[0O0 O 0 I 0 | _,
’ Ci. D1 D 00|rST ¥2R| 0O O Ct D1 D
0 0 I 00/ 0 O0]0Q, S 0 0 I
C2 Dn Do 00/ 0 O0|S] R, C2 Dn Do
(7.1.3)
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or
«\' /011l 0 0|0 O I 0 0
% 1 0] 0 0 0 A(w) Bi(v) B
= 00 0 rS|0 O 0 i 0
X)) =01, 0 0|rs” r2R| 0O © Civ) Diw) Dy | <% (714
r 00/ 0 o010, S, 0 0 1
* 00[ 0 O0/|S] R, C2(v) Dn(v) D2(v)

For r = 0, we hence have to solve the nominal quadratic performance synthesisinequalities. If they
are not solvable, the robust quadratic performance synthesis problem is not solvable either and we
can stop. If they are solvable, theideaistotry to increase, keeping the synthesisinegqualitiesfeasible,
the parameter r from zero to one. Increasing r is achieved by alternatingly maximizing r over v
satisfying (7.1.4) (for fixed P) and by varying X and P in (7.1.3) (for afixed controller).

The maximization of » proceeds along the following steps:

Initialization. Performanominal quadratic performancedesign by solving (7.1.4) for r = 0. Proceed
if these inequalities are feasible and compute a corresponding controller.

After thisinitial phase, theiteration is started. The j — 1-st step of theiteration leadsto a controller,
a Lyapunov matrix X, and a multiplier P that satisfy the inequalities (7.1.1) and (7.1.3) for the
parameter r = r;_1. Then it proceeds as follows:

First step: Fix the controller and maximize r by varying the Lyapunov matrix X and the scaling such
that such that (7.1.1) and (7.1.3) hold. The maximal radiusis denoted as7; and it satisfiesr;_1 <7;.

Second step: Fix the resulting scaling P and find the largest » by varying the variables v in (7.1.4).
The obtained maximum r; clearly satisfies7; < r;.

The iteration defines a sequence of radii
F1=rz=rg=---

and a corresponding controller that guarantee robust stability and robust quadratic performance for
all uncertainties (7.1.2) with radiusr = r;.

If we are in the lucky situation that there is an index for which »; > 1, the corresponding controller
isrobustly performing for al uncertainties with valuesin A, asdesired, and we are done. However,
if r; < 1for all indices, we cannot guarantee robust performance for » = 1, but we still have a
guarantee of robust performance for r = r;!

Before entering a brief discussion of this procedure, let us include the following remarks on the
start-up and on the computations. If the nominal performance synthesis problem has a solution, the
LMI’s(7.1.1)-(7.1.3) do have asolution X and P for the resulting controller and for some - possibly
small - r > 0; thisjust follows by continuity. Hence the iteration does not get stuck after the first
step. Secondly, for afixed r, the first step of the iteration amounts to solving an analysis problem,
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and finding a solution v of (7.1.4) can be converted to an LMI problem. Therefore, the maximization
of r can be performed by bisection.

Even if the inequalities (7.1.1)-(7.1.4) are solvable for r = 1, it can happen the the limit of r; is
smaller than one. As a remedy, one could consider another parameter to maximize, or one could
modify the iteration scheme that has been sketched above. For example, it is possible to take the
fine structure of the involved functions into account and to suggest other variable combinations that
render the resulting iteration steps convex. Unfortunately, one cannot give general recommendations
for modifications which guarantee success.

Remark. It should be noted that the controller/multiplier iteration can be extended to all robust
performance tests that are based on families of dynamic 1QC’s which are described by real rational
multipliers. Technically, one just requires a parametrization of the multipliers such that the corre-
sponding analysistest (for afixed controller) and the controller synthesis (for afixed multiplier) both
reduce to solving standard LMI problems.

7.1.2 Robust state-feedback controller design

For the same set-up as in the previous section we consider the corresponding synthesis problem if
the state of the underlying system is measurable. According to our discussion in Section 4.6, the
resulting synthesis inequalities read as

T
0 <0, (Alf> (5% ;)(AI’)>0forallj:1,...,N

and
«\7/01|l0 0|l0 O I 0 0
* I 00 0|0 O AY+BM B1 B>
- Tk 00[Q0 S| 0 O 0 I 0 -0
N oo/sT RO O C1Y + E1M D1 D1
52 00[0 0[Q, S, 0 0 I
* 00/0 OS] R, CoY + EtM Dy Do

inthevariablesY, M, Q, S, R.

Inthisformtheseinequalitiesare not convex. However, we can apply the Dualization Lemma (Section
4.5.1) to arrive at the equivalent inequalities

T ~ o~
~ 1 o S 1 .
R >0, <—AT) (S,T R)(_A;"><Of0ra||]=1,,N
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andY > 0,
070 00 O —(AY + BM)T —(C1Y + E\M)T  —(CaY + EoM)T
I 00 0|0 O 1 0 0
000 S0 O —B! -n] -DJ,
*I 0o 0[57 R| 0 o0 0 i 0 >0
00[0 0]|Q, S, —BJ —-DJ, —-DY
00/ 0 0[S R, 0 0 1

inthevariablesY, M, O, S, R. It turnsout that these dual inequalities are al affinein the unknowns.
Testing feasibility hence amounts to solving a standard LMI problem. If the LMI’'s are feasible, a
robust static state-feedback gainisgivenby © = MY 1. Thisisone of the very few lucky instances
in the world of designing robust controllers!

7.1.3 Affine parameter dependence
Let usfinally consider the system

X AA®) | BiI(A®) B(A®) x
z | =1 Ci(A@®) | D(A(t)) E(A(1)) w |, A(t) € co{Aq, ..., Ay}
C(A®M) | F(A@)) 0 u

where the describing matrices depend affinely on the time-varying parameters. If designing output-
feedback controllers, there is no systematic alternative to pulling out the uncertainties and applying
the scalings techniques asin Section 7.1.1.

For robust state-feedback design there is an alternative without scalings. One just needs to directly
solve the system of LMI’s

T

* 07/7]0 O I 0
* I 0|0 O A(A)Y + B(Aj) )M Bi(Aj) _
Y >0, - 000, S, 0 7 0, =1,..., N
* 0 0|S] R, C1(A)Y + E(A))M D(Aj)
(7.15)

inthevariablesY and M.

For the controller gain D. = MY 1 we obtain

«\"/01]0 O I 0
* 1 00 O (A(Aj) + B(A))D,)Y Bi(A)) o

Y >0, - 000, S, ) 7 <0, j=1...,N
* 0 0|sT R, (C1(A) + E(A))D)Y  D(A))
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A convexity argument leads to

x 07/0 0 I 0
vy =o |X /1 0/0 O (A(A@)) + B(A(®)D)Y  Bi(A()) -0
s 00[0, S, 0 T
00

P
S, Ry (C1(A(@) + E(AD)D)Y  D(A())

for al parameter curves A(t) € co{Aq, ..., Ay}, and we can perform a congruence transformation
asin Section 4.6 to get

* 07]0 0 I 0
x =0 |X I/ 00 O X(A(A@)) + B(A(1))Dc) X Bi(A(1)) -0
e 00/0, S, 0 1 '
* 00 S,f R, (C1(A@®) + E(A()D:)  D(A@))

These two inequalities imply, in turn, robust exponential stability and robust quadratic performance
for the controlled system as seen in Section 6.10.2.

