A PHP Error was encountered

Severity: Warning

Message: fopen(/home/polpe/.phpsession/ci_sessione8cca4b96aeeef6b088cee30fe1f0acc1156c0f7): failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 159

Backtrace:

File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library

File: /home/polpe/public_html/index.php
Line: 315
Function: require_once

Polcz Péter honlapja

Tartalomjegyzék

Stabilitásvizsgálat diszkrét (proof of concepts)

Teljes Matlab script (és live script) kiegészítő függvényekkel.
Tekintsd meg LiveEditor nézetben is!

File: d2017_11_22_PoC.m

|Author: Peter Polcz (ppolcz@gmail.com) |

Created on 2017. November 22.

Automatically generated stuff

global SCOPE_DEPTH
SCOPE_DEPTH = 0;

ELSŐ PRÓBA [sikertelen]

Modell felállítása

P_generate_symvars_v5(2,1);
A = [
    0 0.5
    0.2 0.5
    ];

B = [
    0 0.2
    1 0
    ];

Pi = [
    d1
    x1^2
    ]
Pib = [x ; Pi];

f_sym = [A B] * Pib
N = P_annihilator_linsolve_v6(Pib,xd)
Output:
┌P_generate_symvars_v5
└ 0.42391 [sec]
Pi =
   d1
 x1^2
f_sym =
    x1^2/5 + x2/2
 d1 + x1/5 + x2/2
┌P_annihilator_linsolve_v6
│   - Persistence for `P_annihilator_linsolve_v6` initialized [run ID: 48, 113]Persistence for `2017.11.22. Wednesday, 11:36:32` 
│   - Script `P_annihilator_linsolve_v6` backuped
│   ┌P_annihilator_linsolve_v6 - core computation
│   └ 0.075526 [sec]
│   ┌P_annihilator_linsolve_v6 - quick check I. - obtained annihilator, prec: 10
│   │   - maximal difference: 1.040834e-17, row nr. 3
│   └ 0.043203 [sec]
│   ┌P_annihilator_linsolve_v6 - beautify annihilator + !roundings!
│   └ 0.003057 [sec]
│   ┌P_annihilator_linsolve_v6 - quick check II. - the beautified annihilator, prec: 10
│   │   - maximal difference: 3.663112e-16, row nr. 2
│   └ 0.044435 [sec]
└ 0.19122 [sec]
N =
[ x1,   0,   0, -1]
[ x2, -x1,   0,  0]
[ d1,   0, -x1,  0]
[  0,  d1, -x2,  0]

Derivált

$$\pi_b[k+1] := \pi_b\big( x[k+1] \big) = \pi_b \Big( A x[k] + B \pi\big( x[k] \big) \Big) = \pi_b \big(f(x[k])\big)$$

Pi_next = expand(subs(Pi, x, f_sym))
Pia = [
    Pib
    Pi_next
    ]
Na = P_annihilator_linsolve_v6(Pia,xd)
Output:
Pi_next =
                             d1
 x1^4/25 + (x1^2*x2)/5 + x2^2/4
Pia =
                             x1
                             x2
                             d1
                           x1^2
                             d1
 x1^4/25 + (x1^2*x2)/5 + x2^2/4
┌P_annihilator_linsolve_v6
│   - Persistence for `P_annihilator_linsolve_v6` initialized [run ID: 48, 114]Persistence for `2017.11.22. Wednesday, 11:36:32` 
│   - Script `P_annihilator_linsolve_v6` backuped
│   ┌P_annihilator_linsolve_v6 - core computation
│   └ 0.16248 [sec]
│   ┌P_annihilator_linsolve_v6 - quick check I. - obtained annihilator, prec: 10
│   │   - maximal difference: 1.908196e-16, row nr. 4
│   └ 0.080264 [sec]
│   ┌P_annihilator_linsolve_v6 - beautify annihilator + !roundings!
│   └ 0.007492 [sec]
│   ┌P_annihilator_linsolve_v6 - quick check II. - the beautified annihilator, prec: 10
│   │   - maximal difference: 1.422636e-17, row nr. 3
│   └ 0.10348 [sec]
└ 0.37813 [sec]
Na =
[ x1,   0,  0, -1,   0, 0]
[ x2, -x1,  0,  0,   0, 0]
[ d1,   0,  0,  0, -x1, 0]
[  0,  d1,  0,  0, -x2, 0]
[  0,   0,  1,  0,  -1, 0]
[  0,   0, x1,  0, -x1, 0]
[  0,   0, x2,  0, -x2, 0]
[  0,   0, d1,  0, -d1, 0]

