
Chapter 2
Crane Mathematic Model

Abstract This chapter examines the dynamics of overhead cranes. Concerning
single-pendulum-type overhead cranes, their equations of motion are first presented
by means of its Euler–Lagrange equations. Subsequently, the equations of motion
are extended to double-pendulum-type overhead cranes. The two models are pre-
sented as references for examples throughout this book. Since the two models are
established under some ideal assumptions, some uncertainties associated with real
applications are discussed next. In addition, the chapter proceeds with the analysis
of oscillations for pendulum-type motions on the basis of linearized models of the
two types of overhead cranes. The analysis distills the essential properties of each.

Keywords Overhead crane modeling � Single-pendulum dynamics �
Double-pendulum dynamics � Uncertainty

2.1 Modeling of Single-Pendulum-Type Cranes

2.1.1 Modeling

Figure 2.1 shows the coordinate system of an overhead crane system with its
payload. Apparently, the crane system consists of two subsystems, i.e., trolley and
payload [1]. The former is driven by a force. The latter is suspended from the trolley
by a rope.

Other symbols in Fig. 2.1 are described as the trolley mass M, the payload mass
m, the rope length L, the swing angle of the payload with respect to the vertical line
θ, the trolley position with respect to the origin x, and the driven force applied to the
trolley f.

Consider that the crane in Fig. 2.1 is static and the payload is in its downward
position. If the trolley moves toward the right direction by a positive driven force,
then the payload will rotate clockwise. Apparently, the payload angle θ is inherently
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a pendulum-type motion. For the purpose of simplification, the following
assumptions [2] are given.

• The payload is regarded as a material particle.
• The rope is considered as an inflexible rod.
• Compared with the payload mass, the rope mass is ignored.
• The trolley moves in the x-direction.
• The payload moves on the x–y surface.
• No friction exists in the system.

Using Lagrangian method, the Lagrangian equation with respective to the
generalized coordinate qi [3] can be obtained as

d
dt

@La
@ _qi

� �
� @La

@qi
¼ Ti; ð2:1Þ

where i = 1, 2, La = K − P (K means the system kinetic energy and P denotes the
system potential energy.), qi is the generalized coordination (here, q1 and q2 indi-
cate x and θ, respectively), and Ti is the external force.

According to the assumption that the payload is regarded as a material particle,
the system kinetic energy in Fig. 2.1 can be depicted as

K ¼ 1
2
M _x2 þ 1

2
mv2 ð2:2Þ

here, v is a vector and it denotes the payload velocity, defined as

v2 ¼ v2x þ v2y ; ð2:3Þ

where vx ¼ _xþ L _h cos h and vy ¼ �L _h sin h. Note that the payload is assumed to be
a particle such that its moment of inertia is not considered in (2.2). When it is failed

Fig. 2.1 Structure of the
single-pendulum-type
overhead crane system
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to assume that the payload is a particle, its moment of inertia has to be taken into
considerations.

From Fig. 2.1, the potential energy of the trolley subsystem is kept unchanged.
Owing to this fact, the system potential energy in Fig. 2.1 is only exhibited by the
potential energy of the payload subsystem, defined as

