Tartalomjegyzék

LPV output passivization

Teljes Matlab script kiegészítő függvényekkel.

File: d2018_01_09_K_prelim_L_codesign_v4.m
Directory: projects/3_outsel/2017_11_13_lpv_passivity
Author: Peter Polcz (ppolcz@gmail.com)
Created on 2018. January 09.
Modified on 2018. January 17.

1. lépés: Legyen egy LTI rendszermodell

FIGYELEM, a rendszermodell, nem stabil!

s = tf('s');

% unstable MIMO
H = @(s) [
    (s-1)/(s-2)/(s+1)  1/(s+3)/(s-0.1)
    (s-7)/(s+1)/(s+5)  (s-6)/(s^2+5*s+6)
    ];

sys = minreal( ss( H(s) ) );
[A0,B,C,D] = deal(sys.a, sys.b, sys.c, sys.d);

tol = 1e-10;
prec = -log10(tol);

A0 = round(A0,prec);
B = round(B,prec);
C = round(C,prec);
D = round(D,prec);

[POLES,ZEROS] = pzmap(sys)
Output:
2 states removed.
POLES =
   -5.0000
   -1.0000
    2.0000
   -3.0000
   -2.0000
    0.1000
ZEROS =
   5.8894 + 0.0000i
  -4.3164 + 0.0000i
   0.7635 + 0.7978i
   0.7635 - 0.7978i
\begin{align} {\LARGE(1) \quad} H(s) = \left(\begin{array}{cc} -\frac{s-1}{-s^2+s+2} & \frac{10}{10s^2+29s-3} \\ \frac{s-7}{s^2+6s+5} & \frac{s-6}{s^2+5s+6} \\ \end{array}\right) \end{align}

2. lépés: LPV modell

Az előző LTI modellt egy kicsit megperturbálom (kezdetben csak az A mátrixot).

$$ \begin{aligned} &\Sigma: \left\{\begin{aligned} &\dot x = A(\rho) x + B(\rho) u,~~~ \rho \in \mathcal P \\ &y = C x \\ \end{aligned}\right. \\ &\begin{aligned} \text{where: } & A(\rho) = A_0 + A_1 \rho \in \mathbb{R}^{n\times n} \\ & B(\rho) = B_0 + B_1 \rho \in \mathbb{R}^{n\times r} \\ & C \in \mathbb{R}^{m\times n} \\ & D = 0_{m\times r} \end{aligned} \end{aligned} $$

A1 = A0;
A1(abs(A0) < 1) = 0;
A1 = A1 .* randn(size(A1))/10;

B0 = B;
B1 = B*0;
% Indices = [3];
% B1(Indices) = rand(size(Indices));

A_fh = @(rho) A0 + rho*A1;
B_fh = @(rho) B0 + rho*B1;
\begin{align} {\LARGE(2) \quad} A_0 = \left(\begin{array}{cccccc} -5.37 & -0.933 & -0.464 & 0.0928 & 0.464 & 0.464 \\ 1.87 & -0.319 & -0.188 & 0.0375 & 0.188 & 0.188 \\ -0.292 & -0.731 & -1.35 & 0.29 & -1.55 & -1.55 \\ 0.0585 & 0.146 & 0.224 & 0.0552 & 0.276 & 0.276 \\ 0.292 & 0.731 & -3.19 & 0.638 & -1.81 & 0.188 \\ 0.292 & 0.731 & 0.101 & -0.0203 & 1.9 & -0.101 \\ \end{array}\right) ,\quad A_1 = \left(\begin{array}{cccccc} -0.32 & 0 & 0 & 0 & 0 & 0 \\ 0.196 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.236 & 0 & 0.287 & -0.0839 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -0.276 & 0 & 0.198 & 0 \\ 0 & 0 & 0 & 0 & -0.0823 & 0 \\ \end{array}\right) \end{align} \begin{align} {\LARGE(3) \quad} B_0 = \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \\ 1.15 & 2 \\ -0.229 & 0 \\ -1.15 & 2 \\ -1.15 & 0 \\ \end{array}\right) ,\quad B_1 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}\right) \end{align} \begin{align} {\LARGE(4) \quad} C = \left(\begin{array}{cccccc} 0.169 & 0.422 & 0.256 & 0.949 & -0.256 & -0.256 \\ 0.701 & -1.25 & -0.444 & 0.0889 & 0.944 & -1.06 \\ \end{array}\right) ,\quad D = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ \end{array}\right) \end{align}

Observer design

Declare matrices

Matrix $K$ is preliminarily design for the nominal value of $\rho$, than checked whether the closed loop is stable for other $\rho \in \mathcal P$ values. Let $G = I_m$.

G = eye(n_u);
K = place(A0,B,linspace(-5,-6,n_x));

Free matrix variables. All matrices are assumed to be parameter independent.