We have proved that it suffices to directly solve the LMI’s (7.1.5) to compute a robust static state-
feedback controller. Hence, if the system’s parameter dependence is affine, we have found two
equivalent sets of synthesisinequalitiesthat differ in the number of the involved variables and in the
sizes of the LMI’'s that are involved. In practice, the correct choice is dictated by whatever system
can be solved faster, more efficiently, or numerically more reliably.

Remark. Hereisthe reason why it is possible to directly solve the robust performance problem by
state-feedback without scalings, and why this technique does, unfortunately, not extend to output-
feedback control: The linearizing controller parameter transformation for state-feedback problems
does not involve the matrices that describe the open-loop system, whereas that for that for ouptut-
feedback problems indeed depends on the matrices A, B, C of the open-loop system description.

L et us conclude this chapter by stressing, again, that these techniques find straightforward extensions
to other performance specifications. As an exercise, the reader is asked to work out the details of the
corresponding results for the robust H»-synthesis problem by state- or output-feedback.

7.2 Exercises

Exercise 1

This is an exercise on robust control. To reduce the complexity of programming, we consider a
non-dynamic system only.
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Suppose you have given the algebraic uncertain system

Z1 0 1 0 11|10 w1
72 05 0 05 01|01 w2
23 2a O a 01|00 w3
4 | = 0 -2a 0 —a|1/00 wa |,
z 1 1 1 1 (0|00 w
y1 1 0 O o0|0|0O u1
v2 0 1 0 00|00 uy
with atime-varying uncertainty
w1 81(7) 0 21
w2 81(1) Z2
= , 161(1)] < 0.7, 182(t)| < 0.7.
w3 52(1) 23 [81(D)| < [82(1)|

w4 0 82(1)

I

4

As the performance measure we choose the L2-gain of the channdl w — z.

1

For the uncontrolled system and for each a € [0, 1], find the minimal robust L»-gain level of
the channel w — z by applying the robust performance analysis test in Chapter 3 with the

following class of scalings P = < SQT ISe ) :

e Pisasin u-theory: Q, S, R are block-diagonal, O < 0O, R isrelated to Q (how?), and
S is skew-symmetric.
e Pisgenera with O < 0.
» P isgeneral with Q1 < 0, Q2 < 0, where Q; denote the blocks Q(1: 2,1 : 2) and
0(3:4,3:4) inMatlab notation.
Draw plots of the corresponding optimal values versus the parameter a« and comment!

For a = 0.9, apply the controller

(2)=(59)(2)

and perform the analysistest with thelargest class of scalingsfor k € [—1, 1]. Plot theresulting
optimal value over k and comment.

. Performacontroller/scalingiterationto minimizethe optimal valuesfor thecontroller structures

()=o) () = ()= &) ()

Start from gain zero and plot the optimal valuesthat can are reached in each step of theiteration
to reveal how they decrease. Comment on the convergence.

. With the last full controller from the previous exercise for a performance level that is close to

the limit, redo the analysis of thefirst part. Plot the curves and comment.
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Chapter 8

Linear parameterically varying
systems

Linear parameterically varying (LPV) systems are linear systems whose describing matrices depend
on atime-varying parameter such that both the parameter itself and itsrate of variation are known to
be contained in pre-specified sets.

In robust control, the goa is to find one fixed controller that achieves robust stability and robust
performance for all possible parameter variations, irrespective of which specific parameter curve
does indeed perturb the system.

Instead, in LPV control, it isassumed that the parameter (and, possibly, itsrate of variation), although
not known apriori, is (are) on-line measurable. Hence the actual parameter value (and its derivative)
can be used as extrainformation to control the system - the controller will turn out to depend on the
parameter as well. We will actually choose also an LPV structure for the controller to be designed.

Wewould liketo stressthe decisive distinction to the control of time-varying systems:. Inthe standard
techniquesto controlling time-varying systems, the model description isassumed to be known apriori
over the whole time interval [0, o). In LPV control, the model is assumed to be known, at time
instant ¢, only over theinterva [0, ¢].

Thetechniqueswewouldliketo devel op closely resemblethosefor robust control wehaveinvestigated
earlier. It is possible to apply them

« to control certain classes of nonlinear systems

« to provide a systematic procedure for gain-scheduling

with guarantees for stability and performance.
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Before we explore these applications in more detail we would like to start presenting the available
problem setups and solution techniques to LPV control.

8.1 General Parameter Dependence

Suppose that §.., 8. C R™ are two parameter sets such that
8. x 8. iscompact,
and that the matrix valued function

A(p) | Bp(p) B(p)
Cp(p)| Dp(p) E(p) iscontinuousin p €4.. (8.1.1)
Cp) | F(p) O

Consider the Linear Parameterically Varying (LPV) systemthat is described as

X AB®) | Bp(8(1)) BB(®)) x . )
o | =1 C,60) [D,60) EGG) || w, |, 1) €b., dt)ed.. (812
y C@@) | F(6() 0 u

We actually mean the family of systemsthat is obtained if letting §(.) vary in the set of continuously
differentiable parameter curves

§ 1[0, 00) — R™ with §(t) € 8., 8(t) € 8. foral ¢ > 0.

The signals admit the same interpretations as in Chapter 4: u is the control input, y isthe measured
output available for control, and w, — z, denotes the performance channel.

In LPV contral, it is assumed that the parameter 5(¢) is on-line measurable. Hence the actual value
of &(¢) can be taken as extrainformation for the controller to achieve the desired design goal.

In view of the specific structure of the system description, we assume that the controller admits a
similar structure. Infact, an LPV controller is defined by functions

(Ac(p) B:(p)
Cc(p) D.(p)

<5€c ) _ ( Ac(8(r)) Be(8(1)) ) ( Xe )

u )\ Ce(8(t)) Dc(3(1)) y

with the following interpretation: It evolves according to linear dynamics that are defined at time-
instant 7 via the actually measured value of §(z).

) that are continuousin p € §. (8.1.3)

Note that a robust controller would be simply defined with a constant matrix

A. B.
C. D,
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that does not depend on § what clarifiesthe difference between robust controllersand LPV controllers.

The controlled system admits the description

E\ _ ([ AG®) BGEM) [ & o
(z,, ) - < CG1) DE®)) ) ( w, > 8(t) €8, 8(1) €6 (8.1.4)
where the function

( A(p) B(p)

iscontinuousin p € §
C(p) i)(p)) pede

and given as

B.(p)C(p) Ac(p) B.(p)F(p)
Cp(p) + E(p)Dc(p)C(p) E(p)Cc(p) | Dp(p) + E(p)De(p)F (p)

( A(p) + B(p)D.(p)C(p) B(p)C:(p) Bp(p)+B(p)Dc(p)F(p))

or

A(p) 0| By(p) O BDY\ aip) By \( 0 1] ©
O 0 © +1 L 0 (cc(p) Dc(p)><C(17) OF(p))'
Cp(p) O] Dp(p) 0 Ep)

To evaluate performance, we concentrate again on the quadratic specification

*(wm )\ , (w® ,
/o < z(1) > PP( 2() ) dt = —ellwll (8.15)

with an index

SR ) ! " ( ’ ) ~
P, = T , R, >0 thathastheinverse P ~=|[ = ~ , 0,<0.
r < Sp R b p S; R, P

In order to abbreviate the formulation of the analysis result we introduce the following differential
operator.