P ¼ mgLð1� cos hÞ ð2:4Þ

Here, g is the gravitational acceleration. From (2.2) and (2.4), La has the form

La ¼ K � P ¼ 1
2
M _x2 þ 1

2
mv2 � mgLð1� cos hÞ ð2:5Þ

Consider the variable x. Differentiating La with respect to x in (2.5) yields

@La
@x

¼ 0 ð2:6Þ

Differentiating La with respect to _x in (2.5) yields

@La
@ _x

¼ M _xþ mð _xþ L _h cos hÞ ð2:7Þ

Further, differentiating (2.7) with respect to time t can have

d
dt

@La
@ _x

� �
¼ Mx

::þm x
::þL€h cos h� L _h2 sin h

� �
ð2:8Þ

Finally, the Lagrangian equation with respective to x has the form

d
dt

@La
@ _x

� �
� @La

@x
¼ mþMð Þ x::þmL €h cos h� _h2 sin h

� �
¼ f ð2:9Þ

Consider the variable θ. Differentiating La with respect to θ in (2.5) yields

@La
@h

¼ m½ð _xþ L _h cos hÞð�L _h sin hÞ
þ ðL _h sin hÞðL _h cos hÞ� � mgL sin h

¼ �mL _x _h sin h� mgL sin h

ð2:10Þ

Differentiating La with respect to _h in (2.5) yields

@La

@ _h
¼m½ð _xþ L _h cos hÞðL cos hÞ þ ð�L _h sin hÞð�L _h sin hÞ�

¼mL _x cos hþ mL2 _h
ð2:11Þ
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Further, differentiating (2.11) with respect to time t can have

d
dt

@La

@ _h

� �
¼ mL x

::
cos h� mL _x _h sin hþ mL2€h ð2:12Þ

Finally, the Lagrangian equation with respective to θ has the form

d
dt

@La

@ _h

� �
� @La

@h
¼ mL x

::
cos hþ mL2€hþ mgL sin h ¼ 0 ð2:13Þ

From (2.9) and (2.13), the dynamic model [4] of this overhead crane system with
respect to x and θ can be obtained by means of the Lagrangian method.

ðmþMÞ x::þmLð€h cos h� _h2 sin hÞ ¼ f ð2:14Þ

x
::
cos hþ L€hþ g sin h ¼ 0 ð2:15Þ

Further, the above dynamic model composed of (2.14) and (2.15) can be
transformed to the following state space model [5], formulated as

_x1 ¼ x2
_x2 ¼ f1ðxÞ þ b1ðxÞu
_x3 ¼ x4
_x4 ¼ f2ðxÞ þ b2ðxÞu

ð2:16Þ

Here, x ¼ x1; x2; x3; x4½ �T; x1 ¼ x; x3 ¼ h; x2 is the trolley velocity; x4 is the
angular velocity of the load; u is the control input; and fi and bi (i = 1, 2) are
described as

f1ðxÞ ¼ MLx24 sin x3 þ mg sin x3 cos x3
M þ m sin2 x3

b1ðxÞ ¼ 1

M þ m sin2 x3

f2ðxÞ ¼ ðM þ mÞg sin x3 þ mLx24 sin x3 cos x4
ðM þ m sin2 x3ÞL

b2ðxÞ ¼ cos x3
ðM þ m sin2 x3ÞL

Equation (2.16) formulates the state space model of this single-pendulum-type
overhead crane system. In (2.16), four state variables can depict this dynamic
system. As far as state-variable-based control methods are concerned, the four states
can be employed and a diversity of control approached can be achieved.
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Note that the model (2.16) is ideal and it contains no uncertainties. Due to imperfect
modeling and effects of environment, it is impossible to avoid uncertainties and external
disturbance in real dynamical systems. In reality, overhead crane systems often are
operated under uncertainty conditions such as parameter variations, unmodeled
dynamics, skidding and slipping, etc. Considering the possible effects of these uncer-
tainties, the dynamic model of the overhead crane in Fig. 2.1 can have the form

_x1 ¼ x2
_x2 ¼ f10ðxÞ þ b10ðxÞu
_x3 ¼ x4
_x4 ¼ f20ðxÞ þ b20ðxÞu

ð2:17Þ

In (2.17) fi0 xð Þ ¼ fi xð Þ þ Dfi xð Þ; bi0 xð Þ ¼ bi xð Þ þ Dbi xð Þ i ¼ 1; 2ð Þ, where fi(x)
and bi(x) are the nominal parts of fi0 xð Þ and bi0 xð Þ, respectively. Both fi(x) and bi(x) are
formulated in (2.16). Without loss of generality, the terms depicting modeling errors
and parameter variations, Dfi0 xð Þ and Dbi0 xð Þ are assumed to be differentiable with
respect to time t.

