Severity: Warning
Message: fopen(/home/polpe/.phpsession/ci_session5392162b31754169a7658a13a8d80846f0d87cab): failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 159
Backtrace:
File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library
File: /home/polpe/public_html/index.php
Line: 315
Function: require_once
Teljes Matlab script kiegészítő függvényekkel.
File: LMI_tricks.m Author: Peter Polcz (ppolcz@gmail.com)
Created on 2017. November 21.
global SCOPE_DEPTH VERBOSE LATEX_EQNR
SCOPE_DEPTH = 0;
VERBOSE = 1;
LATEX_EQNR = 0;
C = sdpvar(2,3);
sdpopts = sdpsettings('verbose', 0);
mu = 10000;
optimize( [ mu*eye(2) C ; C' eye(3) ] >= 0 , sum(C(:)) , sdpopts);
val_C = value(C)
val_C = -40.8248 -40.8248 -40.8248 -40.8248 -40.8248 -40.8248
optimize( [ mu*eye(2) C ; C' eye(3) ] >= 0 , -sum(C(:)) , sdpopts);
val_C = value(C)
val_C = 40.8248 40.8248 40.8248 40.8248 40.8248 40.8248
optimize( [ mu*eye(2) C ; C' eye(3) ] >= 0 , C(1) , sdpopts);
val_C = value(C)
val_C = -100.0000 0 0 0 0 0
optimize( [ mu*eye(2) C ; C' eye(3) ] >= 0 , C(1)+C(3) , sdpopts);
val_C = value(C)
val_C = -70.7107 -70.7107 0 -0.0000 0.0000 0
a = 5;
b = 3;
A = sdpvar(5);
R = sdpvar(5,3);
M = [
A R
R' zeros(b)
];
sdpopts = sdpsettings('solver','mosek');
optimize([ A <= -1e-10 , M >= 0 ] , [], sdpopts)
A = value(A);
M = value(M);
eig(A), eig(M)
Problem Name : Objective sense : min Type : CONIC (conic optimization problem) Constraints : 30 Cones : 0 Scalar variables : 0 Matrix variables : 2 Integer variables : 0 Optimizer started. Presolve started. Linear dependency checker started. Linear dependency checker terminated. Eliminator - tries : 0 time : 0.00 Lin. dep. - tries : 1 time : 0.00 Lin. dep. - number : 0 Presolve terminated. Time: 0.00 Problem Name : Objective sense : min Type : CONIC (conic optimization problem) Constraints : 30 Cones : 0 Scalar variables : 0 Matrix variables : 2 Integer variables : 0 Optimizer - threads : 4 Optimizer - solved problem : the primal Optimizer - Constraints : 30 Optimizer - Cones : 0 Optimizer - Scalar variables : 0 conic : 0 Optimizer - Semi-definite variables: 2 scalarized : 51 Factor - setup time : 0.00 dense det. time : 0.00 Factor - ML order time : 0.00 GP order time : 0.00 Factor - nonzeros before factor : 465 after factor : 465 Factor - dense dim. : 0 flops : 1.44e+04 ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME 0 0.0e+00 1.0e+00 1.0e+00 0.00e+00 -5.000000000e-10 0.000000000e+00 1.0e+00 0.00 Optimizer terminated. Time: 0.01 MOSEK DUAL INFEASIBILITY REPORT. Problem status: The problem is dual infeasible Interior-point solution summary Problem status : DUAL_INFEASIBLE Solution status : DUAL_INFEASIBLE_CER Primal. obj: -5.0000000000e-10 nrm: 1e+00 Viol. con: 0e+00 barvar: 0e+00 Optimizer summary Optimizer - time: 0.01 Interior-point - iterations : 0 time: 0.01 Basis identification - time: 0.00 Primal - iterations : 0 time: 0.00 Dual - iterations : 0 time: 0.00 Clean primal - iterations : 0 time: 0.00 Clean dual - iterations : 0 time: 0.00 Simplex - time: 0.00 Primal simplex - iterations : 0 time: 0.00 Dual simplex - iterations : 0 time: 0.00 Mixed integer - relaxations: 0 time: 0.00 ans = struct with fields: yalmiptime: 0.1463 solvertime: 0.0187 info: 'Infeasible problem (MOSEK)' problem: 1 ans = 0 0 0 0 0 ans = 0 0 0 0 0 0 0 0
$$ P \succeq 0 \overset{?}{\Leftrightarrow} \pmqty{P & R \\ R^T & 0} \succeq 0 $$
Válasz: nem, mivel. Attól, hogy $P \succeq 0$ még létezhet $R$ ú.h. $\pmqty{P & R \\ R^T & 0}$ indefinit lesz.
a = 5;
b = 3;
P = randn(a);
P = P*P';
R = randn(a,b);
\begin{align} {\LARGE(1) \quad}
\text{Sajátértékek}: \left(\begin{array}{cccccccc}
-2.05 & -0.778 & -0.646 & 1.81 & 2.38 & 6.41 & 8.11 & 17.5 \\
\end{array}\right)
\end{align}
Fordítva igaz-e? Sejtés: igen.