A PHP Error was encountered

Severity: Warning

Message: fopen(/home/polpe/.phpsession/ci_session87a1e617c52505a2b033e3a781ab49c166e19b09): failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 159

Backtrace:

File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library

File: /home/polpe/public_html/index.php
Line: 315
Function: require_once

Polcz Péter honlapja

Tartalomjegyzék

DOA estimation for the Van der Pol model

Teljes Matlab script kiegészítő függvényekkel.

File: vanderpol_DOA.m
Directory: 4_gyujtemegy/11_CCS/_1_ccs/ccs_2020/vanderpol
Author: Peter Polcz (ppolcz@gmail.com)
Created on 2020. October 08. (2020b)

Van der Pol model

syms t x1 x2 real
x = [x1;x2];

f = [
    -x2
    -(1 - x1^2)*x2 + x1
    ];

M = [
    0 -1 0 0
    1 -1 0 1
    ];

E = [
    1 0 0 0
    0 1 0 0
    ];

phi = [
    x1
    x2
    x1*x2
    x1^2*x2
    ];

Check whether $f(x) = M \varphi(x)$.

ZEROS = simplify(f - M*phi)
Output:
 
ZEROS =
 
0
0
 

Annihilator for the Lagrange multiplier

N = [
    x2 -x1  0   0
    x2  0  -1   0
    0   x1 -1   0
    0   0   x1 -1
    ];
N_fh = matlabFunction(N,'vars',{ x });

Check whether $N(x) \varphi(x) = 0$

ZEROS = simplify(N*phi)
Output:
 
ZEROS =
 
0
0
0
0
 

Dimensions

n = numel(x);
m = numel(phi);
s = size(N,1);

The semidefinite program

Free symmetric Lyapunov matrix

P = sdpvar(n);

Lagrange multiplier as a full matrix variable

L = sdpvar(m,s,'full');

Corner points of polytope $\mathcal X$

X_v = [
    -1 -1
    -1  1
     1  1
     1 -1
     ]';

Constraints

CONS = [ P - eye(n) >= 0 ];

He = @(A) A.' + A;
for xi = X_v
    CONS = [ CONS
        He( E'*P*M + L*N_fh(xi) ) <= 0
        ];
end

Find a solution for the LMI constraints (withot any cost function to minimize)

sol = optimize(CONS)
Output:
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 19              
  Cones                  : 0               
  Scalar variables       : 0               
  Matrix variables       : 5               
  Integer variables      : 0               

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator - tries                  : 0                 time                   : 0.00            
Lin. dep.  - tries                  : 1                 time                   : 0.00            
Lin. dep.  - number                 : 0               
Presolve terminated. Time: 0.00    
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 19              
  Cones                  : 0               
  Scalar variables       : 0               
  Matrix variables       : 5               
  Integer variables      : 0               

Optimizer  - threads                : 4               
Optimizer  - solved problem         : the primal      
Optimizer  - Constraints            : 19
Optimizer  - Cones                  : 0
Optimizer  - Scalar variables       : 0                 conic                  : 0               
Optimizer  - Semi-definite variables: 5                 scalarized             : 43              
Factor     - setup time             : 0.00              dense det. time        : 0.00            
Factor     - ML order time          : 0.00              GP order time          : 0.00            
Factor     - nonzeros before factor : 190               after factor           : 190             
Factor     - dense dim.             : 0                 flops                  : 1.08e+04        
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
0   2.2e+00  2.0e+00  1.0e+00  0.00e+00   -2.000000000e+00  0.000000000e+00   1.0e+00  0.00  
1   3.6e-01  3.2e-01  1.1e-01  -5.62e-01  -2.556982074e+00  0.000000000e+00   1.6e-01  0.01  
2   5.8e-02  5.2e-02  2.9e-02  1.76e-01   -9.096761169e-01  0.000000000e+00   2.6e-02  0.02  
3   1.1e-02  9.5e-03  1.3e-02  9.05e-01   -1.507737528e-01  0.000000000e+00   4.8e-03  0.02  
4   1.9e-03  1.7e-03  5.4e-03  9.71e-01   -2.834863049e-02  0.000000000e+00   8.4e-04  0.02  
5   4.2e-04  3.8e-04  2.6e-03  9.35e-01   -6.184615235e-03  0.000000000e+00   1.9e-04  0.02  
6   9.1e-05  8.1e-05  1.5e-03  1.08e+00   -9.625375849e-04  0.000000000e+00   4.1e-05  0.02  
7   2.3e-05  2.0e-05  6.2e-04  8.70e-01   -3.198515338e-04  0.000000000e+00   1.0e-05  0.02  
8   6.3e-06  5.6e-06  3.5e-04  9.71e-01   -7.655566573e-05  0.000000000e+00   2.8e-06  0.02  
9   1.4e-06  1.2e-06  1.6e-04  9.49e-01   -1.807785231e-05  0.000000000e+00   6.1e-07  0.02  
10  3.5e-07  3.1e-07  8.3e-05  9.84e-01   -4.318160997e-06  0.000000000e+00   1.6e-07  0.02  
11  8.2e-08  7.3e-08  4.0e-05  9.95e-01   -1.019376407e-06  0.000000000e+00   3.7e-08  0.02  
12  2.8e-08  2.4e-08  2.4e-05  1.08e+00   -3.012976949e-07  0.000000000e+00   1.2e-08  0.02  
13  7.1e-09  6.2e-09  1.2e-05  9.94e-01   -7.934255467e-08  0.000000000e+00   3.1e-09  0.02  
14  2.0e-09  1.7e-08  6.4e-06  9.99e-01   -2.152107814e-08  0.000000000e+00   8.3e-10  0.03  
Optimizer terminated. Time: 0.03    


