Computer Controlled Systems

2nd midterm test
2017. 05. 12.
computational exercises (25 points)
(The answers can be given in Hungarian)
(7p) 1. Consider the following continuous time state space model:

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right), \quad B=\binom{1}{0}, \quad C=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

(3p) a) Design a stabilizing state feedback, which moves the poles of the system into $[-1,-2]$.
$(2 \mathrm{p}) \mathrm{b})$ Design a state observer (L) with the following prescribed poles $[-2,-2]$.
$(2 p)$ c) Give the state space model of the observer.
(5p) 2. The following continuous-time state space model is given:

$$
A=\left(\begin{array}{cc}
-1 & 0 \tag{1}\\
0 & -2
\end{array}\right), \quad B=\binom{1}{2}, \quad C=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

Determine the model matrices Φ and Γ of the discretized state-space model

$$
x(k+1)=\Phi x(k)+\Gamma u(k), \quad y(k)=C x(k),
$$

if the sampling period is $h=\ln (2)$.
(5p) 3. Consider the following feedback system

(3p) a) Determine the overall transfer function $G_{e}(s)$ (from r to y)!
$(2 \mathrm{p}) \mathrm{b})$ For which values of $k>0$ is the system BIBO stable?
(5p) 4. It is a well-known fact that the rabbits' reproduction rate is exponential in the absence of predators (assuming unlimited food and space). Design a PI controller such that the number of rabbits converges to a constant reference value.

The dynamics of the rabbit population is given by the model $\dot{x}=2 x+u$ (1)
x : number of rabbits (transformed into a continuous variable)
u : manipulable input (hunting/feeding rate)
(1p) a) Give the transfer function $H(s)$ for the system (1)
(4p) b) Design a PI controller $H_{\mathrm{PI}}(s)=K_{p}+\frac{K_{i}}{s}$, which stabilizes the system and ensures reference tracking. (Determine K_{p} and K_{i}.)
(3p) 5. The nonlinear state-space equation of a pendulum is the following:

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{2}-\sin x_{1} \tag{2}
\end{align*}
$$

where x_{1} is the angle and x_{2} is the angular velocity of the rod. For this system, $x^{*}=\left(x_{1}, x_{2}\right)=(0,0)$ is a locally assymptotically stable equilibrium point. In order to prove that x^{*} is asymptotically stable on $(-\pi, \pi) \times \mathbb{R}$, we consider the Lyapunov function candidate $V(x)=a x_{2}^{2}+\left(1-\cos x_{1}\right)$. Determine the value of $a>0$, such that function $V(x)$ satisfy the Lyapunov conditions.