C1 = sdpvar(n_yp,n_x,'full');
D1 = sdpvar(n_yp,n_y,'full');
Q = sdpvar(n_x,n_x,'symmetric');
S = sdpvar(n_x,n_x,'symmetric');
N = sdpvar(n_x,n_y,'full');
P = blkdiag(Q,S);

where $N = S L$.

$$ \begin{align} &\wt A(\rho) = \pmqty{ A(\rho) & 0 \\ 0 & A(\rho) - L C },~ \wt B = \pmqty{B \\ 0} \\ &\wt C = \pmqty{ D_1 C + C_1 & -C_1 }. \end{align} $$

Ao = @(L,rho) [
    A_fh(rho)         zeros(n_x,n_x)
    zeros(n_x,n_x)    A_fh(rho)-L*C
    ];
Bo = @(rho) [B_fh(rho) ; zeros(n_x,n_u)];
Co = [D1*C+C1 -C1];
Do = zeros(n_yp,n_r);

$$ \begin{aligned} \wt A_c(\rho) = \begin{pmatrix} A(\rho)-B(\rho) K & B(\rho) K \\ 0 & A(\rho) - L C \end{pmatrix},~ \wt B_c(\rho) = \begin{pmatrix} B(\rho) G \\ 0 \end{pmatrix}. \end{aligned} $$

Ac = @(L,rho) [
    A_fh(rho)-B_fh(rho)*K  B_fh(rho)*K
    zeros(n_x,n_x)         A_fh(rho)-L*C
    ];

Bc = @(rho) Bo(rho)*G;

W = eye(n_yp);

$$ \begin{aligned} &\wt A_c({\color{red} \rho})^T P + P \wt A_c({\color{red} \rho}) = \spmqty{ {\blue Q} A_K({\red \rho}) + A_K^T({\red \rho}) {\blue Q} & {\blue Q} B({\red \rho}) K \\ K^T B^T({\red \rho}) {\blue Q} & {\blue S} A({\red \rho}) + A({\red \rho})^T {\blue S} - {\blue N}({\red \rho}) C - C^T {\blue N^T}({\red \rho}), } \\ &\text{where } A_K({\red \rho}) = A({\red \rho}) - B({\red \rho}) K. \nonumber \end{aligned} $$

AcP_PAc = @(rho) [
    Q*(A_fh(rho)-B_fh(rho)*K)+(A_fh(rho)-B_fh(rho)*K)'*Q , Q*B_fh(rho)*K
    K'*B_fh(rho)'*Q                                      , S*A_fh(rho)+A_fh(rho)'*S-N*C-C'*N'
    ];

$$ M_2 = \spmqty{ { \wt A_c({\color{red} \rho})^T} { P} + { P} { \wt A_c({\color{red} \rho})} & { P} \wt B_c({\red \rho}) - { \wt C^T({\red \rho})} & { \wt C^T({\red \rho})} \\ \wt B_c^T({\red \rho}) { P}- { \wt C({\red \rho})} & 0 & 0 \\ { \wt C({\red \rho})} & 0 & -W^{-1} } $$

M2 = @(rho) [
    AcP_PAc(rho)     P*Bc(rho)-Co'     Co'
    Bc(rho)'*P-Co    zeros(n_r,n_r)    zeros(n_r,n_yp)
    Co               zeros(n_yp,n_r)   -inv(W)
    ];

% Constraints
Constraints = [
    M2(-1) <= 0
    M2(1) <= 0
    P - 0.0001*eye(size(P)) >= 0
    ]
Output:
++++++++++++++++++++++++++++++++++
|   ID|                Constraint|
++++++++++++++++++++++++++++++++++
|   #1|   Matrix inequality 16x16|
|   #2|   Matrix inequality 16x16|
|   #3|   Matrix inequality 12x12|
++++++++++++++++++++++++++++++++++

Solve the optimization problem

optimize(Constraints)
check(Constraints)
Output:
Problem
  Name                   :
  Objective sense        : min
  Type                   : CONIC (conic optimization problem)
  Constraints            : 70
  Cones                  : 0
  Scalar variables       : 0
  Matrix variables       : 3
  Integer variables      : 0

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator - tries                  : 0                 time                   : 0.00
Lin. dep.  - tries                  : 1                 time                   : 0.00
Lin. dep.  - number                 : 0
Presolve terminated. Time: 0.00
Problem
  Name                   :
  Objective sense        : min
  Type                   : CONIC (conic optimization problem)
  Constraints            : 70
  Cones                  : 0
  Scalar variables       : 0
  Matrix variables       : 3
  Integer variables      : 0