2.1.2 Model with Uncertainties

Uncertainties can be categorized as matched uncertainties and unmatched uncer-
tainties [6]. The uncertainties are matched if and only if the uncertainties enter a
dynamical system from the control tunnel. In (2.17), the so-called matched
uncertainties mean

Dfi0 xð Þ and Dbi0 xð Þ2span biðxÞf g ð2:18Þ

Explicitly, (2.18) can be written as

Dfi0ðxÞ ¼ biðxÞD~fiðxÞ
Dbi0ðxÞ ¼ biðxÞD~biðxÞ

Substituting (2.18) into (2.17) yields

_x2 ¼ f1ðxÞ þ b1ðxÞ uþ D~b1ðxÞuþ D~f1ðxÞ
� �

_x4 ¼ f2ðxÞ þ b2ðxÞ uþ D~b2ðxÞuþ D~f2ðxÞ
� � ð2:19Þ

Apparently, all the uncertainties in (2.19) enter the dynamic model (2.17) by the
control tunnel, indicating that they are matched. Such an entering tunnel makes this
kind of uncertainties resistible by suitable control methods.

In the case that there are unmatched uncertainties, it is challenging to suppress
them because it is hard to formulate these kinds of uncertainties. A common
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approach is to apply the available controllers as if there were no unmatched
uncertainties. This method will inevitably result in a threshold on the size of the
unmatched uncertainties. The unmatched uncertainties are then required to be
smaller than the threshold value so that a stability result holds locally with respect
to the size of the uncertainties. Since unmatched uncertainties are common in
control practice, it is important to suppress them to guarantee the system stability in
the presence of significant unmatched uncertainties.

Consequently, the following dynamic model [7] with unmatched uncertainties
can be directly formulated by (2.20) without further simplification.

_x1 ¼ x2
_x2 ¼ f1ðxÞ þ b1ðxÞuþ n1ðx; uÞ
_x3 ¼ x4
_x4 ¼ f2ðxÞ þ b2ðxÞuþ n2ðx; uÞ

ð2:20Þ

Here, n1ðx; uÞ ¼ Df1ðxÞ þ Db1ðxÞu and n2ðx; uÞ ¼¼ Df2ðxÞ þ Db2ðxÞu.

2.1.3 Linearized Model

The nonlinear single-pendulum-type overhead crane model has been discussed and
it is composed of (2.14) and (2.15). Because θ = 0 is the sole stable equilibrium of
the overhead crane system, both of the equations can be linearized around the point.
The linearized equations can be written as

ðmþMÞ x::þmL h
::

¼ f ð2:21Þ

x
:: þ L h

::

þ gh ¼ 0 ð2:22Þ

According to Newton’s second law, f = (m + M) x
::
can be obtained. Substituting

x
:: ¼ f = mþMð Þ into (2.21) yields

f
M þ m

þ L h
::

þ gh ¼ 0 ð2:23Þ

Equation (2.23) is a second order ordinary differential equation. The Laplace
transform can be employed to solve Eq. (2.23). Finally, the angular frequency
describing the oscillation of the linearized Eq. (2.23) can be formulated as

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

M

� � g
L

r
ð2:24Þ
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Equation (2.24) reveals the system frequency depending on the rope length and the
mass ratio. It is of interest to investigate how the frequency changes as a function of
the system parameters. Such information can be used for physical insights of the
overhead crane system. Figure 2.2 demonstrates the function revealed in (2.24).
The MATLAB programs of the example are given in Appendix A.

From Fig. 2.2, the frequency changes very little with respect to the mass ratio
when the rope length is more than 4 m. On the other hand, the frequency value has a
strong dependence on the mass ratio when the rope length is short.

2.1.4 Modeling of Double-Pendulum-Type Cranes

2.1.4.1 Modeling

Figure 2.3 illustrates the schematic representation of a double-pendulum-type crane.
The crane is moved by a driven force F, applied to the trolley. This system consists
of three subsystems, i.e., trolley, hook, and payload. That is, there exist three
variables to describe the crane system. Each subsystem possesses one variable,
described by trolley position with respect to the origin, x (m), hook angle with
respect to the vertical line θ1 (rad), and payload angle with respect to the vertical
line θ2 (rad).

