Severity: Warning
Message: fopen(/home/polpe/.phpsession/ci_session43312aa6a733bb1b99f7e3ee9945546ce6a8a49b): failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 159
Backtrace:
File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library
File: /home/polpe/public_html/index.php
Line: 315
Function: require_once
Teljes Matlab script kiegészítő függvényekkel.
File: ccs_TP_simulation.m Directory: 4_gyujtemegy/11_CCS/_1_ccs/ccs_2018/TP_2018_09_18 Author: Peter Polcz (ppolcz@gmail.com)
Created on 2018. September 18.
R = 1;
L = 1;
C = 1;
A = [
-R/L -1/L
1/C 0
];
B = [
1/L
0
];
C = [0 1];
D = 0;
sys = ss(A,B,C,D);
figure('Position', [ 211 , 594 , 1594 , 384 ], 'Color', [1 1 1]),
subplot(131), impulse(sys), grid on
subplot(132), step(sys), grid on
[t,x] = ode45(@(t,x) A*x, [0,15],[3;10]);
subplot(133), plot(t,x), grid on
title 'Simulation with ode45'
xlabel 'Time (seconds)'
ylabel 'x_1(t) and x_2(t)'
legend 'x_1(t)' 'x_2(t)'
syms t x1 x2 real
x = [ x1 ; x2 ];
f = [
x1*(2 - x2)
x2*(-1 + 0.2*x1)
];
xeq = struct2cell(solve(diag(1./x) * f));
xeq = double([xeq{:}])';
f_ode = matlabFunction(f, 'vars', {t,x});
[tt,xx] = ode45(f_ode, [0,10], [1;2]);
figure('Position', [ 613 , 598 , 1048 , 316 ], 'Color', [1 1 1])
subplot(121)
plot(tt,xx), grid on;
legend 'nr of prays' 'nr of predators'
subplot(122), hold on
P = plot(xx(:,1),xx(:,2));
plot(xx(1,1),xx(1,2), '.', 'MarkerSize', 20, 'Color', P.Color)
plot(xeq(1),xeq(2), 'ok', 'MarkerSize', 10)
legend 'trajectory' 'initial condition' 'equilibrium point'
grid on
title 'Phase diagram'
xlabel 'x_1(t)'
ylabel 'x_2(t)'
syms t x1 x2 real
x = [ x1 ; x2 ];
f = [
x1*(-2*x1-3*x2+5)
x2*(1.4*x1+x2-2.4)
];
xeq = struct2cell(solve(diag(1./x) * f));
xeq = double([xeq{:}])';
f_ode = matlabFunction(f, 'vars', {t,x});
[tt,xx] = ode45(f_ode, [0,10], [0.5;0.5]);
figure('Position', [ 613 , 598 , 1048 , 316 ], 'Color', [1 1 1])
subplot(121)
plot(tt,xx), grid on;
legend 'nr of prays' 'nr of predators'
subplot(122), hold on
P = plot(xx(:,1),xx(:,2));
plot(xx(1,1),xx(1,2), '.', 'MarkerSize', 20, 'Color', P.Color)
plot(xeq(1),xeq(2), 'ok', 'MarkerSize', 10)
legend 'trajectory' 'initial condition' 'equilibrium point'
grid on
title 'Phase diagram'
xlabel 'x_1(t)'
ylabel 'x_2(t)'
term = odeset('Events',@odeterminalevent);
A = [1 0 ; 0 2];
figure, ode45(@(t,x) A*x, [0,1000],[0;0.1], term), grid on
syms t x1 x2 real
x = [ x1 ; x2 ];
V = 4;
Sf = 10;
Y = 0.5;
mu_max = 1;
K1 = 0.03;
K2 = 0.5;
F = 3.2;
mu = mu_max * x2 ./ (K2*x2.^2 + x2 + K1);
f = [
mu*x1 - x1*F/V
-mu*x1/Y + (Sf-x2)*F/V
];
f_ode = matlabFunction(f, 'vars', {t,x});
xeq = struct2cell(solve(f));
xeq = double([xeq{:}])';
stable = matlabFunction(eig(jacobian(f)), 'vars', {x});
stable(xeq(:,2))
xeq = xeq(:,2);
term = odeset('Events',@brmterminalevent);
convColor = [0.8 0.1 0.1];
divColor = [0.3 0.1 0.5];
figure('Position', [ 676 , 312 , 868 , 667 ], 'Color', [1 1 1]), hold on
plot(xeq(1),xeq(2),'ok','LineWidth',3,'MarkerSize',10)
axis equal, grid on
for i = 1:100
x0 = xeq + 0.2*randn(2,1);
if any(x0 < 0), continue, end
[tt,xx] = ode45(f_ode, [0,10], x0, term);
if norm(xx(end,:)-xeq') < 0.1
color = convColor;
else
color = divColor;
end
plot(xx(:,1),xx(:,2), 'Color', color);
plot(xx(1,1),xx(1,2),'.','MarkerSize',20,'Color',color);
drawnow
end
ans = -0.8000 -1.5680