Optimalizáció

n = numel(x);
m = numel(Pib);
p = numel(Pi);
q = size(N,1);
P = sdpvar(m);
L = sdpvar(q,m);
La = sdpvar(numel(Pia),size(Na,1));
X_v = [
    -1 -1
    -1 1
    1 1
    1 -1
    ];

D_v = [
    -1
    1
    ] * 0.2;

Aa = [
    A B zeros(n,p)
    zeros(p,m) eye(p)
    ];

Ia = [eye(n) zeros(n,2*p) ; zeros(p,n) eye(p) zeros(p)];

Pa = Aa' * P * Aa - Ia' * P * Ia;
corners = unique(allcomb(X_v(:,1),X_v(:,2),D_v'),'rows');
Constraints = [];
for i = 1:size(corners,1)
    N_num = double(subs(N,xd,corners(i,:)'));
    Na_num = double(subs(Na,xd,corners(i,:)'));
    Constraints = [Constraints , P + L*N_num + N_num'*L' >= 0.000*eye(size(P))];
    Constraints = [Constraints , Pa + La*Na_num + Na_num'*La' <= 0];
end
sdpopts = sdpsettings('debug',1);
sol = optimize(Constraints, [], sdpopts);
Output:
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 68              
  Cones                  : 0               
  Scalar variables       : 0               
  Matrix variables       : 16              
  Integer variables      : 0               

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator - tries                  : 0                 time                   : 0.00            
Lin. dep.  - tries                  : 1                 time                   : 0.00            
Lin. dep.  - number                 : 0               
Presolve terminated. Time: 0.00    
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 68              
  Cones                  : 0               
  Scalar variables       : 0               
  Matrix variables       : 16              
  Integer variables      : 0               

Optimizer  - threads                : 4               
Optimizer  - solved problem         : the primal      
Optimizer  - Constraints            : 68
Optimizer  - Cones                  : 0
Optimizer  - Scalar variables       : 0                 conic                  : 0               
Optimizer  - Semi-definite variables: 16                scalarized             : 248             
Factor     - setup time             : 0.00              dense det. time        : 0.00            
Factor     - ML order time          : 0.00              GP order time          : 0.00            
Factor     - nonzeros before factor : 1866              after factor           : 1866            
Factor     - dense dim.             : 0                 flops                  : 2.18e+05        
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
0   1.4e+01  1.0e+00  1.0e+00  0.00e+00   0.000000000e+00   0.000000000e+00   1.0e+00  0.00  
1   2.3e+00  1.7e-01  4.1e-01  1.00e+00   0.000000000e+00   0.000000000e+00   1.7e-01  0.01  
2   4.5e-01  3.3e-02  1.8e-01  1.00e+00   0.000000000e+00   0.000000000e+00   3.3e-02  0.01  
3   1.1e-01  8.2e-03  8.8e-02  1.00e+00   0.000000000e+00   0.000000000e+00   8.2e-03  0.01  
4   3.3e-02  2.4e-03  4.8e-02  1.00e+00   0.000000000e+00   0.000000000e+00   2.4e-03  0.02  
5   5.5e-03  4.0e-04  1.9e-02  1.00e+00   0.000000000e+00   0.000000000e+00   4.0e-04  0.02  
6   9.9e-04  7.2e-05  8.2e-03  1.00e+00   0.000000000e+00   0.000000000e+00   7.2e-05  0.02  
7   1.6e-04  1.2e-05  3.3e-03  1.00e+00   0.000000000e+00   0.000000000e+00   1.2e-05  0.02  
8   2.0e-05  1.5e-06  1.2e-03  1.00e+00   0.000000000e+00   0.000000000e+00   1.5e-06  0.02  
9   1.1e-06  8.0e-08  2.7e-04  1.00e+00   0.000000000e+00   0.000000000e+00   7.8e-08  0.03  
10  3.8e-09  2.9e-10  1.6e-05  1.00e+00   0.000000000e+00   0.000000000e+00   2.8e-10  0.03  
Optimizer terminated. Time: 0.04    