Other symbols in Fig. 2.3 are explained as trolley mass m0 (kg), hook mass m1

(kg), payload mass m2 (kg), cable length between trolley and hook l1 (m), and cable
length between hook and payload l2 (m).

Consider the following ideal assumptions like no friction, massless cables,
mass-point hook, and mass-point payload. To obtain the dynamic model of this
crane system, the Lagrangian method is also adopted. The following Lagrangian
equation with respect to the generalized coordinate qi can be obtained as

Fig. 2.2 Variation of the
system frequency
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d
dt

@Lad
@ _qi

� �
� @Lad

@qi
¼ Ti ð2:25Þ

In (2.25), i = 1, 2, 3. Lad = Kd − Pd (Kd means the system kinetic energy and Pd

denotes the system potential energy.), qi is the generalized coordination (here, q1,
q2, and q3 indicates x, θ1, and θ2, respectively), and Ti is the external force.

According to the aforementioned assumptions that the payload and hook are
regarded as mass-points, the system kinetic energy in Fig. 2.3 can be written as

Kd ¼ 1
2
m0 _x

2 þ 1
2
m1v

2
1 þ

1
2
m2v

2
2 ð2:26Þ

here, the vectors v1 and v2 denote the hook and payload velocities, respectively.
They are defined as

v21 ¼ v2x1 þ v2y1

v22 ¼ v2x2 þ v2y2;
ð2:27Þ

where vx1 ¼ _xþ l1 _h1 cos h1; vy1 ¼ �l1 _h1 sin h1; vx2 ¼ _xþ l1 _h1 cos h1 þ l2 _h2 cos h2
and vy2 ¼ �l1 _h1 sin h1 � l2 _h2 sin h2.

From Fig. 2.3, the potential energy of the trolley subsystem is kept unchanged.
Owing to this fact, the system potential energy in Fig. 2.3 is only exhibited by the
potential energies of the hook and payload subsystems, defined as

Pd ¼ m1gl1ð1� cos h1Þ þ m2g l1ð1� cos h1Þ þ l2ð1� cos h2Þ½ � ð2:28Þ

Here, g is the gravitational acceleration. Then, Lad has the form

Fig. 2.3 Schematic of the
double-pendulum-type
overhead crane system

58 2 Crane Mathematic Model



Lad ¼ Kd � Pd

¼ 1
2
m0 _x

2 þ 1
2
m1v

2
1 þ

1
2
m2v

2
2

� m1gl1ð1� cos h1Þ � m2g l1ð1� cos h1Þ þ l2ð1� cos h2Þ½ �
ð2:29Þ

Consider the variable x. Differentiating Lad with respect to x in (2.29) yields

@Lad
@x

¼ 0 ð2:30Þ

Differentiating Lad with respect to _x in (2.29) yields

@Lad
@ _x

¼ ðm0 þ m1 þ m2Þ _xþ ðm1 þ m2Þl1 _h1 cos h1 þ m2l2 _h2 cos h2 ð2:31Þ

Further, differentiating (2.31) with respect to time t can have

d
dt

@Lad
@ _x

� �
� @Lad

@x
¼ ðm0 þ m1 þ m2Þ€xþ ðm1 þ m2Þl1€h1 cos h1
� ðm1 þ m2Þl1 _h21 sin h1 þ m2l2€h2 cos h2

� m2l2 _h
2
2 sin h2

ð2:32Þ

Finally, the Lagrangian equation with respective to x has the form

d
dt

@Lad
@ _x

� �
� @Lad

@x
¼ ðm0 þ m1 þ m2Þ€xþ ðm1 þ m2Þl1€h1 cos h1
� ðm1 þ m2Þl1 _h21 sin h1 þ m2l2€h2 cos h2

