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Abstract

An optimization based method is proposed in this report for the computation of Lya-
punov functions and regions of attractions for uncertain nonlinear systems containing
polynomial and rational terms. The Lyapunov function is given in a special quadratic
form, and the negativity of its derivative is ensured by the application of appropriate LMI
conditions. The starting point of the method is an approach taken from the literature,
in which the conservatism of the solution is reduced by utilizing Finsler’s lemma. The
improvements and new contributions can be summarized as follows: 1) The transforma-
tion of the model to the form required for optimization is done automatically. At the
same time, the number of monomials and rational terms in the computational problem
is kept as low as possible using linear fractional transformation (LFT) and further au-
tomatic model simplification steps. This technique results in the dimension reduction of
the problem compared to other solutions known from the literature. 2) An algorithm was
given for the generation of suitable annihilators, which appear in Finsler’s lemma. 3) An
improved method was proposed for determining the largest possible invariant set for the
dynamics using the computed Lyapunov function. 4) In comparison with the technique
taken from the literature, a generalized and simplified formula was given for the LMI
condition, which ensures negativity of the time derivative of the Lyapunov function. The
operation of the method is illustrated on a seven examples taken from the literature.

Based on this work, an international journal paper [9] and a research report [10]
was published.
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1. Introduction

Approximating the domain of attraction (DOA) is often a fundamental task in model
analysis and controller design/evaluation. The stability properties of dynamical sys-
tems are most often studied using Lyapunov functions, accordingly, the computational
construction of Lyapunov functions [11] has been addressed extensively in the literature.

It is well-known that the DOA of an asymptotically stable equilibrium point of a
dynamical system ẋ = f(x), x ∈ Rn can be precisely determined in theory by solving
Zubov’s first order nonlinear partial differential equation [12]. There exist many gener-
alizations of Zubov’s method, for example, the paper [13] is dedicated to determine the
robust domain of attraction of an uncertain system ẋ(t) = f(x(t), δ(t)), where δ : R 7→ D
is a bounded perturbation and D is a compact subset of Rd, furthermore, it is assumed
that f(0, δ) = 0 for all δ in D. In case of uncertain dynamical systems, the DOA is
called robust, furthermore, it is the set of points from which the system converges to
the equilibrium point regardless of the actual values of the uncertain parameters. The
main disadvantage of this method is that the solvability of Zubov’s partial differential
equation cannot be foreseen.

Another fundamental result in this field is the existence of the so-called maximal
Lyapunov functions for a wide class of nonlinear systems and the corresponding partial
differential equation which characterizes them [14]. In comparison with Zubov’s equa-
tion, an iterative procedure is given for approximating the maximal rational Lyapunov
function. An algorithm for generating Lyapunov functions for a special class of nonlinear
systems based on the construction of polytopes is given in [15]. In [16], a linear program-
ming based method is given for the construction of Lyapunov functions for general planar
nonlinear systems. In [17], maximal Lyapunov functions were defined and computed for
hybrid (piecewise nonlinear) systems.

At the same time, the use of linear matrix inequalities (LMI) and semidefinite
programming (SDP) techniques for nonlinear systems has become very popular due to
their advantageous properties and the availability of efficient numerical tools to solve
LMI problems. These new techniques provide a powerful framework for stability anal-
ysis, robust control and filtering problems. Ghaoui et.al. [18] used quadratic Lyapunov
functions and linear fractional transformations (LFT) to represent a rational nonlinear
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system and defined convex conditions for stability analysis and state feedback design. A
method that applies sum of squares (SOS) programming to maximize the estimate of the
region of attraction can be found in [11, 19]. Stability conditions in both references are
converted into LMIs using SOS relaxations and the generalization of the S-procedure.
Topcu et.al. [20] utilized a further branch-and-bound type refinement in the parameter
space to reduce the solution’s conservatism.