Interior-point solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: 0.0000000000e+00    nrm: 1e+01    Viol.  con: 2e-08    barvar: 0e+00  
  Dual.    obj: 0.0000000000e+00    nrm: 1e+00    Viol.  con: 0e+00    barvar: 3e-10  
Optimizer summary
  Optimizer                 -                        time: 0.04    
    Interior-point          - iterations : 10        time: 0.03    
      Basis identification  -                        time: 0.00    
        Primal              - iterations : 0         time: 0.00    
        Dual                - iterations : 0         time: 0.00    
        Clean primal        - iterations : 0         time: 0.00    
        Clean dual          - iterations : 0         time: 0.00    
    Simplex                 -                        time: 0.00    
      Primal simplex        - iterations : 0         time: 0.00    
      Dual simplex          - iterations : 0         time: 0.00    
    Mixed integer           - relaxations: 0         time: 0.00    

sol
P = double(P)
Output:
sol = 
  struct with fields:

    yalmiptime: 0.1118
    solvertime: 0.0427
          info: 'Successfully solved (MOSEK)'
       problem: 0
P =
    0.0000   -0.0000    0.0000    0.0000
   -0.0000    0.0000   -0.0000   -0.0000
    0.0000   -0.0000    1.1718    0.0000
    0.0000   -0.0000    0.0000   -0.0000

MÁSODIK PRÓBA [siker: ha el nem hibáztam]

Modell felállítása

P_generate_symvars_v5(2,0);
A = [
    0 0.5
    0.2 0.5
    ];

B = [
    0.2 0
    0  0
    ];

Pi = [
    x1*x2
    x2^2
    ]
Pib = [x ; Pi];

f_sym = [A B] * Pib
N = P_annihilator_linsolve_v6(Pib,xd)
Output:
┌P_generate_symvars_v5
└ 0.26507 [sec]
Pi =
 x1*x2
  x2^2
f_sym =
 x2/2 + (x1*x2)/5
      x1/5 + x2/2
┌P_annihilator_linsolve_v6
│   - Persistence for `P_annihilator_linsolve_v6` initialized [run ID: 48, 115]Persistence for `2017.11.22. Wednesday, 11:36:34` 
│   - Script `P_annihilator_linsolve_v6` backuped
│   ┌P_annihilator_linsolve_v6 - core computation
│   └ 0.080701 [sec]
│   ┌P_annihilator_linsolve_v6 - quick check I. - obtained annihilator, prec: 10
│   │   - maximal difference: 1.110223e-16, row nr. 2
│   └ 0.046574 [sec]
│   ┌P_annihilator_linsolve_v6 - beautify annihilator + !roundings!
│   └ 0.003109 [sec]
│   ┌P_annihilator_linsolve_v6 - quick check II. - the beautified annihilator, prec: 10
│   │   - maximal difference: 2.775558e-17, row nr. 3
│   └ 0.042349 [sec]
└ 0.19957 [sec]
N =
[ x2,  0, -1,   0]
[  0, x1, -1,   0]
[  0, x2,  0,  -1]
[  0,  0, x2, -x1]

Derivált

$$\pi_b[k+1] := \pi_b\big( x[k+1] \big) = \pi_b \Big( A x[k] + B \pi\big( x[k] \big) \Big) = \pi_b \big(f(x[k])\big)$$

Pi_next = expand(subs(Pi, x, f_sym))
Pia = [
    Pib
    Pi_next
    ]
Na = P_annihilator_linsolve_v6(Pia,xd)
Output:
Pi_next =
 (x1^2*x2)/25 + (x1*x2^2)/10 + (x1*x2)/10 + x2^2/4
                      x1^2/25 + (x1*x2)/5 + x2^2/4
Pia =
                                                x1
                                                x2
                                             x1*x2
                                              x2^2
 (x1^2*x2)/25 + (x1*x2^2)/10 + (x1*x2)/10 + x2^2/4
                      x1^2/25 + (x1*x2)/5 + x2^2/4
┌P_annihilator_linsolve_v6
│   - Persistence for `P_annihilator_linsolve_v6` initialized [run ID: 48, 116]Persistence for `2017.11.22. Wednesday, 11:36:34` 
│   - Script `P_annihilator_linsolve_v6` backuped
│   ┌P_annihilator_linsolve_v6 - core computation
│   └ 0.10194 [sec]
│   ┌P_annihilator_linsolve_v6 - quick check I. - obtained annihilator, prec: 10
│   │   - maximal difference: 6.938894e-17, row nr. 3
│   └ 0.092443 [sec]
│   ┌P_annihilator_linsolve_v6 - beautify annihilator + !roundings!
│   └ 0.006179 [sec]
│   ┌P_annihilator_linsolve_v6 - quick check II. - the beautified annihilator, prec: 10
│   │   - maximal difference: 6.522560e-16, row nr. 6
│   └ 0.064657 [sec]
└ 0.29052 [sec]
Na =
[ x1,  0,  0, 5*x1 + (25*x2)/2 - 25/4,  50, - 50*x2 - 25]
[ x2,  0,  0,     5/2 - (5*x2)/2 - x1, -10,        10*x2]
[  0, x1,  0,     5/2 - (5*x2)/2 - x1, -10,        10*x2]
[  0, x2,  0,                      -1,   0,            0]
[  0,  0,  1,     5/2 - (5*x2)/2 - x1, -10,        10*x2]
[  0,  0, x1,        5*x1 + (25*x2)/4,   0,       -25*x2]
[  0,  0, x2,                     -x1,   0,            0]