� m2l2 _h
2
2 sin h2

= F

ð2:33Þ

Consider the variable θ1. Differentiating Lad with respect to θ1 in (2.29) yields

@Lad
@h1

¼ �ðm1 þ m2Þl1 _x _h1 sin h1
� m2l1l2 _h1 _h2 sinðh1 � h2Þ � ðm1 þ m2Þgl1 sin h1

ð2:34Þ

Differentiating Lad with respect to _h1 in (2.29) yields

@Lad
@ _h1

¼ ðm1 þ m2Þðl1 _x cos h1 þ l21 _h1Þ þ m2l1l2 _h2 cosðh1 � h2Þ ð2:35Þ
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Further, differentiating (2.35) with respect to time t can have

d
dt

@Lad
@ _h1

� �
¼ m1 þ m2ð Þ l1 x

::
cos h1 � l1 _x _h1 cos h1 þ l21€h1

� �

þ m2l1l2€h2 cos h1 � h2ð Þ � m2l1l2 _h1 _h2 sin h1 � h2ð Þ
þ m2l1l2 _h

2
2 sin h1 � h2ð Þ

ð2:36Þ

Finally, the Lagrangian equation with respective to θ1 has the form

d
dt
ð@Lad
@ _h1

Þ � @Lad
@h1

¼ ðm1 þ m2Þl1€x cos h1 þ ðm1 þ m2Þl21€h1

þ m2l1l2€h2 cosðh1 � h2Þ þ m2l1l2 _h
2
2 sinðh1 � h2Þ

þ ðm1 þ m2Þgl1 sin h1
= 0

ð2:37Þ

Consider the variable θ2. Differentiating Lad with respect to θ2 in (2.29) yields

@Lad
@h2

¼ �m2l1 _x _h2 sin h2 þ m2l1l2 _h1 _h2 sin h1 � h2ð Þ � m2gl2 sin h2 ð2:38Þ

Differentiating Lad with respect to _h2 in (2.29) yields

@Lad
@ _h2

¼ m2l1 _x cos h1 þ m2l
2
2
_h2 þ m2l1l2 _h1 cos h1 � h2ð Þ ð2:39Þ

Further, differentiating (2.39) with respect to time t can have

d
dt

@L

@ _h2

� �
¼ m2l2€x cos h2 � m2l2 _x _h2 cos h2 þ m2l

2
2
€h2 þ m2l1l2€h1 cosðh1 � h2Þ

� m2l1l2 _h
2
1 sinðh1 � h2Þ þ m2l1l2 _h1 _h2 sinðh1 � h2Þ

ð2:40Þ

Finally, the Lagrangian equation with respective to θ2 has the form

d
dt

@Lad
@ _h2

� �
� @Lad

@h2
¼ m2l2€x cos h2 þ m2l

2
2
€h2 þ m2l1l2€h1 cos h1 � h2ð Þ

� m2l1l2 _h
2
1 sin h1 � h2ð Þ þ m2gl2 sin h2

= 0

ð2:41Þ
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From (2.33), (2.37), and (2.41), the dynamic model of the double-pendulum-type
overhead crane system with respect to x, θ1, and θ2 [8] can be obtained by means of
the Lagrangian method.

m0 þ m1 þ m2ð Þ€xþ m1 þ m2ð Þl1€h1 cos h1 þ m2l2€h2 cos h2

� m1 þ m2ð Þl1 _h21 sin h1 � m2l2 _h
2
2 sin h2 ¼ F

ð2:42Þ

m1 þ m2ð Þl1€x cos h1 þ m1 þ m2ð Þl21€h1 þ m2l1l2€h2 cos h1 � h2ð Þ
þ m2l1l2 _h

2
2 sin h1 � h2ð Þ þ m1 þ m2ð Þgl1 sin h1 ¼ 0

ð2:43Þ

m2l2€x cos h2 þ m2l1l2€h1 cos h1 � h2ð Þ þ m2l
2
2
€h2

� m2l1l2 _h
2
1 sin h1 � h2ð Þ þ m2gl2 sin h2 = 0

ð2:44Þ

Rearrange (2.42), (2.43), and (2.44) in the form of a matrix. The three equations
can be rewritten as

