Computer Controlled Systems

Homework 1.

Submission deadline: 25th of October, at 13:00 (approx. 3 weeks)
All solutions are expected to be calculated by hand, also all figures have to be drawn by hand. Computer programs (e.g. Matlab) can be used for self-verification, but all problems have to contain the detailed steps of solutions

Problems

1. Given a linear mapping \mathcal{A} : $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathcal{A}(v)=A v$, where matrix A is given as follows:

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

(a) Apply the transformation for vector $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \in \mathbb{R}^{3}$. What does the transformation do with its coordinates?
(b) Calculate the eigenvalues and the corresponding eigenvectors of matrix A !
(c) Determine the diagonal matrix D of mapping \mathcal{A} and give an appropriate coordinate transformation matrix S such that $D=S^{-1} \cdot A \cdot S$.
(d) Compute the exponential matrix e^{D} !
(e) Compute the exponential matrix e^{A} !
2. It is given the following matrix $B=\left(\begin{array}{cccc}1 & -1 & 0 & 22 \\ 0 & 1 & -2 & 5 \\ -3 & 2 & 5 & -65 \\ -2 & 6 & 4 & 0\end{array}\right)$. Determine the image space and kernel space of matrix B (in the canonic basis)!
3. It is given the following differential equation $\ddot{y}+4 \dot{y}+3 y=u(t)$ with initial conditions $\dot{y}(0)=-1, y(0)=1$. Determine $y(t)$ using Laplace transformation, if the input is
(a) $u(t)=4 e^{-2 t}$

Compulsory only for TP students, but extra points for others. It is advised to help your computations with Matlab and/or other symbolic math software tool.
(b) $u(t)=\sin 5 t$
(c) $u(t)=e^{-2 t} \cos 5 t$.
4. Let us consider an LTI system with the following state space model:

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \tag{1}\\
y=C x
\end{array}, \text { where } A=\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right), B=\binom{1}{0}, C=\left(\begin{array}{ll}
1 & -1
\end{array}\right)\right.
$$

(a) Determine the transfer function $H(s)=\frac{Y(s)}{U(s)}$ of the system using Laplace transformation.
(b) Give the impulse-response function $h(t)$ of the system!