Optimizer  - threads                : 4
Optimizer  - solved problem         : the primal
Optimizer  - Constraints            : 70
Optimizer  - Cones                  : 0
Optimizer  - Scalar variables       : 0                 conic                  : 0
Optimizer  - Semi-definite variables: 3                 scalarized             : 350
Factor     - setup time             : 0.00              dense det. time        : 0.00
Factor     - ML order time          : 0.00              GP order time          : 0.00
Factor     - nonzeros before factor : 2485              after factor           : 2485
Factor     - dense dim.             : 0                 flops                  : 4.63e+05
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME
0   2.4e+00  1.0e+00  5.0e+00  0.00e+00   3.998800000e+00   0.000000000e+00   1.0e+00  0.00
1   5.2e-01  2.2e-01  2.3e+00  1.00e+00   8.707527494e-01   0.000000000e+00   2.2e-01  0.01
2   1.8e-01  7.5e-02  1.4e+00  9.99e-01   3.003328125e-01   0.000000000e+00   7.5e-02  0.01
3   6.7e-02  2.8e-02  8.4e-01  9.96e-01   1.130547679e-01   0.000000000e+00   2.8e-02  0.01
4   2.3e-02  9.8e-03  4.9e-01  9.96e-01   3.938897574e-02   0.000000000e+00   9.8e-03  0.01
5   4.8e-03  2.0e-03  2.2e-01  9.92e-01   8.163890887e-03   0.000000000e+00   2.0e-03  0.01
6   9.5e-04  4.0e-04  9.6e-02  9.79e-01   1.624774403e-03   0.000000000e+00   4.0e-04  0.01
7   2.8e-04  1.2e-04  5.1e-02  9.64e-01   4.879303553e-04   0.000000000e+00   1.2e-04  0.01
8   7.8e-05  3.3e-05  2.7e-02  9.71e-01   1.371675058e-04   0.000000000e+00   3.3e-05  0.02
9   3.1e-05  1.3e-05  1.7e-02  9.56e-01   5.672656143e-05   0.000000000e+00   1.3e-05  0.02
10  6.9e-06  2.9e-06  7.3e-03  9.31e-01   1.282954394e-05   0.000000000e+00   2.9e-06  0.02
11  2.0e-06  8.6e-07  3.5e-03  8.39e-01   3.996112212e-06   0.000000000e+00   8.5e-07  0.02
12  6.2e-07  2.6e-07  1.5e-03  6.98e-01   1.356505947e-06   0.000000000e+00   2.6e-07  0.02
13  3.0e-07  1.3e-07  8.5e-04  4.74e-01   7.630308444e-07   0.000000000e+00   1.3e-07  0.02
14  7.3e-08  3.1e-08  2.6e-04  4.00e-01   1.408696426e-07   0.000000000e+00   3.1e-08  0.02
15  2.2e-08  9.2e-09  7.9e-05  1.51e-01   -7.347058531e-08  0.000000000e+00   9.2e-09  0.02
16  6.9e-09  2.9e-09  3.2e-05  2.21e-01   -8.952370110e-08  0.000000000e+00   2.9e-09  0.02
17  2.9e-09  1.2e-09  1.1e-05  -9.84e-03  -2.024105370e-07  0.000000000e+00   1.2e-09  0.03
18  5.9e-10  2.5e-10  2.5e-06  6.38e-02   -2.052818593e-07  0.000000000e+00   2.5e-10  0.03
19  1.7e-10  7.3e-11  7.6e-07  3.67e-02   -2.144482486e-07  0.000000000e+00   7.3e-11  0.03
20  4.7e-11  2.0e-11  2.1e-07  5.91e-03   -2.259000431e-07  0.000000000e+00   2.0e-11  0.03
21  1.8e-11  7.6e-12  7.9e-08  2.29e-02   -2.193365621e-07  0.000000000e+00   7.6e-12  0.03
22  4.7e-12  2.0e-12  2.0e-08  -8.77e-03  -2.317777451e-07  0.000000000e+00   2.0e-12  0.04
23  1.5e-12  6.3e-13  6.6e-09  3.02e-02   -2.210161629e-07  0.000000000e+00   6.2e-13  0.04
24  5.8e-13  2.5e-13  2.5e-09  -1.99e-02  -2.355462922e-07  0.000000000e+00   2.5e-13  0.04
