Contents
file: anal3_3het.m author: Polcz Péter <ppolcz@gmail.com>
Created on 2016.09.30. Friday, 12:57:36
grad = @jacobian; div = @vekanal_div; rot = @vekanal_rot;
anal3 3het gyak, 4. feladat
Stokes tetel igazolasa egy fuggoleges helyzetu teglalapra, atol x,y szerint
syms R real; syms x y z u v real; r = [x;y;z]; R = 1; s = [ u u v ]; vekanal_plot_sym_surface(s, u, v, [0,1], [0,1]) % ezsurf(s(1),s(2),s(3),[0,1], [0,1]) dS = simplify(cross(diff(s,u), diff(s,v))); F = [ y*z x*z x*z ]; Integrand = subs(rot(F),r,s)' * dS; symvar(Integrand) integral2(matlabFunction(Integrand), 0, 1, 0, 1)
ans = [ u, v] ans = -0.5000
anal3 3het gyak, 5. feladat
Stokes tetel igazolasa felul zart hengerpalast eseten
syms R real; syms x y z u v real; r = [x;y;z]; R = 2; h = 3; s1 = [ R*cos(u) R*sin(u) v ]; vekanal_plot_sym_surface(s1, u, v, [0,2*pi], [0,h]) F = [ -y x x^2 ]; Integrand = subs(rot(F),r,s1)' * simplify(cross(diff(s1,u), diff(s1,v))); symvar(Integrand) integral2(matlabFunction(Integrand, 'vars', {u,v}), 0, 2*pi, 0, h)
ans = u ans = -2.5882e-15
anal3 3het gyak, 5. feladat
Green tetel: Cikloid
syms t a real a = 1; gamma1 = a * [ t - sin(t) 1 - cos(t) ]; gamma2 = [ 2*a*pi*(1-t) 0 ]; figure, hold on; vekanal_plot_sym_curve(gamma1, t, [0,2*pi], 'norms', true), axis equal vekanal_plot_sym_curve(gamma2, t, [0,1], 'norms', true), axis equal dG = diff(gamma1); dG_n = [-dG(2) ; dG(1)]; F = 0.5 * [x ; y]; Integrand = simplify(subs(F, [x;y], gamma1)' * dG_n); I = int(Integrand); Area = subs(I, t, 2*pi) - subs(I, t, 0)
Area = 3*pi