Severity: Warning
Message: fopen(/home/polpe/.phpsession/ci_session502a277db3c52d6debe8ee610d16f41fb5cb8aa9): failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 159
Backtrace:
File: /home/polpe/public_html/application/controllers/Main.php
Line: 17
Function: library
File: /home/polpe/public_html/index.php
Line: 315
Function: require_once
Teljes Matlab script kiegészítő függvényekkel.
File: Kalman_decomposition.m Directory: demonstrations/oktatas/ccs/2017fall Author: Peter Polcz (ppolcz@gmail.com)
Created on 2018. January 13.
Inhereted from:
CCS 2017 fall. Homework 2. Solutions
File: d2017_10_26_hf2_mo.m Directory: demonstrations/oktatas/ccs/2017fall Author: Peter Polcz (ppolcz@gmail.com)
Created on 2017. October 04. Reviewed on 2017. October 30.
% Automatically generated stuff
global SCOPE_DEPTH VERBOSE
SCOPE_DEPTH = 0;
VERBOSE = 1;
a = 4; % Nr. of contr. and obs.
b = 2; % Nr. of contr. and unobs.
c = 1; % Nr. of uncontr. and obs.
d = 2; % Nr. of uncontr. and unobs.
n = a+b+c+d; % Nr. of states
r = 2; % Nr. of inputs
m = 2; % Nr. of outputs
A_ = [
randn(a,a) zeros(a,b) randn(a,c) zeros(a,d)
randn(b,a) randn(b,b) randn(b,c) randn(b,d)
zeros(c,a) zeros(c,b) randn(c,c) zeros(c,d)
zeros(d,a) zeros(d,b) randn(d,c) randn(d,d)
];
B_ = [
randn(a,r)
randn(b,r)
zeros(c,r)
zeros(d,r)
];
C_ = [
randn(m,a) zeros(m,b) randn(m,c) zeros(m,d)
];
D = zeros(m,r);
System $(\bar A, \bar B, \bar C, D)$ is in Kalman decomposed form. The transfer function is reducible to a $a$rd order system.
sys = ss(A_,B_,C_,D)
sys = A = x1 x2 x3 x4 x5 x6 x1 2.18 -2.601 -1.168 0.3713 0 0 x2 0.08162 1.055 -2.237 0.8478 0 0 x3 0.6023 1.042 -0.007656 -0.5526 0 0 x4 0.3258 0.7171 -0.8829 -0.4567 0 0 x5 0.4452 0.1199 -0.2424 -0.4134 -1.39 2.35 x6 -0.04099 -0.4354 1.042 -1.472 0.869 -1.258 x7 0 0 0 0 0 0 x8 0 0 0 0 0 0 x9 0 0 0 0 0 0 x7 x8 x9 x1 0.3771 0 0 x2 0.1719 0 0 x3 -1.037 0 0 x4 -1.203 0 0 x5 -0.1934 -1.313 -0.3133 x6 0.9227 1.149 0.1707 x7 0.02033 0 0 x8 -1.577 0.324 0.4185 x9 1.445 -1.152 -0.5577 B = u1 u2 x1 0.4645 -0.5897 x2 0.5284 -0.103 x3 -0.3536 -1.79 x4 0.5544 -0.2775 x5 -0.17 -0.01351 x6 0.4434 -0.4604 x7 0 0 x8 0 0 x9 0 0 C = x1 x2 x3 x4 x5 x6 x7 y1 1.939 0.5564 1.077 -1.643 0 0 -0.181 y2 -0.6088 -2.241 -0.1898 -1.077 0 0 -0.413 x8 x9 y1 0 0 y2 0 0 D = u1 u2 y1 0 0 y2 0 0 Continuous-time state-space model.