25  1.5e-13  6.7e-14  6.6e-10  3.24e-02   -2.211940101e-07  0.000000000e+00   6.2e-14  0.04
26  6.3e-14  2.9e-14  2.7e-10  -2.72e-02  -2.412833002e-07  0.000000000e+00   2.7e-14  0.04
27  1.5e-14  1.1e-14  6.5e-11  1.23e-02   -2.270169311e-07  0.000000000e+00   6.2e-15  0.04
28  1.3e-14  9.8e-15  2.5e-11  -1.94e-02  -2.411796468e-07  0.000000000e+00   2.5e-15  0.04
29  1.9e-14  9.4e-15  6.3e-12  9.51e-03   -2.309901303e-07  0.000000000e+00   6.0e-16  0.04
30  4.0e-14  1.3e-14  2.4e-12  2.05e-03   -2.369628345e-07  0.000000000e+00   2.3e-16  0.05
31  1.1e-14  6.7e-15  5.7e-13  -2.17e-02  -2.367946886e-07  0.000000000e+00   5.7e-17  0.05
32  8.9e-15  3.9e-15  2.5e-13  2.06e-02   -2.384412054e-07  0.000000000e+00   2.5e-17  0.05
33  9.1e-15  9.3e-15  6.0e-14  -2.09e-02  -2.436127761e-07  0.000000000e+00   6.2e-18  0.05
34  1.3e-14  9.2e-15  2.4e-14  2.82e-02   -2.447050134e-07  0.000000000e+00   2.5e-18  0.05
35  1.9e-14  4.0e-15  6.4e-15  -2.83e-02  -2.487355876e-07  0.000000000e+00   6.7e-19  0.05
36  1.4e-14  8.7e-15  2.5e-15  1.61e-02   -2.477059828e-07  0.000000000e+00   2.6e-19  0.05
37  7.7e-15  7.1e-15  7.2e-16  -3.40e-02  -2.458013230e-07  0.000000000e+00   7.6e-20  0.05
38  2.9e-15  6.3e-15  2.8e-16  2.49e-02   -2.380730761e-07  0.000000000e+00   2.9e-20  0.05
39  7.5e-16  2.7e-15  7.0e-17  -2.54e-02  -2.400562061e-07  0.000000000e+00   7.4e-21  0.06
40  3.1e-16  8.4e-15  3.0e-17  1.43e-02   -2.332254340e-07  0.000000000e+00   3.0e-21  0.06
41  7.4e-17  8.4e-15  7.0e-18  -3.05e-02  -2.381459227e-07  0.000000000e+00   7.4e-22  0.06
42  3.3e-17  1.1e-14  3.1e-18  3.91e-02   -2.433704390e-07  0.000000000e+00   3.2e-22  0.06
43  7.4e-18  8.1e-15  6.9e-19  -5.46e-02  -2.444490121e-07  0.000000000e+00   7.6e-23  0.07
44  3.0e-18  5.9e-15  2.7e-19  5.29e-02   -2.535896650e-07  0.000000000e+00   3.0e-23  0.07
45  7.7e-19  6.8e-15  7.0e-20  -1.75e-02  -2.491384624e-07  0.000000000e+00   7.8e-24  0.07
46  2.9e-19  6.2e-15  2.6e-20  1.38e-02   -2.579986940e-07  0.000000000e+00   2.9e-24  0.07
47  3.2e-19  4.4e-15  7.2e-21  2.52e-02   -2.505204050e-07  0.000000000e+00   8.0e-25  0.08
48  2.6e-17  5.3e-15  6.7e-21  4.37e-03   -2.512546286e-07  0.000000000e+00   7.4e-25  0.08
49  3.2e-17  4.0e-15  6.4e-21  3.28e-03   -2.515487532e-07  0.000000000e+00   7.1e-25  0.08
50  3.3e-17  1.2e-14  6.4e-21  1.69e-03   -2.515807806e-07  0.000000000e+00   7.0e-25  0.08
51  3.4e-17  1.3e-14  6.4e-21  2.21e-03   -2.515966923e-07  0.000000000e+00   7.0e-25  0.09
52  3.4e-17  1.1e-14  6.4e-21  1.99e-03   -2.516045988e-07  0.000000000e+00   7.0e-25  0.09
53  3.4e-17  1.6e-14  6.4e-21  2.11e-03   -2.516208923e-07  0.000000000e+00   7.0e-25  0.09
54  3.4e-17  8.9e-15  6.4e-21  2.53e-03   -2.516213653e-07  0.000000000e+00   7.0e-25  0.10
55  3.4e-17  8.9e-15  6.4e-21  3.32e-03   -2.516218580e-07  0.000000000e+00   7.0e-25  0.10
56  3.4e-17  8.9e-15  6.4e-21  2.31e-03   -2.516228632e-07  0.000000000e+00   7.0e-25  0.10
57  3.4e-17  8.9e-15  6.4e-21  2.28e-03   -2.516228632e-07  0.000000000e+00   7.0e-25  0.11
Optimizer terminated. Time: 0.11