Definition8.1 If X : 6. 2 p — X(p) € R™" is continuously differentiable, the continuous
mapping

m
: o X
X : 8. x §. — R™" isdefined as dX (p.q) =Y _ 5 (P
j=1""

Note that this definition is simply motivated by the fact that, along any continuously differentiable

parameter curve §(.), we have

m

d X . .
d—X((S(t)) = Z —(8(1)3; (1) = aX(5(1), 5(1)). (8.1.6)
t o op;
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(We carefully wrote down the definitions and relations, and one should read al this correctly. X
and 89X are functions of the parameters p € §. and ¢ € &, respectively. In the definition of X, no
time-trgjectories are involved. The definition of X isjust tailored to obtain the property (8.1.6) if
plugging in afunction of time.)

In view of the former discussion, the following analysis result comes as no surprise.

Theorem 8.2 Suppose there exists a continuously differentiable X (p) defined for p € §. such that
forall p € . and g € §. one has

3X(p, @) + AP)T X(p) + X (p)A(p) X(p)B(p)
x>0 ( B(p)" X(p) 0 ) +

0 I T 0 ]
* ( C(p) D(p) > Py ( C(p) D(p) > <0. (817

Then there exists an ¢ > 0 such that, for each parameter curve with §(r) € 8. and () € S,
the system (8.1.4) is exponentially stable and satisfies (8.1.5) if the initial condition is zero and if
wy € La.

In view of our preparations the proof isasimple exercise that is left to the reader.

We can now use the same procedure asfor LTI systemsto arrive at the corresponding synthesisresult.
Itisjust required to obey that all the matrices are actually functionsof p € 8. or of (p, g¢) € 8. x 4.

If partitioning
(X U a (Y V
x_<UT *) X _(VT *)
we can again assume w.l.0.g. that U, V have full row rank. (Note that this requires the compactness
hypothesison §. and §.. Why?) With

o) wose (1 2)

Yy’ =z and I — Xy =UVT.

we obtain the identities

If weapply thedifferential operator 3 to thefirst functional identity, wearriveat (%) X+Y7 (8 X) =
0Z. (Do the simple calculations. Note that 9 is not the usua differentiation such that you cannot
apply the standard product rule.) If we right-multiply ¥, thisleadsto

) ) rr (0 0 Yy 1 Yy av\ (I X
Y @X)Y = (2%~ 0 Z —<ax aU><vT 0>_<0 0)<°UT>

and hence to ;
T _ oY —@Y)X — (@)U
40Xy = ( @X)Y + @QU)VT X ) '
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8.1. GENERAL PARAMETER DEPENDENCE

If we introduce the transformed controller parameters

K L\ (U XB Ac B vl 0 XAY 0O
mnN)=\o 1 c. o )\ley 1)\ 0 o)7
@xX)Y + @U)vT 0o
+ 0 0 )

abrief calculation reveals that

T T [ —9Y +sym(AY + BM) (A+ BNC)+ KT
#OX+ A x+x¢g)y,_( (A+ BNCT + K 8X+sym(AX+LC)>

Terw [ Bp+BNF _ _
Y x£_<XBp+LF . CY=(C,Y+EM C,+ENC), D=D,+ENF

where we used again the abbreviation sym (M) = M + M. If compared to a parameter independent
Lyapunov function, we have modified the transformation to K by (3X)Y + (3U)VT in order to
eliminate this extra term that appears from the congruence transformation of 9. If X is does not
depend on p, 3X vanishesidentically and the original transformation is recovered.

We observethat L, M, N arefunctions of p € 8. only, whereas K also dependson ¢ € §.. Infact,
this function has the structure

K(p,q) = Ko(p) + Y_ Ki(p)gi (8.1.8)
i=1

(why?) and, hence, it isfully described by specifying
Ki(p), i=0,1,....m
that depend, aswell, on p € §. only.

Literally asin Theorem 4.3 one can now prove the following synthesis result for LPV systems.

Theorem 8.3 If there exists an LPV controller defined by (8.1.3) and a continuously differentiable
X (.) defined for p € 8. that satisfy (8.1.7), then there exist continuously differentiable functions
X, Y and continuous functions K;, L, M, N defined on §. such that, with K given by (8.1.8), the

inequalities
Y I
< I x ) >0 (8.1.9)

( —3Y +sym(AY + BM) (A+BNC)+ K" |B,+BNF )
+

and

(A+ BNC)T + K 80X +sym(AX +LC)| XB,+ LF
(B, + BNF)T (XB, +LF)T | 0

T
* 0 0 i
+(*) P”<CpY+EM Cp+ENCDp+ENF)<0 (8.1.10)
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8.1. GENERAL PARAMETER DEPENDENCE

hold on 8. x §.. Conversely, suppose the continuously differentiable X, ¥ and the continuous
K;, defining K asin (8.1.8), L, M, N satisfy these synthesis inequalities. Then one can factorize
I — XY = UVT with continuously differentiable square and nonsingular U, V, and

~1
Y vV I 0
x:(l o) (XU) (8.1.11)
Ae B\ (U XB\ ‘[ K—XAY —[@X)Y +@U)VT] L\ (VI 0\ "
c. p.)~\o 1 M ~N)ery 1
(8.1.12)

render the analysisinequalities (8.1.7) satisfied.

Remark. Note that the formula (8.1.12) just emerges from the modified controller parameter trans-
formation. We observe that the matrices B., C., D. are functions of p € §. only. Due to the
dependence of K on ¢ and dueto the extraterm U ~1[(8X)Y + (dU)VT1V~T intheformulafor A,
this latter matrix is afunction that depends bothon p € §. and g € §.. It has the same structure as
K and can be written as

m
Ac(p, @) = Ao(p) + Y Ai(p)gi-
i=1
A straightforward calculation reveal s that
X aU
A=UYKv T - —yv T —1 i
api api
Hence, to implement this controller, one indeed requires not only to measure 5(7) but also its rate
of variation §(¢). However, one could possibly exploit the freedom in choosing U and V' to render
A; = 0 such that A, does not depend on ¢ any more. Recall that U and V need to be related by
I — XY =UVT,; hencelet us choose

=1 ...,m.

vl .—=u~lu - xy).

Thisleads to X U
Ai=UNK —-—VUI-XY)'U-—=—"1 i=1....m.
api ap;

Therefore, U should be chosen asanonsingular solution of the system of first order partial differential
equations

oU X
—(p) =[Ki(p) — — ()Y (PIU = X(p)Y(p)U(p), j=1,...,m.

api api
Thisleadsto A; = 0 such that theimplementation of the LPV controller does not require any on-line
measurements of the rate of the parameter variations. First order partia differential equations can be
solved by the method of characteristics [10]. We cannot go into further details at this point.