A recent important result from this line of research is published in [1], where the
authors use Finsler’s lemma and the notion of annihilators to compute rational Lya-
punov functions for a wide class of locally asymptotically stable nonlinear systems. The
newly introduced sufficient conditions for the stability are affine parameter dependent
LMIs, because they are characterized by affine functions of the state x and the uncertain
parameters represented by the column vector δ. Affine parameter dependent LMIs can
be computationally handled by checking their feasibility at the corner points (vertices)
of a polytope (convex region), on which the state and uncertain parameters are defined.
These LMI conditions are obtained from the prescribed properties of a Lyapunov func-
tion having monomial and rational terms. In case of uncertain systems, the (possibly
time-dependent) uncertain parameters will also appear in the Lyapunov function. A key
point in this method is to find the largest possible polytope X ⊂ Rn (subset of the state
space), on which the Lyapunov conditions are satisfied. After X is computed, the domain
of attraction is estimated by an invariant set, that is the maximal closed level set ε of
the Lyapunov function being located completely inside of X . In order to find a “good”
polytope X , the authors constructed an initial polytope X (0), then through the iteration
steps the area/volume of X (i) is increased considering the shape of the obtained maximal
invariant level set ε(i). The authors present further techniques to cope with non-convex
regions (unions of polytopes). In [1], it is also shown that with some additional conser-
vatism, the application of predefined polytopes can be avoided by modifying the LMIs
with the S-Procedure [21].

This work is based on the results of [1], and introduces an improved method to gen-
erate sufficient LMI conditions for local asymptotic stability of polynomial and rational
nonlinear systems. In comparison with [1], the LMI conditions are generated automati-
cally using the linear fractional transformation (LFT). In order to decrease the dimension
of the optimization problem, further algebraic model transformation steps are proceeded.
In Section 3.3, the properties and effects of an annihilator are discussed and an algorithm
is presented to generate appropriate annihilators. Sections 3.4 and 3.5 present the whole
mathematical procedure and their formulas borrowed from [1] in a simplified, generalized
framework. In the last chapter, computational results are presented on illustrative planar
and third order models taken from the literature, and additionally static and dynamic
feedback control laws are applied

This report does not address the handling of non-convex regions or union of poly-
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topes. The aim is to develop an autonomous mathematical apparatus for dealing with
symbolically complex and/or higher order dynamical models but using relatively simple
X polytopes, on which Lyapunov conditions can be easily tested.
Furthermore, assuming rectangular polytopes1, the iterative procedure to evaluate (en-
large) the polytope X can be easily automated.

1.1 Notations, abbreviations

In this report, I will use the following notations and abbreviations:

1. linear matrix inequality (LMI)

2. semidefinite programming/problem (SDP)

3. domain of attraction (DOA)

4. an optimization problem aims to find the optimal value of an objective function
subject to a variable called decision variable (d.v.)

5. linear fractional transformation/representation (LFT/LFR)

6. open-loop system (OLS), closed-loop system (CLS)

7. i = 1, n means i ∈ {1, . . . , n}

8. Co(X ) denotes the convex expansion of a bounded polytope X , more specifically,
Co({vi | i = 1, n}) is the convex hull of the set of vertices {vi | i = 1, n}.

9. ϑ(X ) denotes the set of all vertices (corner points) of the convex polytope X
(i.e. Co

(
ϑ(X )

)
= X ).

10. ∇V (x) is the gradient of the scalar function V (x).

11. 0n×m and In denote the n×m zero matrix and n× n unit matrix, respectively.

12. Kronecker product: A⊗B =


a11B · · · a1mB
... . . . ...

an1B · · · anmB

 = kron(A,B)

13.
[
ai
]i=1,n
col =

[
a1 · · · an

]T
14.

[
ai
]i=1,n
row =

[
a1 · · · an

]
15. rowi(A) denotes the ith row of matrix A

16. coli(A) denotes the ith column of matrix A

1hyperrectangle, Cartesian product of intervals
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2. Basic notions, known results

In this section, I present the basic notions, further notations and known results on which
my computational results are based.

