A PHP Error was encountered

Severity: Warning

Message: fopen(/home/polpe/.phpsession/ci_sessionb8c13f9fcf1024b6ffc87bd83161478aec8575b0): failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 159

Backtrace:

File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library

File: /home/polpe/public_html/index.php
Line: 315
Function: require_once

Polcz Péter honlapja

Tartalomjegyzék

Advanced Nonlinear Control Methods: Theory and applications (summer school), University of Pannonia, Veszprém

[ARCHIV] Advanced Nonlinear Control Methods, Summer school - 2018

Summer school - 2021

Required software tools

  1. Matlab/Simulink
  2. Control System Toolbox
  3. Symbolic Math Toolbox

Matlab package for the seminar: here.

Material

1st Part. Stabilization around equilibrium point
  1. System linearization around equilibrium point - Symbolic Math Toolbox
  2. Pole placement (with place) and LQR (with lqr) design for the linearized model - Control System Toolbox
  3. Demonstration example - The inverted pendulum model
  4. Simulate the nonlinear system around the equilibrium point with a stabilizing static state feedback - Simulink with Control System Toolbox blocks
2nd Part. Reference tracking with input-output linearizing feedback
  1. Linearizing state feedback computation for a SISO nonlinear input-affine system with relative degree 1 (just the basics: non zero dynamics et.al.) - A quick theoretical derivation
  2. Application to Hamiltonian system - A quick theoretical derivation
  3. Demonstration example - Quanser's QArm robotic arm

Further helpful demonstrations and code samples

If you are not an expert in Matlab, consider the following short (Hungarian) tutorial Matlab segédlet.

For advanced users of Symbolic Math Toolbox: deep_symbolic_tricks.

Matlab demonstrations and code samples:

  1. 2nd Matlab practice: Geometrical meaning of the Lie derivative and the Lie bracket
  2. 2nd Matlab practice: Coordinate transformation, feedback linearization and zero dynamics.
  3. 2nd Matlab practice: Estimate DOA with a Lyapunov function
  4. Embedding of a rational model into a polynomial model

Mathematica demonstrations:

Compute the integral of the PDE appearing in the Frobenius theorem

Some Matlab helper functions
  1. vekanal_subsmesh_demo
  2. vekanal_quiver_sym_demo

Useful Matlab functions and toolboxes

Built-in Matlab functions:

Important function of the Control System Toolbox:

  • ss - State space model
  • tf - Transfer function model
  • place - Pole placement controller design
  • lqr - Linear quadratic regulator design
  • lqi - Linear quadratic integral regulator design
  • pzmap - Poles and zeros
  • impulse - Impulse response function
  • step - Step response function

Important function of the Robust Control Toolbox:

Important functions of Matlab's Symbolic Math Toolbox (SMT):

Other useful functions of Matlab's Symbolic Math Toolbox (SMT):

Control systems demonstrations

Inverted pendulum model (inverz inga modell)
  1. Model description and derivation using calculus of variations: Béla Lantos. Irányítási rendszerek elmélete és tervezése -- I. Akadémiai Kiadó Budapest, 2001. Section 5.3.2, pp 68--70.
  2. Model linearization around stable and unstable equilibrium point, simulation and analysis.
  3. Framework for the first Matlab practice
  4. Model description and task sheet for the first Matlab practice: ccs_gyak08_matlabgyak1.pdf
  5. Framework for the second Matlab practice
  6. Model description and task sheet for the first Matlab practice: ccs_gyak08_matlabgyak2.pdf
  7. Inverted pendulum control and integral reference tracking.
  8. Inverted pendulum control and integral reference tracking (augmented, corrected).
  9. Inverted pendulum nonlinear control - 2018.07.30. (július 30, hétfő), 11:02
  10. Advanced Nonlinear Control Methods (PhD course): Inverted pendulum linearization (Symbolic Math Toolbox) and pole placement
  11. Advanced Nonlinear Control Methods (PhD course): Inverted pendulum linearization (with uncertain frictional coefficient) - feedback design for LPV with LMIs
Crane model (rakodó daru modellje)
  1. Model description and derivation using calculus of variations (ccs_model_crane.pdf)
  2. State space model derivation using symbolic computations
  3. Simulink model and simulation (without control): sim_nonlinear_model_demo