|- LPV_passanal_Finsler:30 - model generation | | |- P_LFR_reduction called from LPV_passanal_Finsler:63 | | | | |- P_lfrdata_v6 called from P_LFR_reduction:95 | | |- 0.017358 [sec] | | | | |- pcz_symeq_report:14 (pcz_symzero_report) - A*x + B*Pi == A_sym*x | | | [ INFO ] Tolerance: 1e-10. | | | [ INFO ] Maximal difference: 8.88178e-16 | | | ---------------------------------------------------- | | | [ OK ] A*x + B*Pi == A_sym*x | | |- 0.001861 [sec] | | | | - Redundant LFR model (dim: 7) (symbolic computations). Elapsed time is 0.113346 | | | | |- P_Pi_canonical_decomp called from P_LFR_reduction:131 | | |- 0.11695 [sec] | | | | |- pcz_symeq_report:14 (pcz_symzero_report) - Equation of the permuted model should be the same | | | [ INFO ] Tolerance: 1e-10. | | | [ INFO ] Maximal difference: 0 | | | ---------------------------------------------------- | | | [ OK ] Equation of the permuted model should be the same | | |- 0.000524 [sec] | | [ OK ] Pi [dim: 11] = S * (reduced Pi [dim: 10. | | | | |- pcz_symeq_report:14 (pcz_symzero_report) - Equation of the reduced model should be the same | | | [ INFO ] Tolerance: 1e-05. | | | [ INFO ] Maximal difference: 0 | | | ---------------------------------------------------- | | | [ OK ] Equation of the reduced model should be the same | | |- 0.000479 [sec] | | | |- 2.0922 [sec] | | |- P_LFR_reduction called from LPV_passanal_Finsler:64 | | | | |- P_lfrdata_v6 called from P_LFR_reduction:95 | | |- 0.013919 [sec] | | | | |- pcz_symeq_report:14 (pcz_symzero_report) - A*x + B*Pi == A_sym*x | | | [ INFO ] Tolerance: 1e-10. | | | [ INFO ] Maximal difference: 3.33067e-16 | | | ---------------------------------------------------- | | | [ OK ] A*x + B*Pi == A_sym*x | | |- 0.000625 [sec] | | | | - Redundant LFR model (dim: 5) (symbolic computations). Elapsed time is 0.097254 | | | | |- P_Pi_canonical_decomp called from P_LFR_reduction:131 | | |- 0.070553 [sec] | | | | |- pcz_symeq_report:14 (pcz_symzero_report) - Equation of the permuted model should be the same | | | [ INFO ] Tolerance: 1e-10. | | | [ INFO ] Maximal difference: 0 | | | ---------------------------------------------------- | | | [ OK ] Equation of the permuted model should be the same | | |- 0.000502 [sec] | | [ OK ] Pi [dim: 7] = S * (reduced Pi [dim: 7. | | | | |- pcz_symeq_report:14 (pcz_symzero_report) - Equation of the reduced model should be the same | | | [ INFO ] Tolerance: 1e-05. | | | [ INFO ] Maximal difference: 0 | | | ---------------------------------------------------- | | | [ OK ] Equation of the reduced model should be the same | | |- 0.000916 [sec] | | | |- 1.6394 [sec] | - | | |- LPV_passanal_Finsler:109 (pcz_symzero_report) - LFR is good. | | [ INFO ] Tolerance: 1e-10. | | [ INFO ] Maximal difference: 8.88178e-16 | | ---------------------------------------------------- | | [ OK ] LFR is good. | |- 0.000485 [sec] | | |- LPV_passanal_Finsler:111 (pcz_symzero_report) - f_sym == F{12,2} x + F{12,2} w + F{12,3} Pi1 + F{12,4} Pi2. | | [ INFO ] Tolerance: 1e-10. | | [ INFO ] Maximal difference: 4.44089e-16 | | ---------------------------------------------------- | | [ OK ] f_sym == F{12,2} x + F{12,2} w + F{12,3} Pi1 + F{12,4} Pi2. | |- 0.000552 [sec] | - | | |- LPV_passanal_Finsler:210 (pcz_symzero_report) - Pib == Ea*Pia1. | | [ INFO ] Tolerance: 1e-10. | | [ INFO ] Maximal difference: 0 | | ---------------------------------------------------- | | [ OK ] Pib == Ea*Pia1. | |- 0.000712 [sec] | | |- LPV_passanal_Finsler:213 (pcz_symzero_report) - dPib/dx*A(p)*x == Aa*Pia1. | | [ INFO ] Tolerance: 1e-10. | | [ INFO ] Maximal difference: 5.27356e-16 | | ---------------------------------------------------- | | [ OK ] dPib/dx*A(p)*x == Aa*Pia1. | |- 0.000505 [sec] | | |- P_Pi_canonical_decomp called from P_get_basis_rationals:13 | |- 0.85669 [sec] | | |- P_Pi_canonical_decomp called from P_get_basis_rationals:13 | |- 0.19097 [sec] | - | |- 7.9886 [sec] |- LPV_passanal_Finsler:237 - Construct LMIs | | |- P_affine_annihilator called from LPV_passanal_Finsler:240 | | | | |- P_affine_annihilator:94 (pcz_fhzero_report) - Numerical check. | | | [ INFO ] Tolerance: 1e-10. | | | - Maximal difference: 3.37437e-16 | | | ---------------------------------------------------- | | | [ OK ] Numerical check. | | |- 0.12914 [sec] | | | | |- P_affine_annihilator:101 - beautify annihilator + !roundings! | | | | | | |- P_affine_annihilator:115 (pcz_fhzero_report) - Numerical check. | | | | [ INFO ] Tolerance: 1e-10. | | | | - Maximal difference: 6.60474e-17 | | | | ---------------------------------------------------- | | | | [ OK ] Numerical check. | | | |- 0.12326 [sec] | | | | | | |- P_affine_annihilator:121 (pcz_symzero_report) - Symbolical check. | | | | [ INFO ] Tolerance: 1e-10. | | | | [ INFO ] Maximal difference: 0 | | | | ---------------------------------------------------- | | | | [ OK ] Symbolical check. | | | |- 0.000527 [sec] | | |- 0.22339 [sec] | |- 0.70069 [sec] | | |- P_affine_annihilator called from LPV_passanal_Finsler:243 | | | | |- P_affine_annihilator:94 (pcz_fhzero_report) - Numerical check. | | | [ INFO ] Tolerance: 1e-10. | | | - Maximal difference: 1.65433e-15 | | | ---------------------------------------------------- | | | [ OK ] Numerical check. | | |- 0.17954 [sec] | |- 1.4033 [sec] | | |- P_affine_annihilator called from LPV_passanal_Finsler:246 | | | | |- P_affine_annihilator:94 (pcz_fhzero_report) - Numerical check. | | | [ INFO ] Tolerance: 1e-10. | | | - Maximal difference: 1.17986e-15 | | | ---------------------------------------------------- | | | [ OK ] Numerical check. | | |- 0.10739 [sec] | |- 0.53247 [sec] | - nr. of variables: 1315 | - Dimension of Pia(1,2)_hat: (24,14) |- 8.7606 [sec] | |- LPV_passanal_Finsler:319 - Solve LMIs Problem Name : Objective sense : min Type : CONIC (conic optimization problem) Constraints : 1315 Cones : 0 Scalar variables : 560 Matrix variables : 20 Integer variables : 0 Optimizer started. Presolve started. Linear dependency checker started. Linear dependency checker terminated. Eliminator started. Freed constraints in eliminator : 84 Eliminator terminated. Eliminator started. Freed constraints in eliminator : 0 Eliminator