Optimalizáció

n = numel(x);
m = numel(Pib);
p = numel(Pi);
q = size(N,1);
P = sdpvar(m);
L = sdpvar(q,m);
La = sdpvar(numel(Pia),size(Na,1));
X_v = [
    -1 -1
    -1 1
    1 1
    1 -1
    ];

Aa = [
    A B zeros(n,p)
    zeros(p,m) eye(p)
    ];

Ia = [eye(n) zeros(n,2*p) ; zeros(p,n) eye(p) zeros(p)];

Pa = Aa' * P * Aa - Ia' * P * Ia;
corners = X_v;
Constraints = [];
for i = 1:size(corners,1)
    N_num = double(subs(N,xd,corners(i,:)'));
    Na_num = double(subs(Na,xd,corners(i,:)'));
    Constraints = [Constraints , P + L*N_num + N_num'*L' >= 0.0001*eye(size(P))];
    Constraints = [Constraints , Pa + La*Na_num + Na_num'*La' + 0.001*eye(size(Pa)) <= 0];
end
sdpopts = sdpsettings('debug',1);
sol = optimize(Constraints, [], sdpopts);
Output:
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 62              
  Cones                  : 0               
  Scalar variables       : 0               
  Matrix variables       : 8               
  Integer variables      : 0               

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator - tries                  : 0                 time                   : 0.00            
Lin. dep.  - tries                  : 1                 time                   : 0.00            
Lin. dep.  - number                 : 0               
Presolve terminated. Time: 0.00    
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 62              
  Cones                  : 0               
  Scalar variables       : 0               
  Matrix variables       : 8               
  Integer variables      : 0               

Optimizer  - threads                : 4               
Optimizer  - solved problem         : the primal      
Optimizer  - Constraints            : 62
Optimizer  - Cones                  : 0
Optimizer  - Scalar variables       : 0                 conic                  : 0               
Optimizer  - Semi-definite variables: 8                 scalarized             : 124             
Factor     - setup time             : 0.00              dense det. time        : 0.00            
Factor     - ML order time          : 0.00              GP order time          : 0.00            
Factor     - nonzeros before factor : 1533              after factor           : 1533            
Factor     - dense dim.             : 0                 flops                  : 1.36e+05        
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
0   6.8e+00  1.0e+00  9.7e-01  0.00e+00   -2.560000000e-02  0.000000000e+00   1.0e+00  0.00  
1   4.8e-01  7.1e-02  2.6e-01  9.96e-01   -2.110257714e-03  0.000000000e+00   7.1e-02  0.01  
2   1.9e-04  2.7e-05  5.1e-03  1.00e+00   -7.261013172e-07  0.000000000e+00   2.7e-05  0.01  
3   1.3e-09  1.9e-10  1.9e-10  1.00e+00   -6.910326724e-12  0.000000000e+00   1.9e-10  0.01  
Optimizer terminated. Time: 0.02    


Interior-point solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: -6.9103267242e-12   nrm: 5e-10    Viol.  con: 8e-08    barvar: 0e+00  
  Dual.    obj: 0.0000000000e+00    nrm: 1e+00    Viol.  con: 0e+00    barvar: 2e-10  
Optimizer summary
  Optimizer                 -                        time: 0.02    
    Interior-point          - iterations : 3         time: 0.01    
      Basis identification  -                        time: 0.00    
        Primal              - iterations : 0         time: 0.00    
        Dual                - iterations : 0         time: 0.00    
        Clean primal        - iterations : 0         time: 0.00    
        Clean dual          - iterations : 0         time: 0.00    
    Simplex                 -                        time: 0.00    
      Primal simplex        - iterations : 0         time: 0.00    
      Dual simplex          - iterations : 0         time: 0.00    
    Mixed integer           - relaxations: 0         time: 0.00    

sol
P = double(P)
Pa = double(Pa)
Output:
sol = 
  struct with fields:

