A PHP Error was encountered

Severity: Warning

Message: fopen(/home/polpe/.phpsession/ci_session683eb4b3f6c252e141ee1652d1f50162b598d87d): failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 159

Backtrace:

File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library

File: /home/polpe/public_html/index.php
Line: 315
Function: require_once

Polcz Péter honlapja

Tartalomjegyzék

Local Lyapunov function for a nontrivial equilibrium point

Teljes Matlab script kiegészítő függvényekkel.

Continuous-time Lotka-Volterra model

File: d2018_03_18_without_centering_lv2.m
Directory: /1_projects/2_sta/demonstrative
Author: Peter Polcz (ppolcz@gmail.com)
Created on 2018. March 18.

Model representation

A_sym = P_kiemel(f_sym-f0,x);
pcz_symeq(A_sym*x + f0, f_sym, 'Kiemeles jol tortent: A(x)*x + f0 = f(x)');

warning off
lfr = P_LFR_reduction_v6(P_lfrdata_v6(sym2lfr(A_sym)),x);
warning on

[A,B,Pi] = deal(lfr.A,lfr.B,lfr.Pi);

f0 = zeros(2,1);

Pib = [
    1
    x
    Pi
    ];

Nb = P_annihilator_linsolve_v6(Pib,xd);

Pia = [
    Pib
    jacobian(Pi,x)*f_sym
    ];

Pia_A_sym = P_kiemel(Pia(2:end),x);

warning off
Pia_lfr = P_LFR_reduction_v6(sym2lfr(Pia_A_sym),x);
warning on

H = blkdiag(1, [ Pia_lfr.A Pia_lfr.B ]);
tPia = [ 1 ; Pia_lfr.Pib ];

% H = eye(numel(Pia));
% tPia = Pia;

pcz_symeq(H*tPia,Pia, 'H*tPia = Pia')

Na = P_annihilator_linsolve_v6(tPia,xdDd);

p = numel(Pi);
[q,m] = size(Nb);
[qa,ma] = size(Na);

Ea = [ eye(n+p+1) zeros(n+p+1,p) ];
Aa = [ zeros(1,1+n+2*p) ; blkdiag([f0 A B], eye(p)) ];

P = sdpvar(m);
L = sdpvar(m,q);
La = sdpvar(ma,qa);

R = H'*U(Ea'*P*Aa)*H;

xlim = [
    0.2 1.8
    0.2 1.8
    ];

X_v = allcomb(xlim(1,:),xlim(2,:));

Nb_fh = matlabFunction(Nb,'vars',{x});
Na_fh = matlabFunction(Na,'vars',{x});

Optimization

CONS = [];

isposdef = @(P) P >= 0;
% isposdef = @(P) P >= eye(size(P))*0.0001;

for i = 1:size(X_v,1)
    x_num = X_v(i,:)';
    CONS = [
        CONS
        isposdef( P + L*Nb_fh(x_num) + Nb_fh(x_num)'*L' )
        isposdef( -R + La*Na_fh(x_num) + Na_fh(x_num)'*La' )
        ];
end

sol = optimize(CONS,[],sdpsettings('solver','mosek','verbose',false));
pcz_info(sol.problem == 0, sol.info);

Visualization

Output:
┌d2018_03_18_without_centering_lv2
│   - Persistence for `d2018_03_18_without_centering_lv2` reused (inherited) [run ID: 0504, 2018.03.18. Sunday, 13:57:34]
│   - Script `d2018_03_18_without_centering_lv2` backuped
│   ┌P_generate_symvars_v1_caller
│   └ 0.22016 [sec]
│   [  OK  ] Kiemeles jol tortent: A(x)*x + f0 = f(x)
│   [  OK  ] The first n elements of sigma_b must be identity permutation (in theory)
│   [  OK  ] The upper left (n+k)x(n+k) submatrix of Theta should be full-rank
│   [  OK  ] Equation of the permuted model should be the same
│   [  OK  ] Equation of the reduced model should be the same
│   ┌P_annihilator_linsolve_v6
│   │   ┌P_annihilator_linsolve_v6 - core computation
│   │   └ 0.080041 [sec]
│   │   ┌P_annihilator_linsolve_v6 - quick check I. - obtained annihilator, prec: 10
│   │   │   - maximal difference: 6.245005e-17, row nr. 5
│   │   └ 0.048254 [sec]
│   │   ┌P_annihilator_linsolve_v6 - beautify annihilator + !roundings!
│   │   └ 0.00436 [sec]
│   │   ┌P_annihilator_linsolve_v6 - quick check II. - the beautified annihilator, prec: 10
│   │   │   - maximal difference: 5.645239e-17, row nr. 2
│   │   └ 0.034158 [sec]
│   └ 0.17135 [sec]
│   [  OK  ] The first n elements of sigma_b must be identity permutation (in theory)
│   [  OK  ] The upper left (n+k)x(n+k) submatrix of Theta should be full-rank
│   [  OK  ] Equation of the permuted model should be the same
│   [  OK  ] Equation of the reduced model should be the same
│   [  OK  ] H*tPia = Pia
│   ┌P_annihilator_linsolve_v6
│   │   ┌P_annihilator_linsolve_v6 - core computation
│   │   └ 0.14041 [sec]
│   │   ┌P_annihilator_linsolve_v6 - quick check I. - obtained annihilator, prec: 10
│   │   │   - maximal difference: 4.770490e-17, row nr. 10
│   │   └ 0.056599 [sec]
│   │   ┌P_annihilator_linsolve_v6 - beautify annihilator + !roundings!
│   │   └ 0.010069 [sec]
│   │   ┌P_annihilator_linsolve_v6 - quick check II. - the beautified annihilator, prec: 10
│   │   │   - maximal difference: 9.390229e-17, row nr. 2
│   │   └ 0.036706 [sec]
│   └ 0.24836 [sec]
│   [  OK  ] Successfully solved (MOSEK)
│   [  OK  ] Positive semidefinite. Tolerance: 1e-05
│   [  OK  ] Positive semidefinite. Tolerance: 1e-05
│   [  OK  ] Positive semidefinite. Tolerance: 1e-05
│   [  OK  ] Positive semidefinite. Tolerance: 1e-05
│   [  OK  ] Positive semidefinite. Tolerance: 1e-05
│   [  OK  ] Positive semidefinite. Tolerance: 1e-05
│   [  OK  ] Positive semidefinite. Tolerance: 1e-05
│   [  OK  ] Positive semidefinite. Tolerance: 1e-05
│   [  OK  ] Egyenlo-e a ket kifejezes dV-re?
└ 3.2957 [sec]