A PHP Error was encountered

Severity: Warning

Message: fopen(/home/polpe/.phpsession/ci_session9ee13e10d2478488ebf9b0ca69f77397ea436d3a): failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 159

Backtrace:

File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library

File: /home/polpe/public_html/index.php
Line: 315
Function: require_once

Polcz Péter honlapja

Tartalomjegyzék

2017b CCS gyak4. Subspaces

Teljes Matlab script (és live script) kiegészítő függvényekkel.
Tekintsd meg LiveEditor nézetben is!

Cascade tank system

System model

Generate symbolic system parameters $k_1 ,k_2 ,k_3 ,k_4 >0$ (flow rate of the corresponding tank).

pcz_generateSymStateVector(4,'k');
pcz_generateSymStateVector(4,'x');
assumeAlso(k>0)

State space matrices

A = [
    -k1 0 0 0
    k1 -k2 0 0
    0 k2 -k3 0
    0 0 k3 -k4
    ];
B = [ 0 1 0 0 ]';
C = [ 0 0 1 0 ];

Observability and controllability matrices

C4 = [ B A*B A^2*B A^3*B ], rank(C4)
O4 = [ C ; C*A ; C*A^2 ; C*A^3 ], rank(O4)
Output:
C4 =
[ 0,   0,              0,                              0]
[ 1, -k2,           k2^2,                          -k2^3]
[ 0,  k2, - k2^2 - k3*k2,       k3*(k2^2 + k3*k2) + k2^3]
[ 0,   0,          k2*k3, - k3*(k2^2 + k3*k2) - k2*k3*k4]
ans =
     3
O4 =
[                              0,                        0,     1, 0]
[                              0,                       k2,   -k3, 0]
[                          k1*k2,           - k2^2 - k3*k2,  k3^2, 0]
[ - k2*(k1^2 + k2*k1) - k1*k2*k3, k3*(k2^2 + k3*k2) + k2^3, -k3^3, 0]
ans =
     3

Subspaces

Controllable subspace

XC_ = orth(C4)
Output:
XC_ =
[ 0, 0, 0]
[ 1, 0, 0]
[ 0, 1, 0]
[ 0, 0, 1]

State variables $\left(x_2 ,x_3 ,x_4 \right)$ are controllable

Uncontrollable subspace

Xc_ = null(XC_')
Output:
Xc_ =
 1
 0
 0
 0

State variable $x_1$ is not controllable

Unobservable subspace

X_o = null(O4)
Output:
X_o =
 0
 0
 0
 1

State variable $x_4$ is not observable

Observable subspace

X_O = null(X_o')
Output:
X_O =
[ 1, 0, 0]
[ 0, 1, 0]
[ 0, 0, 1]
[ 0, 0, 0]

State variables $\left(x_1 ,x_2 ,x_3 \right)$ are observable

Controllable staircase form

S = [XC_ Xc_]
x_ = S'*x
A_ = S' * A * S, B_ = S' * B, C_ = C * S
Output:
S =
[ 0, 0, 0, 1]
[ 1, 0, 0, 0]
[ 0, 1, 0, 0]
[ 0, 0, 1, 0]
x_ =
 x2
 x3
 x4
 x1
A_ =
[ -k2,   0,   0,  k1]
[  k2, -k3,   0,   0]
[   0,  k3, -k4,   0]
[   0,   0,   0, -k1]
B_ =
 1
 0
 0
 0
C_ =
[ 0, 1, 0, 0]

Kalman decomposition (todo)

System model

A = [
   1.613378610435994  -3.995855597631523  -0.810450484741737  -0.168720889102838
   0.734243523886419  -1.441227814368974  -0.230398914393346  -0.184908002657739
  -0.645586131749136  -2.271869456330054  -1.257298097726161   0.738442163303650
   1.337529417392070  -5.440050610034118  -1.733590645293144  -0.143058326670208
   ];

B = [
    1.420709123535001
    0.656198450951251
   -0.385009953764639
    1.668593611633082
    ];

Observability and controllability matrices

C = [ 0.715755046956996  -3.906572661173081  -0.886008486028291   0.751557463505590 ];
rtol = 1e-10;
Cn = ctrb(A,B), rank(Cn,rtol)
On = obsv(A,C), rank(On,rtol)
Output:
Cn =
    1.4207   -0.2994    0.7760   -0.7495
    0.6562   -0.1224    0.3454   -0.3295
   -0.3850   -0.6918    0.4249   -0.6073
    1.6686   -1.2408    1.6422   -1.8125
ans =
     2
On =
    0.7158   -3.9066   -0.8860    0.7516
   -0.1364    0.6946    0.1311   -0.1602
   -0.0089    0.1175    0.0634    0.0143
    0.0501   -0.3555   -0.1243    0.0245
ans =
     2