Interior-point solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: -2.5162286318e-07   nrm: 3e+09    Viol.  con: 3e-07    barvar: 2e-07
  Dual.    obj: 0.0000000000e+00    nrm: 3e+09    Viol.  con: 0e+00    barvar: 5e-06
Optimizer summary
  Optimizer                 -                        time: 0.11
    Interior-point          - iterations : 58        time: 0.11
      Basis identification  -                        time: 0.00
        Primal              - iterations : 0         time: 0.00
        Dual                - iterations : 0         time: 0.00
        Clean primal        - iterations : 0         time: 0.00
        Clean dual          - iterations : 0         time: 0.00
    Simplex                 -                        time: 0.00
      Primal simplex        - iterations : 0         time: 0.00
      Dual simplex          - iterations : 0         time: 0.00
    Mixed integer           - relaxations: 0         time: 0.00

ans =
  struct with fields:

    yalmiptime: 0.1766
    solvertime: 0.1207
          info: 'Successfully solved (MOSEK)'
       problem: 0

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|   ID|          Constraint|   Primal residual|   Dual residual|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|   #1|   Matrix inequality|       -1.6575e-07|     -7.0352e-07|
|   #2|   Matrix inequality|       -4.9775e-08|      2.9605e-17|
|   #3|   Matrix inequality|        2.4007e-05|      5.9336e-17|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Validate solution

Q = value(Q);
S = value(S);
N = value(N);
L = S\N;
P = value(P);
Co = value(Co);
C1 = value(C1);
D1 = value(D1);

% value(AcP_PAc2(0.1) - AcP_PAc(0.1))

Bc0 = Bc(0);
Bo0 = Bc(0);
Ac0 = Ac(L,0);
Ao0 = Ao(L,0);

M2_val = value(M2(0));
if pcz_info(all(real(eig(M2_val)) <= 1e-5), 'M2(0) <= 0')
    eig(M2_val)'
    fprintf('larges eigen value: %f\n\n', max(eig(M2_val)))
    return
end

M2_val = value(M2(0.1));
if pcz_info(all(real(eig(M2_val)) <= 1e-5), 'M2(0.1) <= 0')
    eig(M2_val)'
    fprintf('larges eigen value: %f\n\n', max(eig(M2_val)))
    return
end

M2_val = value(M2(-0.1));
if pcz_info(all(real(eig(M2_val)) <= 1e-5), 'M2(-0.1) <= 0')
    eig(M2_val)'
    fprintf('larges eigen value: %f\n\n', max(eig(M2_val)))
    return
end

if pcz_info(all(real(eig(P)) > 0), 'P > 0')
    eig(P)'
    return
end

if pcz_info(all(real(eig(A0 - L*C)) < 0), 'A - LC < 0')
    eig(A0 - L*C)
    return
end

if pcz_info(norm(D1) > 1e-3, 'norm(D1) > 1e-3')
    disp(norm(D1))
    return
end

% The resulting closed-loop system
sys_CLS = minreal(ss(Ac0,Bc0,Co,Do),[],0);
sys_OLS = minreal(ss(Ao0,Bo0,Co,Do),[],0);
sys_CLS = minreal(tf(sys_CLS),[],0);
sys_OLS = minreal(tf(sys_OLS),[],0);

if pcz_info(all(real(tzero(sys_OLS)) < 0), 'Zeros of the open loop system are stable')
    tzero(sys_OLS)
    return
end

if pcz_info(all(real(tzero(sys_CLS)) < 0), 'Zeros of the closed loop system are stable')
    tzero(sys_CLS)
    return
end

[POLES,ZEROS] = pzmap(sys_OLS);
[POLES,ZEROS] = pzmap(sys_CLS);
Output:
[  OK  ] M2(0) <= 0
[  OK  ] M2(0.1) <= 0
[  OK  ] M2(-0.1) <= 0
[  OK  ] P > 0
[  OK  ] A - LC < 0
[  OK  ] norm(D1) > 1e-3
[  OK  ] Zeros of the open loop system are stable
[  OK  ] Zeros of the closed loop system are stable

Zero dynamics of the obtained LPV

Construct LPV model matrices

Written on 2018. January 17.

Ebben a részben $A(\rho)$, $B(\rho)$, $C$, $D$ új értelmet nyer. Ezek adják meg az observerrel kiegészített dinamika mátrixait.

A_fh = @(rho) Ao(L,rho);
B_fh = Bo;

A0 = A_fh(0);
A1 = A_fh(1) - A0;

B0 = B_fh(0);
B1 = B_fh(1) - B0;

C0 = Co;
C1 = C0*0;

D0 = Do;
D1 = Do*0;

A_fh = @(rho) A0 + A1*rho;
B_fh = @(rho) B0 + B1*rho;
C_fh = @(rho) C0 + C1*rho;
D_fh = @(rho) D0 + D1*rho;

A = {A0, A1};
B = {B0, B1};
C = {C0, C1};
D = {D0, D1};