In order to construct a controller that solvesthe LPV problem, one hasto verify the solvability of the
synthesis inequalities in the unknown functions X, Y, K;, L, M, N, and for designing a controller,
one hasto find functions that solve them.
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8.1. GENERAL PARAMETER DEPENDENCE

However, standard algorithms do not allow to solve functional inequalities directly. Hence we need
to include a discussion of how to reduce these functional inequalities to finitely many LMI'sin real
variables.

First step. Sinceg € §. enters the inequality (8.1.10) affinely, we can replace the set §.., if convex,
by itsextreme points. Let us makethe, in practice non-restrictive, assumption that this set hasfinitely
many generators:

5. =co{st, ..., 8.
Solving (8.1.9)-(8.1.10) over (p, ¢) € 8. x 8. is equivalent to solving (8.1.9)-(8.1.10) for

ped., qel{dt ... 8. (8.1.13)

Second step. Instead of searching over the set of all continuous functions, we restrict the search to a
finite dimensional subspace thereof, asis standard in Ritz-Galerkin techniques. Let us hence choose
basis functions

f10), ..., fi(.) that are continuoudly differentiable on §..

Then @l the functions to be found are assumed to belong to the subspace spanned by the functions
fj. Thisleadsto the Ansatz

1 1
X(p)=)_X;fip), Y(p)=) Y fi(p)
j=1

j=1

[
Ki(p) =) Kifi(p). i=0.1,....m,
j=1

l I l
L(p) =) Lifi(p), M(p)=) M;f;(p). N(p)=) N;fi(p).

j:l j:l j=l

We observe

l 1
0X(p,q) =) X;0fj(p,q@), 3Y(p,q) =) Y;dfi(p.q).
j=1 j=1

If we plug these formulas into the inequalities (8.1.9)-(8.1.10), we observe that al the coefficient
matricesenter affinely. After thissubstitution, (8.1.9)-(8.1.10) turnsout to be afamily of linear matrix
inequalitiesin the

matrix variables X, Y;, K}, Lj, M;, N,
that is parameterized by (8.1.13). The variables of this system of LMI’'s are now real numbers;
however, since the parameter p still varies in the infinite set §., we have to solve infinitely many

LMI’'s. Thisis, in fact, a so-called semi-infinite (not infinite dimensional as often claimed) convex
optimization problem.
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8.1. GENERAL PARAMETER DEPENDENCE

Third step. To reduce the semi-infinite system of LMI’sto finitely many LMI’s, the presently chosen
route isto just fix afinite subset
Stinite C ¢

and solvethe LMI system in those points only. Hence the resulting family of LMI’sis parameterized

by
p € Stinite and g € {82, ..., 8%).

We end up with a finite family of linear matrix inequalities in real valued unknowns that can be
solved by standard algorithms. Since a systematic choice of points finite iS Obtained by gridding the
parameter set, thislast step is often called the gridding phase, and the whole procedure is said to be
agridding technique.

Remark on the second step. Dueto Weierstrald approximation theorem, one can choose a sequence
of functions f1, f», ... on &, such that the union of the subspaces

/SV ZS)an{flw"’fv}

is densein the set of all continuously differentiable mappings on 8. with respect to the norm

m a
I£1I'=max{|f(p)I | p € dc}+ Zmax{lgf(p)l | p €dc}
j=1 !
This implies that, given any continuously differentiable ¢ on §. and any accuracy level € > 0, one
can find an index vg such that there existsan f < 4,,, for which

Vpede, gede: |g(p)— f(P) <€ 19g(p.q) —3f (p.q)| <e.

(Provide the details.) Functionsin the subspace §,, hence approximate any function g and itsimage
dg under the differential operator 9 up to arbitrary accuracy, if theindex v ischosen sufficiently large.

Therefore, if (8.1.9)-(8.1.10) viewed as functional inequalities do have a solution, then they have a
solution if restricting the search over thefinite dimensional subspace §,, for sufficiently largev, i.e., if
incorporating sufficiently many basis functions. However, the number of basis functions determines
the number of variables in the resulting LMI problem. To keep the number of unknowns small
reguires an efficient choice of the basis functions what is, in theory and practice, a difficult problem
for which one can hardly give any general recipes.

Remark on thethird step. By compactness of §. and continuity of all functions, solving the LMI’s
for p € §. or for p € diinite IS equivalent if only the points are chosen sufficiently dense. A measure
of density isthe infimal ¢ such that the balls of radius ¢ around each of the finitely many pointsin
Stinite already cover §.:
scc U tullp—poll <el
Po € Sfinite

If the data functions describing the system are also differentiablein §, one can apply the mean value
theorem to provide explicit estimates of the accuracy of the required approximation. Again, however,
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8.2. AFFINE PARAMETER DEPENDENCE

it isimportant to observe that the number of LMI’s to solve depends on the number of grid-points;
hence one has to keep this number small in order to avoid large LMI’s.

Remark on extensions. Only slight adaptations are required to treat al the other performance
specifications (such as bounds on the Lo-gain and on the analogue of the H>-norm or generalized
Hj>-norm for time-varying systems) as well as the corresponding mixed problems as discussed in
Chapter 4infull generality. Note also that, for single-objective problems, the techniquesto eliminate
parametersliterally apply; thereisnoneed gointothedetails. In particular for solving gain-scheduling
problems, it is important to observe that one can as well let the performance index depend on the
measured parameter without any additional difficulty. As a designer, one can hence ask different
performance properties in different parameter ranges what has considerable relevance in practical
controller design.

Remark on robust LPV control. As another important extension we mention robust LPV design.
It might happen that some parameters are indeed on-line measurable, whereas others have to be
considered as unknown perturbations with which the controller cannot be scheduled. Again, it is
straightforward to extend the robustness design techniques that have been presented in Chapter 4
from LTI systems and controllers to LPV systems and controllers. This even allows to include
dynamic uncertainties if using IQC’s to capture their properties. Note that the scalings that appear
in such techniques constitute extra problem variables. In many circumstances it causes no extra
technical difficulties to let these scalings also depend on the scheduling parameter what reduces the
conservatism.

8.2 Affine Parameter Dependence

Suppose that the matrices (8.1.1) describing the system are affine functions on the set
8. =co{st, ..., 8.

In that case we intend to search, as well, for an LPV controller that is defined with affine functions
(8.1.3). Note that the describing matrices for the cosed-loop system are also affine in the parameter
if

( g ) and (C F ) areparameter independent
what is assumed from now on. Finaly, welet X in Theorem 8.2 be constant.

Since R, > 0, weinfer that (8.1.7) issatisfied if and only if it holds for the generators p = 8/ of the
set §.. Therefore, the analysis inequalities reduce to the finite set of LMI’s

AGHTX 4+ XAGT) XB(ST)
x>0 ( BEHTX 0 >+

o 1 \ o 1 .
+(e(a/’) :D(8j)> P”(e(sl’) ;o(af'))<0f°ra” J=henk
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8.3. LFT SYSTEM DESCRIPTION

Under the present structural assumptions, the affi nefunctions( 2“ g” ) aretransformed into affine
C C

functions ( II‘; ﬁ ) under the controller parameter transformation as considered in the previous

section.