2.1 Linear matrix inequalities (LMI)

Linear matrix inequalities are convex conditions of the following form:

F (x) = F0 +
n∑
i=1

xiFi > 0︸ ︷︷ ︸
canonical form of LMIs

(2.1)

This form can also be considered as the canonical form of the LMIs, in which the
Fi=0,n ∈ Rm×m are fixed constant symmetric matrices and x = (xi)i=1,n ∈ Rn are free
variables, so called decision variables of the LMI. The inequality operator “>” means
that F (x) is a positive definite matrix, namely ηTF (x)η > 0 for all η ∈ Rm\{0}.

An LMI is feasible if there exists x ∈ Rn, such that F (x) > 0, correspondingly, the
set F =

{
x
∣∣ F (x) > 0} is called the feasibility set of the inequality (2.1). An LMI is a

convex constraint in the sense that its feasibility set is a convex set, more specifically, if
x, y ∈ F than λx+ (1− λ)y ∈ F for all λ ∈ [0, 1].

Example 1. Consider the unit disc as the feasibility set F, and its corresponding
quadratic condition:

−1 1
−1

1
F : x2

1 + x2
2 ≤ 1 ⇔ 1− xT I2x ≥ 0

By using the Schur complement lemma (for more details, see [22]), this inequality can
be converted into an equivalent LMI condition:

 I2 x

xT 1

 ≥ 0⇔

1 0 0
0 1 0
0 0 1

+ x1

0 0 1
0 0 0
1 0 0

+ x2

0 0 0
0 0 1
0 1 0

 ≥ 0 (2.2)
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This example demonstrates a simple LMI condition and its feasibility set (unit disc).

The canonical form of a semidefinite problem (SDP) can be formulated as follows:

min cTx s.t. F0 +
n∑
i=1

xiFi > 0 (2.3)

In this optimization task, cTx is the objective function to be minimized, additionally,
the LMI defines a convex set, containing the possible values of vector x. The parameter
c ∈ Rn appearing in the objective function is a constant predefined column vector.

In this report, the LMIs will appear in another common form:

X + Y B +BTY T ≥ 0 (2.4)

where B ∈ Rq×m is a constant matrix, X ∈ Rm×m and Y ∈ Rm×q are variables (with X
being symmetric) comprising m(m+1)

2 and qm pieces of free parameters in the computa-
tions. This LMI condition can be easily converted into its canonical form as presented
in [22], as equations (16,17,18).
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2.2 System class, Lyapunov functions,
domain of attraction

I consider nonlinear systems of the form

ẋ(t) = f(x(t), δ(t)) x(t) ∈ Rn, x0 ∈ X , δ(t) ∈ D, δ̇(t) ∈ Ď (2.5)

• X ⊂ Rn and D, Ď ⊂ Rd bounded polytopes

• x : R 7→ X state vector function, x0 = x(0) is the initial condition

• δ : R 7→ D smooth, bounded vector function with bounded derivative
representing the uncertain parameters

• f : X ×D 7→ Rn well defined smooth rational mapping, f(0, δ) = 0,∀δ ∈ D,
i.e., x∗ = 0 ∈ Rn is a locally asymptotically stable equilib-
rium point of (2.5) for all δ ∈ D

In the future, the time arguments of x and δ will be suppressed as it is commonly done
in the literature. The set of all initial conditions, from which the solutions converge to
x∗ is called the domain of attraction (DOA).

I am looking for an appropriate rational Lyapunov function V (x, δ) which satisfies
the following conditions:

vl(x) ≤ V (x, δ) ≤ vu(x) ∀(x, δ) ∈ X ×D

V̇ (x, δ, δ̇) ≤ −vd(x) ∀(x, δ, δ̇) ∈ X ×D × Ď
(2.6)

where vl, vu and vd are continuous positive functions on X . Clearly, if the inequalities
in (2.6) are fulfilled, then any closed level set of V contained (entirely) by X bounds an
invariant region of the state space that is part of the DOA.