AA = [A{:}];
BB = [B{:}];
\begin{align} {\LARGE(5) \quad} A(\rho) = \left(\begin{array}{cccccccccccc} -0.32\rho -5.4 & -0.93 & -0.46 & 0.093 & 0.46 & 0.46 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.2\rho +1.9 & -0.32 & -0.19 & 0.038 & 0.19 & 0.19 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.29 & -0.73 & 0.24\rho -1.4 & 0.29 & 0.29\rho -1.5 & -0.084\rho -1.5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.059 & 0.15 & 0.22 & 0.055 & 0.28 & 0.28 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.29 & 0.73 & -0.28\rho -3.2 & 0.64 & 0.2\rho -1.8 & 0.19 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.29 & 0.73 & 0.1 & -0.02 & 1.9-0.082\rho & -0.1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2.1-0.32\rho & 0.25 & 2.1 & 20.0 & 0.85 & -11.0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.2\rho +10.0 & -1.4 & 1.4 & 19.0 & 2.2 & -13.0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -23.0 & 1.7 & 0.24\rho -6.1 & -52.0 & 0.29\rho -6.8 & 33.0-0.084\rho \\ 0 & 0 & 0 & 0 & 0 & 0 & 9.1 & -0.73 & 2.1 & 21.0 & 2.3 & -13.0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 28.0 & -0.077 & 3.5-0.28\rho & 66.0 & 0.2\rho +3.0 & -41.0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 25.0 & -2.2 & 5.0 & 55.0 & 7.7-0.082\rho & -37.0 \\ \end{array}\right) \end{align} \begin{align} {\LARGE(6) \quad} B(\rho) = \left(\begin{array}{cc} 2.0 & 0 \\ 0 & 0 \\ 1.1 & 2.0 \\ -0.23 & 0 \\ -1.1 & 2.0 \\ -1.1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}\right) \end{align} \begin{align} {\LARGE(7) \quad} C(\rho) = C = 10^{-3} \left(\begin{array}{cccccccccccc} 0.21 & -0.2 & 0.39 & 1.5 & -0.17 & -0.56 & 0.24 & 0.37 & -0.19 & -0.15 & 0.13 & -0.13 \\ 0.094 & 0.073 & 0.7 & 0.81 & 0.077 & 0.24 & 7.610^{-3} & 0.26 & -0.5 & -0.14 & -0.28 & -0.4 \\ \end{array}\right) \end{align}

Nálam az $E_c$ most az $Im(B)$.

Im_B = IMA([B{1} B{2}]);
\begin{align} {\LARGE(8) \quad} \mathrm{Im}\big(B(\rho)\big) = \left(\begin{array}{cc} -0.707 & 0 \\ 0 & 0 \\ -0.406 & -0.707 \\ 0.0811 & 0 \\ 0.406 & -0.707 \\ 0.406 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}\right) \end{align}
Ker_C = INTS(KER(C{1}), KER(C{2}));
\begin{align} {\LARGE(9) \quad} \mathrm{Ker}(C) = \left(\begin{array}{cccccccccc} -0.992 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.0167 & 0.978 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.0204 & -0.061 & -0.838 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.103 & 0.0891 & 0.259 & 0.445 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.0148 & -0.0411 & 0.0728 & 0.135 & 0.968 & 0 & 0 & 0 & 0 & 0 \\ -0.048 & -0.132 & 0.232 & 0.443 & -0.209 & 0.551 & 0 & 0 & 0 & 0 \\ 0.0191 & 0.0373 & -0.033 & -0.242 & 0.0724 & 0.44 & -0.84 & 0 & 0 & 0 \\ 0.025 & 0.0121 & 0.0995 & -0.476 & 0.0693 & 0.427 & 0.39 & 0.611 & 0 & 0 \\ -0.0073 & 0.059 & -0.272 & 0.409 & 0.0232 & 0.13 & 0.0032 & 0.352 & -0.662 & 0 \\ -0.0096 & 0.0008 & -0.0595 & 0.207 & -0.0229 & -0.142 & -0.14 & 0.4 & 0.388 & -0.769 \\ 0.0147 & 0.0712 & -0.191 & -0.0019 & 0.0852 & 0.512 & 0.348 & -0.547 & 0.0989 & -0.361 \\ -0.004 & 0.05 & -0.218 & 0.301 & 0.0249 & 0.143 & 0.0345 & 0.209 & 0.634 & 0.527 \\ \end{array}\right) \end{align}

We compute $\mathcal V^*$ and $\mathcal R^*$.

[R,V] = CSA([A{1} A{2}], Im_B, Ker_C);

dim_V = size(V,2);
dim_Ker_V = size(V,1) - size(V,2);

assert(rank(R) == 0 && rank([V Ker_C]) == rank(Ker_C), ...
    'Strong invertibility condition is not satisfied!');
assert(rank(INTS(V, Im_B)) == 0)

We ensure that $\mathcal R^* = \{0\}$ and that $\mathcal V^* \subseteq \mathrm{Ker}(C)$. Furthermore, we checked the strong invertibility condition $\mathcal V^* \cap \mathrm{Im}\big(B(\rho)\big) = \{0\}$.