Transfer function
H = minreal(tf(sys))
H = From input 1 to output... -0.09687 s^3 + 1.399 s^2 - 10.95 s - 4.647 1: --------------------------------------------- s^4 - 2.771 s^3 + 2.831 s^2 - 3.084 s - 5.319 -1.997 s^3 + 0.482 s^2 + 7.199 s + 12.67 2: --------------------------------------------- s^4 - 2.771 s^3 + 2.831 s^2 - 3.084 s - 5.319 From input 2 to output... -2.673 s^3 + 8.612 s^2 - 20.4 s - 20.13 1: --------------------------------------------- s^4 - 2.771 s^3 + 2.831 s^2 - 3.084 s - 5.319 1.228 s^3 - 13.58 s^2 + 19.27 s + 24.21 2: --------------------------------------------- s^4 - 2.771 s^3 + 2.831 s^2 - 3.084 s - 5.319 Continuous-time transfer function.
Transform the system with a random orthogonal transformation matrix $T$.
T = orth(rand(n));
A = T * A_ * T';
B = T * B_;
C = C_ * T';
sys = ss(A,B,C,D)
sys = A = x1 x2 x3 x4 x5 x6 x7 x1 0.6481 0.3399 0.2673 -0.1689 0.7096 0.2047 -0.9442 x2 1.472 -1.058 1.253 -0.2828 0.06571 0.9535 0.01389 x3 -1.11 2.086 0.7939 0.415 0.9133 0.07849 -1.042 x4 0.2161 -0.7022 1.778 0.878 0.2339 0.4193 0.5418 x5 0.3258 0.2156 -0.3072 1.648 0.8113 -0.7606 -0.3288 x6 -0.3634 0.1001 -0.5182 1.44 0.8654 -0.9298 0.8704 x7 0.5611 0.6293 -0.6845 0.01012 0.6761 -0.3199 -0.6573 x8 -0.05946 0.5881 1.097 0.3105 1.252 0.1918 -1.436 x9 1.48 -0.8469 -0.2679 0.02202 0.4993 0.4339 -0.2813 x8 x9 x1 1.367 0.1473 x2 1.171 -0.2404 x3 -0.6024 0.2386 x4 0.09242 -0.03678 x5 -0.3055 0.1739 x6 0.9128 0.4748 x7 1.179 0.211 x8 0.3095 -1.015 x9 0.7015 -0.8854 B = u1 u2 x1 -0.624 0.07024 x2 0.1063 0.7054 x3 0.2961 0.6281 x4 0.21 0.5862 x5 0.02116 -0.108 x6 -0.5239 0.9498 x7 -0.4097 0.6003 x8 -0.344 -1.145 x9 0.2437 -0.1614 C = x1 x2 x3 x4 x5 x6 x7 y1 0.3165 -0.9533 -1.394 -0.5288 -0.08648 -0.55 -1.576 y2 0.9369 0.7279 -1.228 -0.9609 -0.5572 1.057 1.183 x8 x9 y1 -0.3537 -1.346 y2 -0.2139 0.2145 D = u1 u2 y1 0 0 y2 0 0 Continuous-time state-space model.
Controllability matrix
Cn = ctrb(A,B);
Transformation matrix, which generates the controllability staircase form.
[S1,~,~] = svd(Cn)
S1 = Columns 1 through 7 -0.0344 0.3801 0.3272 0.2280 0.0698 0.5390 -0.2868 -0.6202 0.2357 0.1980 -0.2393 0.0155 -0.0890 -0.5261 0.2950 0.4295 -0.4772 -0.3318 -0.0880 -0.3618 -0.3844 -0.4784 0.3112 -0.3427 -0.2697 0.2311 0.1248 0.5737 0.2629 0.3668 -0.0962 -0.1104 -0.5778 0.4586 0.1417 0.1937 0.4314 0.2660 -0.0783 0.4344 -0.0199 0.2114 0.2279 0.3233 0.4762 0.0706 0.0093 -0.4843 0.2097 -0.1725 0.2991 -0.3651 0.8274 -0.0094 -0.1772 -0.0200 -0.3316 0.0623 0.2617 0.0026 -0.6411 -0.2801 0.2345 Columns 8 through 9 -0.5636 0.0001 0.3995 -0.1370 -0.3009 0.1170 -0.2129 -0.2019 0.4258 -0.1711 0.3293 0.5977 -0.0596 -0.5742 0.1746 0.0227 -0.2512 0.4584
The transformation.