Interior-point solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: -2.1521078138e-08   nrm: 2e+00    Viol.  con: 4e-08    barvar: 0e+00  
  Dual.    obj: 0.0000000000e+00    nrm: 5e+00    Viol.  con: 0e+00    barvar: 7e-10  
Optimizer summary
  Optimizer                 -                        time: 0.03    
    Interior-point          - iterations : 14        time: 0.03    
      Basis identification  -                        time: 0.00    
        Primal              - iterations : 0         time: 0.00    
        Dual                - iterations : 0         time: 0.00    
        Clean primal        - iterations : 0         time: 0.00    
        Clean dual          - iterations : 0         time: 0.00    
    Simplex                 -                        time: 0.00    
      Primal simplex        - iterations : 0         time: 0.00    
      Dual simplex          - iterations : 0         time: 0.00    
    Mixed integer           - relaxations: 0         time: 0.00    


sol = 

  struct with fields:

    yalmipversion: '20200930'
    matlabversion: '9.9.0.1467703 (R2020b)'
       yalmiptime: 0.3961
       solvertime: 0.0409
             info: 'Successfully solved (MOSEK)'
          problem: 0

Retain the solution

Here, we visualize the obtained Lyapunov function

P = value(P);
L = value(L);

V = x'*P*x;
dV = jacobian(V)*f;

V_fh = matlabFunction(V,'vars',x);
dV_fh = matlabFunction(dV,'vars',x);

[xx1,xx2] = meshgrid(-1:0.1:1);

VV = V_fh(xx1,xx2);
dVV = dV_fh(xx1,xx2);

alpha = find_alpha(VV);

fig = figure(1);
delete(fig.Children)

subplot(121);
surf(xx1,xx2,VV);
hold on
contour(xx1,xx2,VV,[1 1]*alpha,'LineWidth',2)
plot(X_v(1,[1:end 1]),X_v(2,[1:end 1]),'.--','MarkerSize',20,'LineWidth',2)
title('Lyapunov function and its invariant level set')
xlabel('x1(t)');
ylabel('x2(t)');

subplot(122);
surf(xx1,xx2,dVV)
title('Time derivative of the Lyapunov function')
xlabel('x1(t)');
ylabel('x2(t)');

Here, we illustrate how the LMI constraints look like. (The output of the cell is possibly moved to the end of this page.)

CONS

P_sym = gen_sym_symmetric('p',n);
L_sym = gen_sym_full('l',m,s);

for xi = X_v
    display(N_fh(xi), sprintf('N(%g,%g)',xi))
    display(He( E'*P_sym*M + L_sym*N_fh(xi) ), sprintf('LMI in (%g,%g)  [this should be negative definite for some p_i and l_kj]',xi))
end
Output:
+++++++++++++++++++++++++++++++++++++++++++++++++++++
|   ID|              Constraint|   Coefficient range|
+++++++++++++++++++++++++++++++++++++++++++++++++++++
|   #1|   Matrix inequality 2x2|              1 to 1|
|   #2|   Matrix inequality 4x4|              1 to 2|
|   #3|   Matrix inequality 4x4|              1 to 2|
|   #4|   Matrix inequality 4x4|              1 to 2|
|   #5|   Matrix inequality 4x4|              1 to 2|
+++++++++++++++++++++++++++++++++++++++++++++++++++++

Helper functions

These are some helper functions (not needed for optimization)

function [ret] = gen_sym_indexed(name, nr, startindex)

    if nargin <= 2
        startindex = 1;
    end

    indices = startindex:nr+startindex-1;

    assert(numel(indices) == nr);

    minwidth = min(floor(log10(indices)) + 1);
    maxwidth = max(floor(log10(indices)) + 1);

    ret = sym(zeros(1,nr));

    for i = minwidth:maxwidth
        tmp = sym([ name repmat('0',[1, maxwidth-i]) ],[10^i-1 , 1]);
        ami_kell = max(startindex,10^(i-1)):min(nr+startindex,10^i)-1;

        ret(ami_kell-startindex+1) = tmp(ami_kell);
    end

end

function [ret] = gen_sym_full(name,dim1,dim2,startindex)

    if nargin < 4
        startindex = 1;
    end

    syms = gen_sym_indexed(name,dim1*dim2,startindex);

    ret = reshape(syms, [dim1,dim2]);

end

function P = gen_sym_symmetric(name,n,startindex)

    if nargin < 3
        startindex = 1;
    end


    nr = n*(n+1)/2;

    p = gen_sym_indexed(name, nr, startindex);