Then the synthesis inequalities (8.1.9)-(8.1.10) whose variables are the constant X and Y and the
affine functions AIfI 11;, turn out to be affine in the parameter p. Thisimplies for the synthesis
inequalities that we can replace the search over . without loss of generality by the search over the
generators/ of thisset. Therefore, solving the design problem amountsto testing whether theLM1's

Y I
<IX)>O
and

( sym (A(3/)Y + BM(87)) *

*
(A8/) 4+ BN@BHO)T + K(87) sym(A(S)X + L(©)C) | = | +
(By(87) + BN(/)F)T (XB,(8))+LEHF)T [0

+ * ' P 0 0 ! <0
s P\ CpY + EM(87) C,(8/)+ EN(8/)C | Dp(8/) + EN(8))F
for j =1,..., k admit asolution.

Since affine, the functions K, L, M, N are parameterized as

K(p) Lp)\_ (Ko Lo\, ~x~( Ki Li)
<M<p) N(P)>_<Mo No>+i§<Mi N,-)pl

with real matrices K;, L;, M;, N;. Hence, the synthesis inequalities form genuine linear matrix
inequalities that can be solved by standard algorithms.

8.3 LFT System Description

Similarly asfor our discussion of robust controller design, let us assume in this section that the LPV
system is described asand LTI system

X A|B. B, B x
Zu _ Cy | Duy Dup E, Wy (8.3.1)
ip Cp|Dpu Dpp Ep Wp
y C|F, F, O u
in wich the parameter enters via the uncertainty channel w,, — z, as
wy (1) = A1) zu (1), A1) € A. (8.3.2
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The size and the structure of the possible parameter values A(¢) is captured by the convex set
A, :=CO{Aq, ..., Ayn}

whose generators A ; aregiven explicitly. Weassumew.l.o.g. that 0 € A.. Asbefore, we concentrate
on the quadratic performance specification with index P, imposed on the performance channel
wp = Zp.

Adjusted to the structure of (8.3.1)-(8.3.2), we assume that the measured parameter curve enters the
controller also in alinear fractional fashion. Therefore, we assume that the to-be-designed LPV
controller is defined by scheduling the LTI system

)'cczAcxc~|—Bc(u)j ) <Z” ):chc—i—DC(u)j) (8.3.3)
C C C

with the actual parameter curve entering as
we(t) = Ac(A@1))zc(1). (8.3.4)

The LPV controller is hence parameterized through the matrices A., B., C., D., and through a
possibly non-linear matrix-valued scheduling function

A (A) € R ™" definedon A..
Figure 8.1 illustrates this configuration.

Thegoal isto construct an LPV controller suchthat, for all admissible parameter curves, the controlled
system is exponentially stable and, the quadratic performance specification with index P, for the
channel w, — z, issatisfied.

The solution of this problem is approached with a simple trick. In fact, the controlled system can,
alternatively, be obtained by scheduling the LTI system

i A|B, O|B,|B 0 x
2 Co | Duw O |Dup | Ex O W
Ze 0| 0 O| 0|0 I, We

= < 8.3.5
Zp Co|Dpu O |Dy, |E, O Wy ( )
y C|F O|F,|0 O u
We 0| 0 I,/0]0 O Zc

with the parameter as

wi) _(A@0 0O 2
(wc)_< 0 AC(A(z)))<ZC)v (8.3.6)

and then controlling this parameter dependent system with the LTI controller (8.3.3). Alternatively,
we can interconnect the LTI system (8.3.5) with the LTI controller (8.3.3) to arrive at the LTI system

i Al B, B. B, )\ [ x
Zu Cu | Duy Dyc <>‘Z)up Wy

= , 8.3.
Zc Cc| Dy Dee c(Dcp We ( 7)
Zp Cp | Dpu Dpe Dpp Wp
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Zu A wu
. LTI w
p Plant p
Y U
LTI
Controller
ZC wC
A(A)

Figure 8.1: LPV system and LPV controller with LFT description

and then re-connect the parameter as (8.3.6). Thislatter interconnection order isillustrated in Figure
8.2.

Notethat (8.3.5) isan extension of the original system (8.3.1) with an additional uncertainty channel
we —> z, and with an additional control channel z. — w,; the number n, and n. of the components
of w, and z, dictate the size of theidentity matrices I,,, and I,,, that are indicated by their respective
indices.

Once the scheduling function A, (A) has been fixed, it turns out that (8.3.3) is a robust controller
for the system (8.3.5) with uncertainty (8.3.6). The genuine robust control problem in which the
parameter is not measured on-line would relate to the situation that n, = 0 and n, = 0 such that
(8.3.5) and (8.3.1) areidentical. In LPV control we have the extra freedom of being able to first
extend the system asin (8.3.5) and design for this extended system arobust controller. It will turn
out that this extra freedom will render the corresponding synthesis inequalities convex.

Before we embark on a solution of the LPV problem, let us include some further comments on the
corresponding genuine robust control problem. We have seen in section 7.1.1 that the search for a

192



8.3. LFT SYSTEM DESCRIPTION

Zu A wu
. LTI w
p Plant p
Y U
LTI
Controller
ZC wC
A(4)

Figure 8.2: LPV system and LPV controller: Alternative Interpretation

robust controller leads to the problem of having to solve the matrix inequalities

«\'/01|l0 0l0 O I 0 0
x 10/0 o/0 0 A() B,) B,W)
* 000 S|0 O 0 1 0
X@) >0, x 00[s”T R| O O C.(v) Dy(v) Dyp(v) <0
¥ 000 0/Q, S, 0 0 I
* 00/0 O S,{ R, Cp(v) Dpu(v) Dpp(v)
T
(?) (SQT ;)(§)>0fora||AeAc

in the parameter v and in the multiplier P = < SQT Ii )

Recall from our earlier discussion that one of the difficultiesisanumerical tractable parameterization

of the set of multipliers. This was the reason to introduce, at the expense of conservatism, the
following subset of multipliers that admits a description in terms of finitely many LMI’s:

T
P::{P:(SQT ]Se>|Q<o,<AIf) P(Alj)>0forj:1,...,N . (838

Even after confining the search to v and P € P, no technique is known how to solve the resulting
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gtill non-convex synthesis inequalities by standard algorithms.

In contrast to what we have seen for state-feedback design, the same is true of the dual inequalities
that read as

«\7(0 X|0 0|0 O AT -C,»T -C,7
N X 00 0|0 O I 0 0
w000 S[0 0 || =B D@ —Dp)’
X0 =01, 11 x 0|57 Rl o o 0 i 0 0
% 00[0 0/0, S, || =B, —Dupy)T —D,p(»)"
* 0 0/0 0[S/ R, 0 0 1
ro. -
(—ZT) (SQT ;)(_IAT)<OforaII AecA..

Again, even confining the search to the set of multipliers

~ ~ T
ﬁ;z{ﬁz(sQT ;>|R>o,(_lﬂ> ﬁ(_lAr)<0forj=1,...,N} (8.3.9)
J J

does not lead to a convex feasibility problem.