A1 = S1' * A * S1
B1 = S1' * B
C1 = C * S1
A1 = Columns 1 through 7 -2.3836 -1.6226 0.5723 -1.0918 -1.1167 -0.1776 0.3619 -1.1182 2.0772 -1.9653 -0.0905 -1.0177 1.1393 -0.0918 -0.0468 0.0820 0.7525 2.8086 -0.0779 0.7580 0.4491 0.0492 -0.0970 -0.8506 0.3153 0.0427 1.0901 -0.7856 0.0001 0.0000 -0.0003 0.0000 -0.4074 -1.6492 0.2009 -0.0000 0.0000 0.0002 -0.0001 -0.1051 -0.2308 0.6883 0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 1.2414 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.9952 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.6748 Columns 8 through 9 1.4716 -0.9392 0.5885 -0.1770 -0.5567 -0.1298 0.8485 0.2451 0.1743 -0.1406 -0.8109 -0.1991 -0.6782 -1.1084 -0.7094 -0.8543 0.1764 -0.7454 B1 = -0.2683 0.0083 -0.4580 0.8570 -0.5436 0.5866 -0.5968 -1.4871 -0.4160 0.6909 -0.2155 -0.2901 0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 C1 = Columns 1 through 7 0.4408 -1.8361 -0.3503 0.5506 0.6704 1.8680 -0.1243 -0.0929 0.2844 2.3984 0.5919 0.6191 -0.1071 -0.2836 Columns 8 through 9 0.1252 0.0402 0.2858 0.0918
Order of the controllable subsystem
ab = rank(Cn);
2.1. Observability staircase form of the controllable subsystem
On1 = obsv(A1(1:ab,1:ab), C1(:,1:ab));
[~,~,S21] = svd(On1);
2.2. Observability staircase form of the uncontrollable subsystem
On2 = obsv(A1(ab+1:end,ab+1:end), C1(:,ab+1:end));
[~,~,S22] = svd(On2);
Second transformation matrix to generate the observability staircase form for both controllable and uncontrollable subsystems.
S2 = blkdiag(S21, S22)
S2 = Columns 1 through 7 -0.1520 -0.0154 -0.1615 0.0525 0.0207 0.9733 0 0.6509 0.1025 0.6771 -0.1870 -0.1417 0.2287 0 -0.4077 -0.5483 0.3817 -0.5462 0.2981 0.0141 0 -0.5960 0.4149 0.5743 0.3436 -0.1572 -0.0064 0 -0.1620 -0.0507 -0.1320 -0.4055 -0.8884 -0.0072 0 -0.0747 0.7168 -0.1500 -0.6176 0.2769 0.0022 0 0 0 0 0 0 0 0.6868 0 0 0 0 0 0 -0.6920 0 0 0 0 0 0 -0.2222 Columns 8 through 9 0 0 0 0 0 0 0 0 0 0 0 0 0.4034 -0.6046 0.6173 -0.3743 -0.6754 -0.7032
Transformation
A2 = round(S2' * A1 * S2,10)
B2 = round(S2' * B1,10)
C2 = round(C1 * S2,10)
A2 = Columns 1 through 7 2.3794 0.3914 0.0509 0.0015 0 0 0.1258 1.3450 0.0269 -1.0693 0.0081 0 0 -0.1514 0.8970 3.0656 1.1008 -0.0040 0 0 -0.7720 0.5112 -0.1264 -1.4905 -0.7363 0 0 -1.4350 -1.0939 0.8399 0.2354 -0.9976 0.0945 0.0230 0.7058 0.4528 -0.4343 -0.7251 0.1151 1.5036 -2.7422 -0.6249 0 0 0 0 0 0 0.0203 0 0 0 0 0 0 1.1324 0 0 0 0 0 0 -1.8152 Columns 8 through 9 0 0 0 0 0 0 0 0 -0.3333 0.0998 1.7421 -0.1143 0 0 0.0714 0.2435 -1.3266 -0.3051 B2 = 0.4034 1.1135 -0.1257 -1.0940 -0.7298 -0.0989 0.4651 -1.0923 0.3010 -0.4067 -0.3673 0.2163 0 0 0 0 0 0 C2 = Columns 1 through 7 -1.6956 1.5306 -1.5007 -0.6786 0 0 -0.1810 -1.2236 -1.1471 1.3973 -1.3496 0 0 -0.4130 Columns 8 through 9 0 0 0 0
Using minreal the transfer function which generates the Kalman decomposition can be retained easily, however, this does not work all the times. The uncontrollable subsystem is not always decomposed (since the uncontrollable subsystem is already redundant).