    U = triu(ones(n));

    P = sym(U);

    P(U == 1) = p;

    P = P + triu(P,1).';

end

function alpha = find_alpha(VV)
    alpha = min([
        VV(:,1)' VV(:,end)' VV(1,:) VV(end,:)
        ])*0.999;
end
Output:
N(-1,-1) =

    -1     1     0     0
    -1     0    -1     0
     0    -1    -1     0
     0     0    -1    -1

 
LMI in (-1,-1)  [this should be negative definite for some p_i and l_kj] =
 
[                2*p2 - 2*l05 - 2*l01, l01 - l02 - l06 - l09 - p1 - p2 + p3, - l03 - l05 - l07 - l09 - l13,    p2 - l08 - l13 - l04]
[l01 - l02 - l06 - l09 - p1 - p2 + p3,          2*l02 - 2*l10 - 2*p2 - 2*p3,   l03 - l06 - l10 - l11 - l14,    l04 - l12 - l14 + p3]
[       - l03 - l05 - l07 - l09 - l13,          l03 - l06 - l10 - l11 - l14,       - 2*l07 - 2*l11 - 2*l15, - l08 - l12 - l15 - l16]
[                p2 - l08 - l13 - l04,                 l04 - l12 - l14 + p3,       - l08 - l12 - l15 - l16,                  -2*l16]
 

N(-1,1) =

     1     1     0     0
     1     0    -1     0
     0    -1    -1     0
     0     0    -1    -1

 
LMI in (-1,1)  [this should be negative definite for some p_i and l_kj] =
 
[                2*l01 + 2*l05 + 2*p2, l01 + l02 + l06 - l09 - p1 - p2 + p3, l03 - l05 + l07 - l09 - l13,    l04 + l08 - l13 + p2]
[l01 + l02 + l06 - l09 - p1 - p2 + p3,          2*l02 - 2*l10 - 2*p2 - 2*p3, l03 - l06 - l10 - l11 - l14,    l04 - l12 - l14 + p3]
[         l03 - l05 + l07 - l09 - l13,          l03 - l06 - l10 - l11 - l14,     - 2*l07 - 2*l11 - 2*l15, - l08 - l12 - l15 - l16]
[                l04 + l08 - l13 + p2,                 l04 - l12 - l14 + p3,     - l08 - l12 - l15 - l16,                  -2*l16]
 

N(1,1) =

     1    -1     0     0
     1     0    -1     0
     0     1    -1     0
     0     0     1    -1

 
LMI in (1,1)  [this should be negative definite for some p_i and l_kj] =
 
[                2*l01 + 2*l05 + 2*p2, l02 - l01 + l06 + l09 - p1 - p2 + p3, l03 - l05 + l07 - l09 + l13,  l04 + l08 - l13 + p2]
[l02 - l01 + l06 + l09 - p1 - p2 + p3,          2*l10 - 2*l02 - 2*p2 - 2*p3, l11 - l06 - l10 - l03 + l14,  l12 - l04 - l14 + p3]
[         l03 - l05 + l07 - l09 + l13,          l11 - l06 - l10 - l03 + l14,       2*l15 - 2*l11 - 2*l07, l16 - l12 - l15 - l08]
[                l04 + l08 - l13 + p2,                 l12 - l04 - l14 + p3,       l16 - l12 - l15 - l08,                -2*l16]
 

N(1,-1) =

    -1    -1     0     0
    -1     0    -1     0
     0     1    -1     0
     0     0     1    -1

 
LMI in (1,-1)  [this should be negative definite for some p_i and l_kj] =
 
[                2*p2 - 2*l05 - 2*l01, l09 - l02 - l06 - l01 - p1 - p2 + p3, l13 - l05 - l07 - l09 - l03,  p2 - l08 - l13 - l04]
[l09 - l02 - l06 - l01 - p1 - p2 + p3,          2*l10 - 2*l02 - 2*p2 - 2*p3, l11 - l06 - l10 - l03 + l14,  l12 - l04 - l14 + p3]
[         l13 - l05 - l07 - l09 - l03,          l11 - l06 - l10 - l03 + l14,       2*l15 - 2*l11 - 2*l07, l16 - l12 - l15 - l08]
[                p2 - l08 - l13 - l04,                 l12 - l04 - l14 + p3,       l16 - l12 - l15 - l08,                -2*l16]