\begin{align} {\LARGE(10) \quad} \mathcal V^* = \left(\begin{array}{cccccccccc} -0.992 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.0167 & 0.978 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.0204 & -0.061 & -0.838 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.103 & 0.0891 & 0.259 & 0.445 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.0148 & -0.0411 & 0.0728 & 0.135 & 0.968 & 0 & 0 & 0 & 0 & 0 \\ -0.048 & -0.132 & 0.232 & 0.443 & -0.209 & 0.551 & 0 & 0 & 0 & 0 \\ 0.0191 & 0.0373 & -0.033 & -0.242 & 0.0724 & 0.44 & -0.84 & 0 & 0 & 0 \\ 0.025 & 0.0121 & 0.0995 & -0.476 & 0.0693 & 0.427 & 0.39 & 0.611 & 0 & 0 \\ -0.0073 & 0.059 & -0.272 & 0.409 & 0.0232 & 0.13 & 0.0032 & 0.352 & -0.662 & 0 \\ -0.0096 & 0.0008 & -0.0595 & 0.207 & -0.0229 & -0.142 & -0.14 & 0.4 & 0.388 & -0.769 \\ 0.0147 & 0.0712 & -0.191 & -0.0019 & 0.0852 & 0.512 & 0.348 & -0.547 & 0.0989 & -0.361 \\ -0.004 & 0.05 & -0.218 & 0.301 & 0.0249 & 0.143 & 0.0345 & 0.209 & 0.634 & 0.527 \\ \end{array}\right) \end{align}

State transformation invariant feedback design

1. variáns

Let $T = \begin{pmatrix} {V^*}^\perp & L \end{pmatrix}^T$, where ${V^*}^\perp$ and $L$ are orthonormal bases for ${\mathcal V^*}^\perp \not\perp \mathcal L \subseteq \mathrm{Im}\big(B(\rho)\big)$, respectively.

L = ORTCO(Im_B);
dim_L = size(L,2);

assert(dim_L >= dim_V);

T = [ ORTCO(V) L(:,1:dim_V) ]';
\begin{align} {\LARGE(11) \quad} {\mathcal V^*}^\perp = \left(\begin{array}{cc} 0.123 & 0 \\ -0.134 & -0.159 \\ 0.164 & -0.517 \\ 0.83 & -0.163 \\ -0.119 & -0.151 \\ -0.386 & -0.484 \\ 0.153 & 0.0984 \\ 0.201 & -0.0978 \\ -0.0587 & 0.414 \\ -0.0774 & 0.0714 \\ 0.118 & 0.338 \\ -0.0323 & 0.336 \\ \end{array}\right) \end{align} \begin{align} {\LARGE(12) \quad} \mathcal L = \left(\begin{array}{cccccccccc|} -0.707 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.406 & 0 & -0.414 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.0811 & 0 & -0.159 & 0.981 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.406 & 0 & 0.414 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.406 & 0 & -0.795 & -0.196 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array}\right) \end{align} \begin{align} {\LARGE(13) \quad} T^T = \left(\begin{array}{cc|cccccccccc} 0.123 & 0 & -0.707 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.134 & -0.159 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.164 & -0.517 & 0.406 & 0 & -0.414 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.83 & -0.163 & -0.0811 & 0 & -0.159 & 0.981 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.119 & -0.151 & -0.406 & 0 & 0.414 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.386 & -0.484 & -0.406 & 0 & -0.795 & -0.196 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.153 & 0.0984 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0.201 & -0.0978 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ -0.0587 & 0.414 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ -0.0774 & 0.0714 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0.118 & 0.338 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ -0.0323 & 0.336 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array}\right) \end{align}

Transformed LPV system

tol = 1e-10;
prec = -log10(tol);

N = numel(A);
tA = cell(1,N);
tB = cell(1,N);
tC = cell(1,N);
tD = cell(1,N);

for i = 1:numel(A)
    tA{i} = round(T*A{i}/T, prec);
    tB{i} = round(T*B{i}, prec);
    tC{i} = round(C{i}/T, prec);
    tD{i} = round(D{i}, prec);
end