terminated. Eliminator - tries : 2 time : 0.00 Lin. dep. - tries : 1 time : 0.01 Lin. dep. - number : 52 Presolve terminated. Time: 0.07 Problem Name : Objective sense : min Type : CONIC (conic optimization problem) Constraints : 1315 Cones : 0 Scalar variables : 560 Matrix variables : 20 Integer variables : 0 Optimizer - threads : 4 Optimizer - solved problem : the primal Optimizer - Constraints : 1179 Optimizer - Cones : 1 Optimizer - Scalar variables : 449 conic : 449 Optimizer - Semi-definite variables: 20 scalarized : 5020 Factor - setup time : 0.09 dense det. time : 0.00 Factor - ML order time : 0.01 GP order time : 0.00 Factor - nonzeros before factor : 3.95e+05 after factor : 4.13e+05 Factor - dense dim. : 2 flops : 5.90e+08 ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME 0 1.1e+01 1.0e+00 9.9e-01 0.00e+00 -6.800000000e-03 0.000000000e+00 1.0e+00 0.22 1 2.7e+00 2.5e-01 4.9e-01 9.99e-01 -3.138856406e-03 0.000000000e+00 2.5e-01 0.99 2 1.0e+00 9.7e-02 3.0e-01 9.81e-01 -3.130908773e-03 0.000000000e+00 9.7e-02 1.30 3 3.9e-01 3.6e-02 1.7e-01 9.32e-01 -3.977394692e-03 0.000000000e+00 3.6e-02 1.60 4 5.0e-02 4.7e-03 4.1e-02 7.97e-01 -5.735206082e-03 0.000000000e+00 4.7e-03 1.93 5 1.7e-02 1.5e-03 1.7e-02 3.52e-01 -4.608532419e-03 0.000000000e+00 1.5e-03 2.24 6 2.9e-03 2.7e-04 6.1e-03 6.12e-01 -1.152180942e-03 0.000000000e+00 2.7e-04 2.57 7 3.0e-04 2.8e-05 1.7e-03 8.20e-01 -1.686075173e-04 0.000000000e+00 2.8e-05 2.89 8 2.9e-06 2.7e-07 1.8e-04 9.80e-01 -1.342453382e-06 0.000000000e+00 2.7e-07 3.22 9 6.1e-10 5.7e-11 2.6e-06 1.00e+00 -3.116719789e-10 0.000000000e+00 6.2e-11 3.82 Optimizer terminated. Time: 3.92 Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: -3.1167197889e-10 nrm: 8e-06 Viol. con: 3e-08 var: 0e+00 barvar: 0e+00 Dual. obj: 0.0000000000e+00 nrm: 9e+01 Viol. con: 0e+00 var: 5e-12 barvar: 2e-10 Optimizer summary Optimizer - time: 3.92 Interior-point - iterations : 9 time: 3.82 Basis identification - time: 0.00 Primal - iterations : 0 time: 0.00 Dual - iterations : 0 time: 0.00 Clean primal - iterations : 0 time: 0.00 Clean dual - iterations : 0 time: 0.00 Simplex - time: 0.00 Primal simplex - iterations : 0 time: 0.00 Dual simplex - iterations : 0 time: 0.00 Mixed integer - relaxations: 0 time: 0.00 sol = struct with fields: yalmiptime: 0.1945 solvertime: 4.1288 info: 'Successfully solved (MOSEK)' problem: 0 | [ OK ] Successfully solved (MOSEK). Solver time: 4.12875 | [ WARN ] The solution is feasible. Tolerance: 1e-05. Min(Dual) = -2.775197e-06. | Values of P(p1,p2) for channel 1: | 0.0224 0.0237 -0.1069 0.0593 -0.0067 0.0067 -0.0052 0.0035 -0.0023 -0.0056 | 0.0237 0.0682 -0.4076 0.0920 0.0115 -0.0428 0.0038 -0.0011 -0.0046 -0.0172 | -0.1069 -0.4076 6.6829 0.0777 -0.0408 2.6580 0.0702 0.0629 0.0474 0.0522 | 0.0593 0.0920 0.0777 0.7378 0.0013 0.0155 0.0074 0.0030 -0.0024 -0.0256 | -0.0067 0.0115 -0.0408 0.0013 0.0348 -0.1325 0.0163 0.0026 0.0004 0.0015 | 0.0067 -0.0428 2.6580 0.0155 -0.1325 6.9404 0.0017 0.0843 0.0166 -0.0661 | -0.0052 0.0038 0.0702 0.0074 0.0163 0.0017 0.0024 0.0023 0.0048 -0.0025 | 0.0035 -0.0011 0.0629 0.0030 