Severity: Warning
Message: fopen(/home/polpe/.phpsession/ci_session88d9f1649b72d5d804e183af0f7fb72c0cbb4d71): failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 159
Backtrace:
File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library
File: /home/polpe/public_html/index.php
Line: 315
Function: require_once
TELJES MATLAB SCRIPT KIEGÉSZÍTŐ FÜGGVÉNYEKKEL
file: standard_1d_order_reduction.m author: Peter Polcz <ppolcz@gmail.com>
Created on 2017. September 02.
┌standard_1d_order_reduction │ - Persistence for `standard_1d_order_reduction` reused (inherited) [run ID: 9151, 2017.09.02. Saturday, 11:38:12] │ - Script `standard_1d_order_reduction` backuped
Let us detonte $\mathcal U = \rm{Im}(A)$, $\mathcal V = \rm{Ker}(A)$, where $A \in \mathbb R^{n \times n}$. It is not necessary that $\mathcal U = \mathcal V^\perp$.
A = [
0 1
0 0
];
U = orth(A)
V = null(A)
rank([U V])
U = 1 0 V = -1 0 ans = 1
$$ \begin{aligned} &\dot x = A x + B y \\ &y = C x \end{aligned} $$
The state space could be partitioned as follows:
$$ X = X_{co} \otimes X_{c \bar o} \otimes X_{\bar c o} \otimes X_{\bar c \bar o} $$
$X_{\cdot \cdot}$ are pairwise orthogonal subsets of the state space.
End of the script.
└ 0.03252 [sec]