[H,U] = minreal(sys);
A1 = round(U*A/U,10)
B1 = round(U*B,10)
C1 = round(C/U,10)
5 states removed. A1 = Columns 1 through 7 2.4045 -0.7869 -1.3048 0.7232 0 0 0.5497 1.7864 1.6418 0.8533 1.7592 0 0 0.4637 -0.6565 -1.4494 -0.4373 0.6298 0 0 1.2209 0.0515 -0.9723 -0.3470 -0.8381 0 0 -0.8284 -0.8031 0.3060 -0.0494 0.9086 0.1067 -1.4807 -0.3325 0.6820 -1.1515 -0.3126 -0.6556 0 -2.7543 0.8821 0 0 0 0 0 0 0.0203 0 0 0 0 0 0 0.6476 0 0 0 0 0 0 2.0391 Columns 8 through 9 0 0 0 0 0 0 0 0 -0.5109 -0.0945 -1.6069 -0.5631 0 0 -0.2116 -0.2196 1.3506 -0.0222 B1 = 0.4155 0.1923 -0.8576 -0.3107 0.1212 -1.8310 -0.0672 -0.3915 0.0948 -0.2587 -0.4653 0.3811 0 0 0 0 0 0 C1 = Columns 1 through 7 -1.3675 -0.5879 0.9465 2.1951 0 0 0.1810 -1.8037 1.3804 -0.9356 -0.7434 0 0 0.4130 Columns 8 through 9 0 0 0 0
dim_X_C = rank(Cn);
X_C = S1(:,1:dim_X_C)
Alternatively
X_C = orth(Cn);
X_C = -0.0344 0.3801 0.3272 0.2280 0.0698 0.5390 -0.6202 0.2357 0.1980 -0.2393 0.0155 -0.0890 0.2950 0.4295 -0.4772 -0.3318 -0.0880 -0.3618 -0.4784 0.3112 -0.3427 -0.2697 0.2311 0.1248 0.2629 0.3668 -0.0962 -0.1104 -0.5778 0.4586 0.1937 0.4314 0.2660 -0.0783 0.4344 -0.0199 0.2279 0.3233 0.4762 0.0706 0.0093 -0.4843 -0.1725 0.2991 -0.3651 0.8274 -0.0094 -0.1772 -0.3316 0.0623 0.2617 0.0026 -0.6411 -0.2801
Check if $Im(B) \subset X_c$.
Background. Let $V$ and $W$ be two subspaces of $\mathbb{R}^n$, dim$(V) = k$, dim$(W) = m$. $V \subset W$ if there exists a matrix
$$ A = \begin{pmatrix} a_{11} & ... & a_{1k} \\ ... & ... & ... \\ a_{m1} & ... & a_{mk} \end{pmatrix} $$
such that $V = W A$. If there exists such matrix, it can be computed as follows: $A = \left(W^T W\right)^{-1} W^T V$. If the equility $V = W A$ holds for this matrix $A$, than $V \subset W$. So, we need that $W \left(W^T W\right)^{-1} W^T V - V$ be approximately the zero matrix.
For this purpose, we define the following function (in a separate file, called pcz_vecalg_subset.m)
function [ret] = pcz_vecalg_subset(V, W, tol)
ret = rank(W / (W'*W) * W' * V - V, tol) == 0;
Using this function we can check whether $Im(B) \subset X_c$.
pcz_info(pcz_vecalg_subset(orth(B),X_C,1e-10), 'Im(B) ⊂ X_C')
│ [ OK ] Im(B) ⊂ X_C
Check if $A X_c \subseteq X_c$.
pcz_info(pcz_vecalg_subset(A*X_C,X_C,1e-10), 'A X_C ⊆ X_C')
disp '$a$'
│ [ OK ] A X_C ⊆ X_C $a$