0.0026 0.0843 0.0023 -0.0017 -0.0008 -0.0042 | -0.0023 -0.0046 0.0474 -0.0024 0.0004 0.0166 0.0048 -0.0008 -0.0024 0.0128 | -0.0056 -0.0172 0.0522 -0.0256 0.0015 -0.0661 -0.0025 -0.0042 0.0128 0.0741 | | Values of P(p1,p2) for channel p1: | -0.0004 -0.0007 0.0127 -0.0003 0.0000 0.0033 -0.0000 -0.0000 -0.0000 0.0037 | -0.0007 -0.0008 0.0111 -0.0059 0.0032 -0.0214 -0.0011 0.0005 -0.0009 -0.0028 | 0.0127 0.0111 0.4507 0.0253 -0.0219 1.8664 0.0104 0.0018 0.0013 0.0106 | -0.0003 -0.0059 0.0253 -0.0564 -0.0000 0.0077 0.0000 0.0000 0.0000 0.0032 | 0.0000 0.0032 -0.0219 -0.0000 -0.0000 -0.0187 0.0000 0.0000 -0.0000 -0.0033 | 0.0033 -0.0214 1.8664 0.0077 -0.0187 3.9768 0.0484 0.0018 0.0032 0.0140 | -0.0000 -0.0011 0.0104 0.0000 0.0000 0.0484 -0.0000 -0.0000 0.0000 -0.0040 | -0.0000 0.0005 0.0018 0.0000 0.0000 0.0018 -0.0000 -0.0000 -0.0000 -0.0007 | -0.0000 -0.0009 0.0013 0.0000 -0.0000 0.0032 0.0000 -0.0000 0.0000 -0.0004 | 0.0037 -0.0028 0.0106 0.0032 -0.0033 0.0140 -0.0040 -0.0007 -0.0004 0.0037 | | Values of P(p1,p2) for channel p2: | 0.0051 0.0051 -0.0266 -0.0005 0.0008 -0.0102 -0.0032 0.0000 -0.0005 -0.0075 | 0.0051 0.0089 -0.0031 -0.0036 -0.0001 -0.0174 -0.0024 0.0006 0.0007 0.0003 | -0.0266 -0.0031 -0.6781 0.0572 0.0091 -0.1994 -0.0097 0.0010 -0.0461 0.0297 | -0.0005 -0.0036 0.0572 -0.0677 0.0000 -0.0000 0.0003 -0.0000 0.0001 0.0025 | 0.0008 -0.0001 0.0091 0.0000 0.0000 0.0000 -0.0035 0.0000 -0.0020 0.0001 | -0.0102 -0.0174 -0.1994 -0.0000 0.0000 -0.0221 0.0183 0.0000 -0.0808 0.0174 | -0.0032 -0.0024 -0.0097 0.0003 -0.0035 0.0183 0.0027 -0.0001 -0.0007 0.0004 | 0.0000 0.0006 0.0010 -0.0000 0.0000 0.0000 -0.0001 0.0000 0.0008 -0.0006 | -0.0005 0.0007 -0.0461 0.0001 -0.0020 -0.0808 -0.0007 0.0008 0.0037 0.0074 | -0.0075 0.0003 0.0297 0.0025 0.0001 0.0174 0.0004 -0.0006 0.0074 -0.0095 | | | Values of M(p1,p2) for channel 1: | -0.2366 -1.9578 -0.1189 -0.3393 0.1166 0.0016 -0.9195 0.0405 0.0340 -0.0254 0.0431 0.0391 0.0343 0.0729 | 0.1406 1.1087 0.0710 0.1814 -0.0696 -0.0007 0.5188 -0.0185 -0.0186 0.0094 -0.0245 -0.0178 -0.0185 -0.0393 | 0.1187 3.0107 0.0593 0.0920 -0.0593 0 1.4757 0.0030 -0.0024 0.0013 0.0074 0.0030 -0.0024 -0.0256 | | Values of M(p1,p2) for channel p1: | 0.0210 0.2498 0.0110 -0.0036 -0.0122 -0.0002 0.1193 0.0024 0.0029 -0.0271 0.0392 0.0024 0.0030 0.0173 | -0.0111 -0.1257 -0.0057 0.0011 0.0067 -0.0005 -0.0601 -0.0012 -0.0016 0.0135 -0.0196 -0.0012 -0.0015 -0.0071 | -0.0006 -0.2257 -0.0003 -0.0059 0.0003 0 -0.1127 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0032 | | Values of M(p1,p2) for channel p2: | -0.0384 0.3188 -0.0143 0.0000 0.0161 0.0010 0.1729 0.0021 -0.0322 0.0053 -0.0091 0.0042 -0.0305 0.0118 | 0.0230 -0.1635 0.0032 0.0068 -0.0034 -0.0003 -0.0956 -0.0031 0.0161 -0.0014 0.0065 -0.0073 0.0153 -0.0022 | -0.0010 -0.2713 -0.0005 -0.0036 0.0005 0 -0.1354 -0.0000 0.0001 0.0000 0.0003 -0.0000 0.0001 0.0025 | | | | p_lim = [ -1.000 2.000 | -1.000 2.000 ] | - LPV_passanal_Finsler:344 | - LPV_newmod_passivity_4D_2x2_v10_Finsler_affinP:118 | | dp_lim = [ -1.000 1.000 | -2.000 2.000 ] | - LPV_passanal_Finsler:345 | - LPV_newmod_passivity_4D_2x2_v10_Finsler_affinP:118 | - V(x,p) = Pib' P( affin p ) Pib | - |- 5.7047 [sec] +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ID| Constraint| Primal residual| Dual residual| +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | #1| Matrix inequality| 0.0019268| 1.5147e-10| | #2| Equality constraint| -5.2831e-12| -2.7229e-06| | #3| Matrix inequality| 0.0017172| 1.8672e-10| | #4| Equality constraint| -5.0234e-12| -2.7752e-06| | #5| Matrix inequality| 0.0031993| 7.4338e-11| | #6| Equality constraint| -5.457e-12| -2.6091e-06| | #7| Matrix inequality| 0.0016792| 6.5046e-11| | #8| Equality constraint| -5.0309e-12| -2.3761e-06| | #9| Matrix inequality| 0.00080566| 9.3976e-12| | #10| Matrix inequality| 0.00054298| 9.4948e-12| | #11| Matrix inequality| 0.00094144| 9.2357e-12| | #12| Matrix inequality| 0.00034263| 8.9298e-12| | #13| Matrix inequality| 0.0003445| 1.1373e-11| | #14| Matrix inequality| 9.9838e-05| 1.0886e-11| | #15| Matrix inequality| 0.00019106| 1.2416e-11| | #16| Matrix inequality| 0.00019027| 1.1846e-11| | #17| Matrix inequality| 0.0009678| 2.262e-11| | #18| Matrix inequality| 0.00028144| 2.8592e-11| | #19| Matrix inequality| 0.00053405| 2.3757e-11| | #20| Matrix inequality| 0.00011759| 2.6488e-11| | #21| Matrix inequality| 0.00020665| 2.858e-11| | #22| Matrix inequality| 0.00019606| 2.2941e-11| | #23| Matrix inequality| 0.0002735| 3.0476e-11| | #24| Matrix inequality| 6.3001e-05| 2.6346e-11| +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | A primal-dual optimal solution would show non-negative residuals.| | In practice, many solvers converge to slightly infeasible | | solutions, which may cause some residuals to be negative. | | It is up to the user to judge the importance and impact of | | slightly negative residuals (i.e. infeasibilities) | | https://yalmip.github.io/command/check/ | | https://yalmip.github.io/faq/solutionviolated/ | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |- LPV_passanal_Finsler:389 - CHECK RESULTS | | |- LPV_passanal_Finsler:391 (pcz_feasible_PDLMI) - P + Lb Nb + Nb' Lb' >= 0 (for V(x) > 0) | | [ INFO ] Mode: rectangular region: limits are given, nr. of corners: 4, nr. of random points: 50 | | [ INFO ] Tolerance: 0, positive tolerance: 1e-06. | | [ INFO ] LMI size: (10x10) | | ---------------------------------------------------- | | [ OK ] This LMI is feasible along the given tolerance value. | |- 0.32682 [sec] | | |- LPV_passanal_Finsler:394 (pcz_symzero_report) - V(x,p) = x' * PP(p) * x | | [ INFO ] Tolerance: 1e-10. | | [ INFO ] Maximal difference: 0 | | ---------------------------------------------------- | | [ OK ] V(x,p) = x' * PP(p) * x | |- 0.000543 [sec] | | |- LPV_passanal_Finsler:395 (pcz_posdef_report_fh) - PP(p) >= 0 | | [ INFO ] Mode: rectangular region: limits are given, nr. of corners: 4, nr. of random points: 50 | | [ INFO ] Tolerance: 0, positive tolerance: 1e-06. | | [ INFO ] LMI size: (4x4) | | ---------------------------------------------------- | | [ OK ] This LMI is feasible along the given tolerance value. | |- 0.34449 [sec] | | ---------------------------------------------------- | ---------------------------------------------------- | | |- LPV_passanal_Finsler:405 (pcz_feasible_PDLMI) - R + La Na1 + Na1' La' <= 0 (for KYP1) | | [ INFO ] Mode: rectangular region: limits are given, nr. of corners: 16, nr. of random points: 50 | | [ INFO ] Tolerance: 0, positive tolerance: 1e-06. | | [ INFO ] LMI size: (24x24) | | ---------------------------------------------------- | | [ OK ] This LMI is feasible along the given tolerance value. | |- 0.62732 [sec] | | |- LPV_passanal_Finsler:408 (pcz_symzero_report) - dV/dx A(p)*x + dV/dp * dp = x' * RR(p,dp) * x | | [ INFO ] Tolerance: 1e-10. | | [ INFO ] Maximal difference: 3.55271e-14 | | ---------------------------------------------------- | | [ OK ] dV/dx A(p)*x + dV/dp * dp = x' * RR(p,dp) * x | |- 0.000541 [sec] | | |- LPV_passanal_Finsler:409 (pcz_posdef_report_fh) - RR(p,dp) <= 0 | | [ INFO ] Mode: rectangular region: limits are given, nr. of corners: 16, nr. of random points: 250 | | [ INFO ] Tolerance: 0, positive tolerance: 1e-06. | | [ INFO ] LMI size: (4x4) | | ---------------------------------------------------- | | [ OK ] This LMI is feasible along the given tolerance value. | |- 2.6406 [sec] | | |- LPV_passanal_Finsler:414 (pcz_fhzero_report) - RR(p,dp) = A'(p) PP(p) + PP(p) A(p) + dPP(p,dp). | | [ INFO ] Tolerance: 1e-10. | | - Maximal difference: 1.86517e-14 | | ---------------------------------------------------- | | [ OK ] RR(p,dp) = A'(p) PP(p) + PP(p) A(p) + dPP(p,dp). | |- 0.42226 [sec] | | |- LPV_passanal_Finsler:415 (pcz_posdef_report_fh) - A'(p) PP(p) + PP(p) A(p) + dPP(p,dp) <= 0 | | [ INFO ] Mode: rectangular region: limits are given, nr. of corners: 16, nr. of random points: 50 | | [ INFO ] Tolerance: 0, positive tolerance: 0. | | [ INFO ] LMI size: (4x4) | | ---------------------------------------------------- | | [ OK ] This LMI is feasible along the given tolerance value. | |- 1.7405 [sec] | | |- LPV_passanal_Finsler:426 (pcz_symzero_report) - x' (A'(p) PP(p) + PP(p) A(p) + dPP(p,dp)) x = dV/dx A(p)*x + dV/dp * dp. | | [ INFO ] Tolerance: 1e-10. | | [ INFO ] Maximal difference: 2.84217e-14 | | ---------------------------------------------------- | | [ OK ] x' (A'(p) PP(p) + PP(p) A(p) + dPP(p,dp)) x = dV/dx A(p)*x + dV/dp * dp. | |- 0.000478 [sec] | | ---------------------------------------------------- | ---------------------------------------------------- | | |- LPV_passanal_Finsler:437 (pcz_symzero_report) - Symbolic check for the 2nd KYP property: Lg V(x) = h'(x). | | [ INFO ] Tolerance: 1e-10. | | [ INFO ] Maximal difference: 1.09427e-11 | | ---------------------------------------------------- | | [ OK ] Symbolic check for the 2nd KYP property: Lg V(x) = h'(x). | |- 0.000471 [sec] | | |- LPV_passanal_Finsler:440 (pcz_fhzero_report) - Numeric check for the 2nd KYP property: Lg V(x) = h'(x). | | [ INFO ] Tolerance: 1e-10. | | - Maximal difference: 1.3709e-11 | | ---------------------------------------------------- | | [ OK ] Numeric check for the 2nd KYP property: Lg V(x) = h'(x). | |- 0.14855 [sec] | |- 12.7839 [sec]