Since non-convexity iscaused by the multiplication of functionsthat depend on v withthemultipliers,
one could be lead to the idea that it might help to eliminate as many of the variablesthat are involved
in v as possible. We can indeed apply the technique exposed in Section 4.5.3 and eiminate K, L,
M, N.

For that purpose one needs to compute basis matrices

Pl wl
®=| @ | of ker(B” El E}) ad w=| W2 | of ker(C F, F,)
o3 w3

respectively. After elimination, the synthesisinequalities read as

Y I
(1 x>>°’ (8.3.10)
1 o o\ /0x|0oo0l0 O I 0 0
A B, B, X 0/0 0[O0 O A B, B,
o I 0 0 0| S0 O 0 I 0
T
Y, Dw Dy | |0 0lsT R0 0 || i Du Dy |¥=O ©@31D
0 1 0 0/0 0[Q, S, 0 0 1
Cp Dpu Dpp 0 0/0 O|S] R, Cp Dpu Dpp
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~AT —¢cl —cr\"(0 x|0 0|0 O —AT ¢l -c?

I 0 0 X 0,0 0|0 O 1 0 0

T _BI{ _DZM D‘z{u 00 ~Q “S 0 0 _BZ _DIZ;l _D;u
® 0 I 0 0 0/ST R| 0 o0 0 I A

T T T A < T T T

-8l -Dp], -D], 0 0/0 0[Q, S -Bl -p], -D],

0 0 0 0]0 0|S] R, 0 0 1
(8.3.12)

in the variables X, Y, and in the multiplier P and P that are coupled as

- 5 -1
3 s
P:(%}%):(SQTR) _pt (8.3.13)

Hence, after elimination, it turns out that the inequalities (8.3.10)-(8.3.12) are indeed affine in the
unknowns X, Y, P and P. Unfortunately, non-convexity re-appears through the coupling (8.3.13) of
the multipliers P and P.

Let us now turn back to the LPV problem where we allow, via the scheduling function A.(A) in the
controller, extrafreedom in the design process.

For guaranteeing stability and performance of the controlled system, we employ extended multipliers
adjusted to the extended uncertainty structure (8.3.6) that are given as

| 0 Q2| S S
o Qe[ Se N | Q21 Q02| 8Sa S22 ,
P, = ( SZ" ‘ R, > = " " R Rop with 0. < 0, R, > 0 (8314)
* x |Ran R
and that satisfy
A 0 A 0
0 Ac(AD) 0 Ac(A)
ﬁ Pe 7 0 > 0 foral A € A. (8315)
0 1 0 1

The corresponding dual multipliers P, = P; ! are partitioned similarly as

o 0 Q| S S
p= (% | Se ) _ | Qa Q2| Su S22 | \ih 5 <0 R, >0 (8.3.16)

¢ | Re + x| R Rp

* * | Rz Ry
and they satisfy
I 0 r I 0
0 I 0 I
—AT 0 Pe| —AT i) >0 forall A e A.
0 —A(A)T 0 —A(AT
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Asindicated by our notation, we observe that

(SQT Ii)ePand (gQT ;)gjs

for the corresponding sub-matrices of P, and P, respectively.

If we recall the description (8.3.6)-(8.3.7) of the controlled LPV system, the desired exponential
stability and quadratic performance property is satisfied if we can find a Lyapunov matrix X and an
extended scaling P, with (8.3.14)-(8.3.15) such that

T

* 0 X| O 0 0 o|0 O 1 0 0 0
* X 0] O 0 0 0|0 O A By, B. By
x O 0| Q Q12 S S22/ 0 O 0 1 0 0
%0 * 0 0(Qx Q2 Sa S2| 0 O 0 o 1 0 -0
’ * 0O 0| = * R Rip| O O Cu Duy Duc Dup ’
* 0 O] = ¥ Ry1 Rp| O O Cc Doy Dee Dep
Tk 0O 0| O 0 0 00, S, 0 0 0 1
* 0O 0| O 0 0 0 S; R, Cp Dpy Dpe Dpp
(8.3.17)

We are now ready to formulate an LMI test for the existence of an LPV controller such that the
controlled LPV system fulfillsthis latter analysis test.

Theorem 8.4 The following statements are equivalent:

1. Thereexistsacontroller (8.3.3) and aschedulingfunction A, (A) suchthat thecontrolled system
asdescribed by (8.3.4)-(8.3.7) admits a Lyapunov matrix X and a multiplier (8.3.14)-(8.3.15)
that satisfy (8.3.17).

2. There exist X, Y and multipliers P € P, P € P that satisfy the linear matrix inequalities
(8.3.10)-(8.3.12).

Proof. Let usfirst prove 1 = 2. We can apply the technique as described in Section 4.5.3 to
eliminate the controller parametersin theinequality (8.3.17). According to Corollary 4.15, thisleads
to the coupling condition (4.5.24) and to the two synthesis inequalities (4.5.25)-(4.5.26). Thewhole
point is to show that the latter two inequalities can indeed be simplified to (8.3.11)-(8.3.12). Let us
illustrate this simplification for the first inequality only since a duality argument leads to the same
conclusions for the second one.

With
qjl
| w? . : C F, 0 F,
v, = 0 as abasis matrix of ker<0 0 I, )
w3
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the inequality that corresponds to (4.5.24) reads as

T 0

0

0
0

0
0

*

0 O
021 Ox» Sa

*

S

R

R21

[oNeoNeoNel o Ne)
[cNeoNeoNelleNo)

o~|»o

v, < 0.

eNolloNoNoNalENe
leNelfcNoNeoNalRal=

* *
0 0
0 0

0
0

QS
S

S

[9%]
=S

RG]
=

oo oox ~

)
~

Due to the zero block in W,, it is obvious that thisis the same as

The two zero block rows in the outer factors allow to simplify thislatter inequality to (8.3.11), what

T X

0
0

0
0

0
0

0

0

O12

S

021 O Sa

*

*
*

R
R

S12
822
R12
R22

[cNeoNoNolleNe]

leNollecNoNoNal - Ne

0
0
0
0
0
0
0

finishes the proof of 1 = 2.

The constructive proof of 2 = 1ismore involved and proceedsin three steps. Let us assume that we

*
0
0

0
0

0
0

0
0

QS
<
FPrlooooloo

%)
w3

0 I
Cp Dpu Dpp

have computed solutions X, ¥ and P € P, P € P with (8.3.10)-(8.3.12).

¥ < 0.