M qð Þ q:: þC q; _qð Þ _qþG qð Þ ¼ s ð2:45Þ

Here, q ¼ ½x; h1; h2�T is a vector of the three generalized coordinates, s ¼
F; 0; 0½ �T is a vector of the generalized force, g is the gravitational acceleration, M
(q) is a 3 × 3 inertia matrix, Cðq; _qÞ _q is a vector of Coriolis and centripetal torques,
and G(q) is a vector of the gravitational term. M qð Þ; Cðq; _qÞ and G(q) are defined
as

M qð Þ ¼
m0 þ m1 þ m2 m1 þ m2ð Þl1 cos h1 m2l2 cos h2
m1 þ m2ð Þl1 cos h1 m1 þ m2ð Þl21 m2l1l2 cos h1 � h2ð Þ

m2l2 cos h2 m2l1l2 cos h1 � h2ð Þ m2l22

2
4

3
5

C q; _qð Þ ¼
0 � m1 þ m2ð Þl1 _h1 sin h1 �m2l2 _h2 sin h2
0 0 m2l1l2 _h2 sin h1 � h2ð Þ
0 �m2l1l2 _h1 sin h1 � h2ð Þ 0

2
4

3
5

G qð Þ ¼ 0 m1 þ m2ð Þgl1 sin h1 m2gl2 sin h2½ �T

Further, (2.45) can be transformed to its state space expression. The expression
[9, 10] has the form
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_x1 ¼ x2
_x2 ¼ f1ðxÞ þ b1ðxÞu
_x3 ¼ x4
_x4 ¼ f2ðxÞ þ b2ðxÞu
_x5 ¼ x6
_x6 ¼ f3ðxÞ þ b3ðxÞu

ð2:46Þ

In (2.46), the vector x is defined by [x1, x2, x3, x4, x5, x6]
T; x1 = x; x3 = θ1; x5 = θ2;

x2 is the trolley velocity; x4 is the angular velocity of the hook; x6 is the angular
velocity of the payload; u = F is the control input; and fi(x) and bi(x) (i = 1, 2, 3) are
nonlinear functions of the vector x, formulated by fi (x) = Γi/Δ and bi(x) = Τi/Δ.
Here Γi, Τi, and Δ are determined by