    yalmiptime: 0.1104
    solvertime: 0.0253
          info: 'Successfully solved (MOSEK)'
       problem: 0
P =
    0.9954    0.0533    0.0053    0.0288
    0.0533    1.3747    0.0427    0.0126
    0.0053    0.0427    1.0561    0.0688
    0.0288    0.0126    0.0688    1.1046
Pa =
   -0.9404    0.0895   -0.0031   -0.0288    0.0085    0.0025
    0.0895   -0.7555    0.0622   -0.0126    0.0240    0.0207
   -0.0031    0.0622   -1.0163   -0.0688    0.0011    0.0058
   -0.0288   -0.0126   -0.0688   -1.1046         0         0
    0.0085    0.0240    0.0011         0    1.0561    0.0688
    0.0025    0.0207    0.0058         0    0.0688    1.1046
V = Pib' * P * Pib; V_rounded(x) = expand(pcz_roundPoly(V))
dV = Pia' * Pa * Pia;

V_fh = matlabFunction(V)
dV_fh = matlabFunction(dV)

[xx1,xx2] = meshgrid(linspace(-1,1,40));

figure
surf(xx1,xx2,V_fh(xx1,xx2))
figure
surf(xx1,xx2,dV_fh(xx1,xx2))
Output:
V_rounded(x1, x2) =
(10561*x1^2*x2^2)/10000 + (10527*x1^2*x2)/1000000 + (6221*x1^2)/6250 + (2753*x1*x2^3)/20000 + (7151*x1*x2^2)/50000 + (2133*x1*x2)/20000 + (5523*x2^4)/5000 + (12629*x2^3)/500000 + (13747*x2^2)/10000
V_fh =
  function_handle with value:
    @(x1,x2)x1.*(x1.*9.953560184397977e-1+x2.*5.332463252148369e-2+x1.*x2.*5.263741392594083e-3+x2.^2.*2.884263149208525e-2)+x2.^2.*(x1.*2.884263149208525e-2+x2.*1.26291216131422e-2+x1.*x2.*6.882286268266789e-2+x2.^2.*1.104579799328212)+x2.*(x1.*5.332463252148369e-2+x2.*1.374702041023992+x1.*x2.*4.266977842201862e-2+x2.^2.*1.26291216131422e-2)+x1.*x2.*(x1.*5.263741392594083e-3+x2.*4.266977842201862e-2+x1.*x2.*1.0561325192881+x2.^2.*6.882286268266789e-2)
dV_fh =
  function_handle with value:
    @(x1,x2)(x1.*x2.*(1.0./5.0)+x1.^2.*(1.0./2.5e1)+x2.^2.*(1.0./4.0)).*(x1.*2.525824322628441e-3+x2.*2.073587655261373e-2+x1.*x2.*2.335667724323262e-1+x1.*x2.^2.*6.882286268266789e-3+x1.^2.*x2.*2.752914507306716e-3+x1.^2.*4.418319197312846e-2+x2.^2.*2.933506655027199e-1)+x1.*(x1.*(-9.40367936798838e-1)+x2.*8.947803483306389e-2-x1.*x2.*1.772195658768674e-3+x1.*x2.^2.*8.533955684403724e-4+x1.^2.*x2.*3.41358227376149e-4+x1.^2.*1.010329729051376e-4-x2.^2.*2.607768649032721e-2)+x2.*(x1.*8.947803483306389e-2-x2.*7.555252098973027e-1+x1.*x2.*6.87421379753629e-2+x1.*x2.^2.*2.396675990730635e-3+x1.^2.*x2.*9.586703962922541e-4+x1.^2.*8.29435062104549e-4-x2.^2.*1.453462498162182e-3)-x2.^2.*(x1.*2.884263149208525e-2+x2.*1.26291216131422e-2+x1.*x2.*6.882286268266789e-2+x2.^2.*1.104579799328212)+(x1.*x2.*(1.0./1.0e1)+x1.*x2.^2.*(1.0./1.0e1)+x1.^2.*x2.*(1.0./2.5e1)+x2.^2.*(1.0./4.0)).*(x1.*8.533955684403724e-3+x2.*2.396675990730635e-2+x1.*x2.*1.204305727438624e-1+x1.*x2.^2.*1.0561325192881e-1+x1.^2.*x2.*4.224530077152401e-2+x1.^2.*2.752914507306716e-3+x2.^2.*2.81238845492692e-1)+x1.*x2.*(x1.*(-3.130756091734735e-3)+x2.*6.219828667410952e-2-x1.*x2.*1.015059298462973+x1.*x2.^2.*1.052748278518817e-4+x1.^2.*x2.*4.210993114075266e-5+x1.^2.*2.30741051936682e-4-x2.^2.*6.711754403843393e-2)