First step: Extension of Scalings. Since P € P and P € P, let usrecall that we have

) <0 foral AeA. (8.3.18)

T T
A A 1 ~ 1
(7) r(7)-0m (L) #( s
Dueto0 € A, weget R > Oand Q0 < O. Hence we conclude for the diagonal blocks of P that
Q0 < 0and R > 0, and for the diagonal blocks of P that O > Oand R < 0. If we introduce

(1) mo=(2)

with the same row partition as P, these properties can be expressed as
7Pz <0, Z"PZ>0and Z'PZ <0, ZTPZ > 0. (8.3.19)

If we observe that im(Z) is the orthogonal complement of im(Z), we can apply the Dualization
Lemmato infer

72Tp17-0 72TP1z<0and ZTP1Z>0, 2TP 1z <0 (8:3.20)
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8.3. LFT SYSTEM DESCRIPTION

For the given P and P, wetry to find an extension P, with (8.3.14) such that the dual multiplier
P, = P;lisrelated to the given P asin (8.3.16). After a suitable permutation, this amounts to
finding an extension

~ 1
P T (P s P T
( T TTNT ) with < - ) = ( T TTNT ) ’ (8:3.21)

where the specific parameterization of the new blocks in terms of anon-singular matrix 7 and some
symmetric N will turn out convenient. Such an extension isvery simpleto obtain. However, we also
need to obey the positivity/negativity constraintsin (8.3.14) that amount to

T
(gg) (I{JT T%vr)(ég)d’ (8.3.22)

i , )
(gg) (TPT TTZT)<§§)>0- (8.3.23)

We can assume w.l.0.g. (perturb, if necessary) that P — P~ isnon-singular. Then we set

and

N=(p-pPHht
and observe that (8.3.21) holds for any non-singular T'.

The main goal isto adjust 7' to render (8.3.22)-(8.3.23) satisfied. We will in fact construct the sub-
blocks 1 = TZ and T> = TZ of T = (T1 T2). Dueto (8.3.19), the conditions (8.3.22)-(8.3.23)
read in terms of these blocks as (Schur)

o [N — Z(ZTPZ)’lzT] Ty <0 and T [N _ Z(ZTPZ)*ZT] T, > 0. (8.3.24)
If we denote by n(S), n_(S) the number of positive, negative eigenvalues of the symmetric matrix

S, we hence have to calculate n_(N — Z(zT PZ)"1zT) and no (N — Z(zT PZ)"1ZT). Simple
Schur complement arguments reveal that

( zTpz 77
n_

_ T . T 15T\ _
Sy )—n_(Z PZ)+n_(N—-2Z"Pz)"1z") =

=n_(N)+n_(Z'PZ—-Z"N"*Z) =n_(N)+n_(z" P712).

SinceZz" PZ and Z" P17 havethe same size and are both negative definite by (8.3.19) and (8.3.20),
weconcluden_(ZT PZ) = n_(Z" P~1Z). Thisleadsto

n_(N—-2zZ"Pz)"*z"y =n_(N).
Literally the same arguments will reveal
ny(N—=22Z"P2) 12"y = np(N).
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8.3. LFT SYSTEM DESCRIPTION

These two relations imply that there exist 71, To> with n_(N), ny (N) columns that satisfy (8.3.24).
Hence the matrix T = (T1 T2) hasny (N) + n_(N) columns. Since the number of rows of T1, T»,
Z,Z, N areadl identical, T is actually a square matrix. We can assume w.l.0.g. - by perturbing 71
or T if necessary - that the square matrix T is nhon-singular.

Thisfinishesthe construction of theextended multiplier (8.3.14). Let usobservethat thedimensionsof
022/ R27 equal thenumber of columnsof 71/T> whichare, inturn, given by theintegersn_ (N)/n4 (N).

Second Step: Construction of theschedulingfunction. Let usfix A andlet usapply the Elimination
Lemmato (8.3.15) with A.(A) viewed as the unknown. We observe that the solvability conditions
of the Elimination Lemma just amount to the two inequalities (8.3.18). We conclude that for any
A € A one canindeed compute a A.(A) which satisfies (8.3.15).

Due to the structural simplicity, we can even provide an explicit formula which shows that A (A)
can be selected to depend smoothly on A. Indeed, by astraightforward Schur-complement argument,
(8.3.15) isequivalent to

U1 U1z (W1 + A)T wh

Uz Uz Wh  WatA)" |,
Wi+ A W12 Vi1 Vi2

War W+ A(A) \Zi V22

forU =R, —SI'0;1S, >0,V =-0;1>0 W= 0Q;Ls,. Obviously this can be rewritten to

-1
( Uz * )_(Uzl W{z)( Un (W11+A>T) <U12 W{l>>0
W22 + Ac(A) Va2 War Va1 Wi+ A Vi Wiz Vi2
inwhich A.(A) only appearsin the off-diagonal position. Since we are sure that there does indeed
exist a A.(A) that renders the inequality satisfied, the diagonal blocks must be positive definite. If

we then choose A.(A) such that the off-diagonal block vanishes, we have found a solution of the
inequality; this leads to the following explicit formula

Un « \ 7t U
Ac(B) = =W + ( War Va1 ) < Wu+A Vi ) < Wiz )

for the scheduling function. We notethat A.(A) hasthe dimensionn_(N) x ny(N).

Third Step: LTI controller construction. After having constructed the scalings, the last stepisto
construct an LTI controller and Lyapunov matrix that render the inequality (8.3.17) satisfied. We are
confronted with a standard nominal quadratic design problem of which we are sure that it admits a
solution, and for which the controller construction proceed along the steps that have been intensively
discussed in Chapter 4. [ |

We have shown that the LMI’sthat needed to be solved for designing an LPV controller areidentical
to those for designing arobust controller, with the only exception that the coupling condition (8.3.13)
drops out. Therefore, the search for X and Y and for the multipliers P € P and P € P to satisfy
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(8.3.10)-(8.3.12) amounts to testing the feasibility of standard LMI's. Moreover, the controller
construction in the proof of Theorem 8.4 is constructive. Hence we conclude that we have found a
full solution to the quadratic performance LPV control problem (including L»-gain and dissipativity
specifications) for full block scalings P, that satisfy Q. < 0. The more interesting general case
without this still restrictive negativity hypothesesis dealt with in future work.

Remarks.

» The proof reveals that the scheduling function A.(A) has a many rows/colums as there are
negative/positive eigenvalues of P — P~1 (if assuming w.l.0.g. that the latter is non-singular.)
If it happens that P — P~ is positive or negative definite, there is no need to schedule the
controller at all; we obtain a controller that solves the robust quadratic performance problem.

* Previous approachesto the LPV problem [1,7,20,39] were based on A.(A) = A such that the
controller is scheduled with an identical copy of the parameters. These results were based on
block-diagonal parameter matrices and multipliers that were as well assumed block-diagonal.
The use of full block scalings[35] require the extension to amore general scheduling function
that is - as seen a posteriori - a quadratic function of the parameter A.

* Itispossibleto extend the procedureto H»-control and to the other performance specifications
in these notes. However, this requires restrictive hypotheses on the system description. The
extension to general mixed problems seems nontrivial and is open in itsfull generality.

8.4 A Sketch of Possible Applications

It isobvious how to apply robust or LPV control techniquesin linear design: If the underlying system
isaffected, possibly inanonlinear fashion, by some possibly time-varying parameter (such asvarying
resonance poles and alike), one could strive

« either for designing a robust controller if the actual parameter changes are not available as
on-line information

« orfor constructing an L PV controller if the parameter (and itsrate of variation) can be measured
on-line.
As such the presented techniques can be a useful extension to the nominal design specifications that

have been considered previoudly.