D = m1 þ m2ð Þm2l
2
1l
2
2 m0 þ m1 þ m2ð Þ � m1 þ m2ð Þ cos2 x3ð Þ� �

� m2
2l
2
1l
2
2 m1 þ m2ð Þ cos2 x5ð Þ þ m0 þ m1 þ m2ð Þ cos2 x3 � x5ð Þ�

�2 m1 þ m2ð Þ cos x3ð Þ cos x5ð Þ cos x3 � x5ð Þ�

C1 ¼ m1 þ m2ð Þm2l
2
1l
2
2 � m2

2l
2
1l
2
2 cos

2 x3 � x5ð Þ� �
m1 þ m2ð Þl1x24 sin x3ð Þ�

þm2l2x
2
6 sin x5ð Þ�þ m1 þ m2ð Þm2l1l

2
2 cos x3ð Þ�

�m2
2l1l

2
2 cos x5ð Þ cos x3 � x5ð Þ� m2l1l2x

2
6 sin x3 � x5ð Þ�

þ m1 þ m2ð Þgl1 sin x3ð Þ� þ m1 þ m2ð Þm2l21l2 cos x5ð Þ�
�m2l

2
1l2 cos x3ð Þ cos x3 � x5ð Þ� �m2l1l2x

2
4 sin x3 � x5ð Þ þ m2gl2 sin x5ð Þ� �

T1 ¼ m1 þ m2ð Þm2l
2
1l
2
2 � m2

2l
2
1l
2
2 cos

2 x3 � x5ð Þ

C2 ¼ m2
2l1l

2
2 cos x5ð Þ cos x3 � x5ð Þ � m1 þ m2ð Þm2l1l

2
2 cos x3ð Þ� �

m1 þ m2ð Þl1x24 sin
�

x3ð Þ
þm2l2x

2
6 sin x5ð Þ�þ m2

2l
2
2 cos

2 x5ð Þ � m0 þ m1 þ m2ð Þm2l
2
2

� �
m2l1l2x

2
6 sin x3 � x5ð Þ�

þ m1 þ m2ð Þgl1 sin x3ð Þ� þ m0 þ m1 þ m2ð Þm2l1l2 cosðx3 � x5Þ½
� m1 þ m2ð Þm2l1l2 cos x3ð Þ cos x5ð Þ� �m2l1l2x

2
4 sin x3 � x5ð Þ þ m2gl2 sin x5ð Þ� �

T2 ¼ m2
2l
2
1l
2
2 cos x5ð Þ cos x3 � x5ð Þ � m1 þ m2ð Þm2l1l

2
2 cos x3ð Þ

C3 ¼ m1 þ m2ð Þm2l
2
1l2 cos x3ð Þ cos x3 � x5ð Þ � cos x5ð Þ½ �	 


m1 þ m2ð Þ½ l1x
2
4 sin x3ð Þ

þm2l2x
2
6 sin x5ð Þ�þ m0 þ m1 þ m2ð Þm2l1l2 cos x3 � x5ð Þ½

� m1 þ m2ð Þm2l1l2 cos x3ð Þ cos x5ð Þ� m2l1l2x
2
6 sin x3 � x5ð Þ þ m1 þ m2ð Þgl1 sin x3ð Þ� �

þ m1 þ m2ð Þ2l21 cos2 x3ð Þ � m0 þ m1 þ m2ð Þ m1 þ m2ð Þl21
h i

� �m2l1l2x
2
4 sin x3 � x5ð Þ þ m2gl2 sin x5ð Þ� �
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T3 ¼ m1 þ m2ð Þm2l
2
1l2 cos x3ð Þ cos x3 � x5ð Þ � m1 þ m2ð Þm2l

2
1l2 cos x5ð Þ

Note that the model (2.45) has two important assumptions that are mass-point
hook and payload. Usually, the mass-point assumption can be satisfied for the hook
subsystem. However, the mass-point assumption for the payload subsystem can be
satisfied under some operating conditions. Concerning these extreme operating
conditions, the moment of inertia of the payload subsystem cannot be ignored and it
has to be taken into consideration.

2.1.5 Model with Uncertainties

Equation (2.46) is an ideal model. It can be treated as the nominal model of
double-pendulum-type overhead cranes. Considering the system uncertainties, the
uncertain equations can be derived from (2.46). The analysis is very similar to the
process in Sect. 2.1.2. Briefly, the uncertain model of the double-pendulum-type
overhead crane in Fig. 2.1 can be described as

_x1 ¼ x2
_x2 ¼ f1ðxÞ þ b1ðxÞuþ n1ðx; uÞ
_x3 ¼ x4
_x4 ¼ f2ðxÞ þ b2ðxÞuþ n2ðx; uÞ
_x5 ¼ x6
_x6 ¼ f3ðxÞ þ b3ðxÞuþ n3ðx; uÞ

ð2:47Þ

The uncertain part niðx; uÞ in (2.47) is matched, if it can be written as niðx; uÞ ¼
biðxÞDniðx; uÞ where i = 1, 2, 3. Otherwise, the three uncertain terms are unmatched
because they cannot enter the crane model by the control channel. Note that the
three uncertain terms have to be treated as a whole. The uncertainties are still
unmatched, if only a part of the three terms can enter the crane model by the control
channel.