tA_fh = @(rho) tA{1} + tA{2}*rho;
tB_fh = @(rho) tB{1} + tB{2}*rho;
tC_fh = @(rho) tC{1} + tC{2}*rho;
tD_fh = @(rho) tD{1} + tD{2}*rho;
\begin{align} {\LARGE(14) \quad} \bar A_{22}(\rho) = \left(\begin{smallmatrix} 0.32\rho -1.8 & 0.023\rho +0.49 & 0.034\rho -0.34 & 0.026-0.23\rho & 0.12\rho -0.54 & 0.063\rho -8.1 & 0.14-0.056\rho & 0.14\rho -1.3 & 0.032\rho -21.0 & -0.065\rho -1.4 & -0.15\rho -13.0 \\ 0.84-0.36\rho & -0.17\rho -2.7 & 0.059\rho +1.6 & 0.12\rho -1.2 & -0.79\rho -11.0 & 0.097\rho +2.0 & 0.21\rho +2.4 & -0.2\rho -0.38 & -0.092\rho -0.91 & 1.8-0.019\rho & 0.15\rho +0.12 \\ 0.032\rho +0.25 & -0.2\rho -2.0 & 0.068\rho +0.22 & -0.045\rho -0.35 & -0.42\rho -3.3 & 0.075\rho +0.59 & 0.091\rho +0.72 & -0.014\rho -0.11 & -0.034\rho -0.27 & 0.066\rho +0.52 & 4.510^{-3}\rho +0.036 \\ 0.25\rho +3.7 & -0.076\rho -0.14 & 0.49-0.02\rho & -0.041\rho -3.0 & 0.4\rho +0.94 & 0.25-0.043\rho & -0.11\rho -0.52 & 0.13\rho +1.6 & 0.051\rho +0.33 & 0.032\rho +1.2 & -0.096\rho -1.3 \\ -0.025\rho -0.14 & 5.310^{-3}-3.010^{-3}\rho & -6.310^{-3}\rho -0.019 & 0.022\rho -0.29 & 0.014\rho -0.036 & -5.110^{-3}\rho -9.610^{-3} & 0.02-9.810^{-4}\rho & -9.510^{-3}\rho -0.062 & -4.810^{-4}\rho -0.013 & -0.011\rho -0.045 & 8.010^{-3}\rho +0.05 \\ 0 & 0 & 0 & 0 & 0 & 2.1-0.32\rho & 0.25 & 2.1 & 20.0 & 0.85 & 11.0 \\ 0 & 0 & 0 & 0 & 0 & 0.2\rho +10.0 & -1.4 & 1.4 & 19.0 & 2.2 & 13.0 \\ 0 & 0 & 0 & 0 & 0 & -23.0 & 1.7 & 0.24\rho -6.1 & -52.0 & 0.29\rho -6.8 & 0.084\rho -33.0 \\ 0 & 0 & 0 & 0 & 0 & 9.1 & -0.73 & 2.1 & 21.0 & 2.3 & 13.0 \\ 0 & 0 & 0 & 0 & 0 & 28.0 & -0.077 & 3.5-0.28\rho & 66.0 & 0.2\rho +3.0 & 41.0 \\ 0 & 0 & 0 & 0 & 0 & -25.0 & 2.2 & -5.0 & -55.0 & 0.082\rho -7.7 & -37.0 \\ \end{smallmatrix}\right) \end{align} \begin{align} {\LARGE(15) \quad} \bar B(\rho) = \left(\begin{array}{cc} 0.82 & 0.09 \\ 0.17 & -1.3 \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}\right) \end{align} \begin{align} {\LARGE(16) \quad} \bar C(\rho) = C = 10^{-3} \left(\begin{array}{cc|cccccccccc} 1.7 & -0.21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.76 & -1.1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}\right) \end{align}

Check stability of the transformed system

\begin{align} {\LARGE(17) \quad} \text{Eigenvalues of } A_{22}(\rho = -1) = \left(\begin{array}{c} -2.28 - 0.667 i \\ -2.28 + 0.667 i \\ -0.409 - 0.605 i \\ -0.409 + 0.605 i \\ -5.61 - 9.48 i \\ -5.61 + 9.48 i \\ -4.07 \\ -0.882 \\ -1.15 \\ -1.47 \\ \end{array}\right) \end{align} \begin{align} {\LARGE(18) \quad} \text{Eigenvalues of } A_{22}(\rho = -0.5) = \left(\begin{array}{c} -2.29 - 0.602 i \\ -2.29 + 0.602 i \\ -0.435 - 0.642 i \\ -0.435 + 0.642 i \\ -5.59 - 9.33 i \\ -5.59 + 9.33 i \\ -3.99 \\ -0.741 \\ -1.42 - 0.416 i \\ -1.42 + 0.416 i \\ \end{array}\right) \end{align} \begin{align} {\LARGE(19) \quad} \text{Eigenvalues of } A_{22}(\rho = 0) = \left(\begin{array}{c} -2.3 - 0.526 i \\ -2.3 + 0.526 i \\ -0.46 - 0.678 i \\ -0.46 + 0.678 i \\ -5.57 - 9.18 i \\ -5.57 + 9.18 i \\ -3.87 \\ -0.69 \\ -1.49 - 0.559 i \\ -1.49 + 0.559 i \\ \end{array}\right) \end{align} \begin{align} {\LARGE(20) \quad} \text{Eigenvalues of } A_{22}(\rho = 0.5) = \left(\begin{array}{c} -0.484 - 0.713 i \\ -0.484 + 0.713 i \\ -2.3 - 0.435 i \\ -2.3 + 0.435 i \\ -5.56 - 9.02 i \\ -5.56 + 9.02 i \\ -3.68 \\ -0.658 \\ -1.58 - 0.642 i \\ -1.58 + 0.642 i \\ \end{array}\right) \end{align} \begin{align} {\LARGE(21) \quad} \text{Eigenvalues of } A_{22}(\rho = 1) = \left(\begin{array}{c} -0.506 - 0.747 i \\ -0.506 + 0.747 i \\ -2.31 - 0.321 i \\ -2.31 + 0.321 i \\ -5.57 - 8.86 i \\ -5.57 + 8.86 i \\ -3.38 \\ -0.635 \\ -1.71 - 0.678 i \\ -1.71 + 0.678 i \\ \end{array}\right) \end{align}