Inabrief final and informal discussion we would like to point out possible applications of robust and
LPV control techniques to the control of nonlinear systems:

« They clearly apply if one can systematically embed a nonlinear system in a class of linear
systems that admit an LPV parameterization.
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« Evenif itisrequired to perform aheuristic linearization step, they can improve classical gain-
scheduling design schemes for nonlinear systems since they lead to a one-shot construction of
afamily of linear controllers.

8.4.1 From Nonlinear Systemsto LPV Systems

In order to apply the techniques discussed in these notesto nonlinear systems, one uses variations of
what is often called global linearization.

Consider a nonlinear system described by
x=f(x) (8.4.1)
where we assumethat f : R" — R” isasmooth vector field.

If £(0) =0, itisoften possibletorewrite f(x) = A(x)x with asmooth matrix valued mapping A(.).
If one can guarantee that the LPV system

x=A@))x
is exponentially stable, we can conclude that the nonlinear system
X =A(x)x

has 0 as a globally exponentially stable equilibrium. Note that one can and should impose a priori
bounds on the state-trajectories such as x (1) € M for some set M such that the stability of the LPV
system only has to be assured for §(r) € M; of course, one can then only conclude stability for
trgjectories of the nonlinear system that remainin M.

A dlightly more general procedure allows to consider arbitrary system trajectories instead of equi-
librium points (or constant trajectories) only. In fact, suppose x1(.) and x2(.) are two trajectories of
(8.4.1). By the mean-value theorem, there exist

n; () € cofx1(z), x2(1)}
such that
1 (1))
x1(2) — x2(2) = f(x1(®) — f(x2(t)) = : (x1(1) — x2(2)).
Un (9, (1))
Therefore, theincrement (1) = x1(t) — x2(¢t) satisfiesthe LPV system
E) = A(mi(®), ..., m(D))E(®)

with parameters 11, ..., n,. Once this LPV system is shown to be exponentially stable, one can
concludethat & (r) = x1(¢) — x2(¢) converges exponentially to zero for t — oo. If x2(.) isanominal
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system tragjectory (such as an equilibrium point or a given trajectory to be investigated), we can
conclude that x1(¢) approaches this nominal trajectory exponentialy.

Finally, the following procedure is often referred to as global linearization. Let
F betheclosureof co{f,(x)|x e R"}.

Clearly, ¥ isaclosed and convex subset of R”*". Itisnot difficult to see that any pair of trajectories
x1(.), x2(.) of (8.4.1) satisfies the linear differential inclusion

x1(t) — x2(t) € F (x1(2) — x2(2)). (84.2)
Proof. Fix any ¢ and consider the closed convex set
Flxa(t) — x2(1)] C R™.
Suppose this set is contained in the negative half-space defined by the vector y € R":
Y Flxa() = x2(0]1 < 0.
Due to the mean-value theorem, there existsa & € co{x1(t), x2(¢)} with

Y @) — g2 = Y [ f(x1(0) — fxa(t)] = y7 frE)xa(t) — x2(0)].

Since f(§) € F, weinfer
yT [k1(r) — %2(1)] < 0.

Hence x1(¢) — x2(¢) is contained, aswell, in the negative half-space defined by y. Since # is closed
and convex, we can indeed infer (8.4.2) as desired. [ |

To analyze the stability of the differential inclusion, one can cover the set # by the convex hull of
finitely many matrices A ; and apply the techniques that have been presented in these notes.

Remarks. Of course, there are many other possibilities to embed nonlinear systemsin a family of
linear systemsthat depend on atime-varying parameter. Sincethereisno general recipeto transform
agiven problem to the LPV scenario, we have only sketched afew ideas. Although we concentrated
on stability analysis, these ideas straightforwardly extend to various nominal or robust performance
design problems what is a considerable advantage over other techniques for nonlinear systems. This
is particularly important since, in practical problems, non-linearities are often highly structured and
not all states enter non-linearly. For example, in a stabilization problem, one might arrive at asystem

x=A(y)x+ Byu, y=Cx

where u isthe control input and y isthe measured output that captures, aswell, those states that enter
the system non-linearly. We can use the LPV techniques to design a stabilizing LPV controller for
thissystem. Since y isthe scheduling variable, this controller will depend, in general, non-linearly on
y; hence LPV control amountsto asystematic techniqueto design nonlinear controllersfor nonlinear
systems ‘whose non-linearities can be measured’.
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8.4.2 Gain-Scheduling

A typical engineering techniqueto attack design problemsfor nonlinear systems proceeds asfollows:
Linearize the system around a couple of operating points, design good linear controllers for each of
these points, and then glue these linear controllers together to control the nonlinear system.

Although this scheme seems to work reasonably well in many practical circumstances, there are
considerable drawbacks:

» Thereis no general recipe how to glue controllerstogether. It is hard to discriminate between
several conceivable controller interpolation techniques.

« It is not clear how to design the linear controllers such that, after interpolation, the overall
controlled system shows the desired performance.

» There are no guarantees whatsoever that the overall system is even stabilized, not to speak of
guarantees for performance. Only through nonlinear simulations one can roughly assess that
the chosen design scenario has been successful.

Based on LPV techniques, one can provide a recipe to systematically design a family of linear
controllersthat isscheduled on the operating point without the need for ad-hoc interpol ation strategies.
Moreover, one can provide, at least for the linearized family of systems, guarantees for stability and
performance, even if the system undergoes rapid changes of the operating condition.

Again, we just look at the stabilization problem and observe that the extensions to include as well
performance specifications are straightforward.

Suppose anonlinear system
x=alx,u), y=clx,u)—r (8.4.3)

hasx asitsstate, u asitscontrol, r asareferenceinput, and y asatracking error output that isalso the
measured output. We assumethat, for each referenceinput r, the system admits a unique equilibrium
(operating condition)

0 =a(xo(r), uo(r)), 0=c(xo(r),uo(r)) —r

such that xo(.), uo(.) are smooth in r. (In general, one applies the implicit function theorem to
guarantee the existence of such a parameterized family of equilibria under certain conditions. In
practice, the calculation of these operating pointsis the first step to be done.)

The next step isto linearize the the system around each operating point to obtain
x = fx(xo(r), uo(r))x + fu(xo(r), uo(r))u, y = cx(xo(r), uo(r))x + cy(xo(r), uo(r))u —r.
Thisisindeed afamily of linear systemsthat is parameterized by r.

In standard gain-scheduling, linear techniques are used to find, for each r, agood tracking controller
for each of these systems, and the resulting controllers are then somehow interpolated.
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At this point we can exploit the LPV techniques to systematically design an LPV controller that
achieves good tracking for al reference trajectories in a certain class, even if these references vary
quickly with time. This systematic approach directly leads to a family of linear systems, where the
interpolation step is taken care of by the algorithm. Still, however, one has to confirm by nonlinear
simulations that the resulting LPV controller works well for the original nonlinear system. Note
that the Taylor linearization can sometimes be replaced by global linearization (as discussed in the
previous section) what leads to apriori guarantees for the controlled nonlinear system.

Again, this was only a very brief sketch of ideas to apply LPV control in gain-scheduling, and we
refer to [13] for a broader exposition of gain-scheduling in nonlinear control.
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