2.1.6 Linearized Model

The nonlinear double-pendulum-type overhead crane model is shown in (2.13).
Because θ1 = θ2 = 0 is the sole stable equilibrium of the double-pendulum-type
crane system, (2.13) can be linearized around θ1 = 0 and θ2 = 0. The linearized
crane model can be written as
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�M q
:: þKq ¼ 0 ð2:48Þ

In the linearized model (2.48), the matrixes �M and K are determined as

�M ¼
m0 þ m1 þ m2 ðm1 þ m2Þl1 m2l2
ðm1 þ m2Þl1 ðm1 þ m2Þl21 m2l1l2

m2l2 m2l1l2 m2l22

2
4

3
5

K ¼
0 0 0
0 ðm1 þ m2Þgl1 0
0 0 m2gl2

2
4

3
5

The two natural frequencies of the double-pendulum-type overhead crane system
can be obtained by the nonzero eigenvalues of the matrix— �M K. Their expressions
[11] are determined as

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
2

a�
ffiffiffi
b

p� �r
ð2:49Þ

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
2

aþ
ffiffiffi
b

p� �r
ð2:50Þ

Here, α has a form

a ¼ m1 þ m2

m1

1
l1
þ 1
l2

� �

Another parameter β is formulated as

b ¼ m1 þ m2

m1

� �2 1
l1
þ 1
l2

� �2

�4
m1 þ m2

m1

� �
1
l1l2

From (2.49) and (2.50), the two natural frequencies not only depend on the
length of the cables but also depend on the masses of payload and hook. It is
interesting to investigate how the frequencies change as a function of the system
physical parameters.

To simplify this problem, R = m2/m1 is defined as the payload-to-hook mass
ratio, the cable length between hook and payload l2 is considered as a variable when
the total length l determined by l1 plus l2 is held constant at 6 m. Figure 2.4
illustrates the two oscillation frequencies as a function of R and l2.

In Fig. 2.4, ω1 changes very little for a constant l1 + l2. It corresponds closely to
the frequency of a single pendulum with the length of l1 + l2. On the other hand, the
value of ω1 is maximized for a constant l1 + l2 when the two cable lengths are equal
to l1þl2

2 ; but it can be dramatically changed by the hoisting operation [12].
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Furthermore, the high-frequency -2 has a strong dependence on the cable length
l2; the value of ω2 varies substantially more than the value of ω1, the contribution of
ω2 to problematic swing amplitude is particularly large for a constant l1 + l2 when
the two cable lengths are approximately equal.

Concerning the mass ratio, R has a relatively small effect on ω1, but the
high-frequency ω2 becomes more important to the double-pendulum motions for
low payload-to-hook mass ratios. In brief, low payload-to-hook mass ratios and
equal cable lengths are more representative to depict the double-pendulum motions
of the crane for the point-to-point transport control with a constant l1 + l2.

Appendices

A Matlab Codes to Plot Fig. 2.2

Fig. 2.4 Variation of the two frequencies

k=0.01:0.01:2;    % Mass ratio from 0.01 to 2, every each 0.01. 
l=0.1:0.1:10;      % Rope length from 0.1 to 10, every each 0.1 
[K,L]=meshgrid(k,l);   % K and L arrays for 3-D plots. 
w=sqrt((1+K)*9.8./L); % Array of angular frequency 
surf(K,L,w)                  %  3-D colored surface. 
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B Matlab Codes to Plot Fig. 2.4
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r=0.1:0.1:2;                    %mass ratio
l2=0.1:0.1:6;                  %cable length between hook and payload 
l1=6-l2;                          %l1 plus l2 is held constant at 6m 
g=9.8;                             % gravitational acceleration 
[R,L2]=meshgrid(r,l2);  % R and L2 arrays for 3-D plots 
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w1=sqrt(g/2).*sqrt((1+R).*(1./(6-L2)+1./L2)-p);    % Array of w1 
w2=sqrt(g/2).*sqrt((1+R).*(1./(6-L2)+1./L2)+p);   % Array of w2 
surf(R,L2,w1)                 %3-D colored surface 
hold;                               % Another surface 
surf(R,L2,w2)                %3-D colored surface 
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