The measure of conservatism is a property, which describes an invariant region.
Let us consider two domains ε and γ bounded by two different level sets. I call ε less
conservative than γ if ε is a better estimate of the actual DOA in the sense that the
area/volume of ε is larger than that of γ. In a similar fashion, an inequality condition
(A) is considered more conservative than condition (B) if (A) implies (B), alternatively,
if the feasibility set of (A) is a subset of the feasibility set of (B): FA ⊂ FB.

Roughly speaking, the main objective is to find a Lyapunov function V (x) having
a level set, which bounds the achievable least conservative invariant region. In fact,
introducing higher degree monomials into V (x) generally results in better estimates,
although a small increment in the number of monomials generates a huge increase in the
dimension of the problem. Therefore, the rapidly growing computational burden must
be taken into consideration through considering the possibilities of dimension reduction.
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2.3 Sufficient LMI conditions for stability using Finsler’s
lemma and the notion of annihilators

In the case of a linear time invariant (LTI) dynamical system ẋ = Ax, with a quadratic
Lyapunov function candidate V (x) = xTPx, the necessary and sufficient Lyapunov con-
ditions (2.6) for the system’s global stability can be easily converted into their equivalent
LMI form: P > 0 (P is positive definite), and PA+ATP < 0.

On the contrary, when having an uncertain linear system ẋ = A(δ)x with an affine
state transition matrix function A(δ), the Lyapunov inequality regarding negativity of
the derivative of V (x) will dependent on the parameter δ. According to Proposition 2.3.2,
if we can specify a bounded polytope D in which the uncertain parameter δ remains,
then it is enough to test the inequality in the corner points of D: PA(δ) +A(δ)TP < 0,
for all δ ∈ ϑ(D). This system of LMIs is still equivalent to the second inequality of (2.6).

Formulating equivalent LMI conditions is not straightforward when having a nonlin-
ear system of the form ẋ = A(x)x, or in case of a non-quadratic polynomial (or rational)
Lyapunov function.

In [1], the authors are looking for a Lyapunov function in the form

V (x, δ) = πTb (x, δ)Pπb(x, δ) (2.7)

where P ∈ Rm×m is a constant symmetric matrix, π : Rn × D 7→ Rp is a smooth
mapping, in which each element is a smooth rational function in x and δ, but π(x, δ)
does not contain the linear terms xi=Ě1,n. Finally, the mapping πb : Rn×D 7→ Rm=n+p is
defined as πb(x, δ) = [x, π]col. In the future, the arguments of π and πb will be omitted.

Using Finsler’s lemma, one can formulate sufficient LMI conditions, which imply
the Lyapunov conditions.

Lemma 2.3.1 (Finsler’s lemma)
Let Ω ⊆ Rs be a predefined bounded polytope, P : Ω 7→ Rm×m, N : Ω 7→ Rq×m be given
matrix functions, with P (ω) symmetric. Let Q : Ω 7→ Rm×(m−r) be a matrix function
having the basis vectors of the null space of N(ω) as its columns, i.e. N(ω)Q(ω) = 0,
where r denotes the number of linearly independent rows of N(ω). Then, the following
are equivalent:

(i) ∀ω ∈ Ω, ∀πb : Ω 7→ Rm
[
N(ω)πb(ω) = 0 → πTb (ω)P (ω)πb(ω) > 0

]
(ii) ∃L : Ω 7→ Rm×q

[
∀ω ∈ Ω

[
P (ω) + L(ω)N(ω) +NT(ω)LT(ω) > 0

] ]
(iii) ∀ω ∈ Ω

[
QT(ω)P (ω)Q(ω) > 0

]
.
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The lemma is also presented in [1], and an alternative form of if can be found in [23], its
proof is presented in [24].

Remark. N(ω) is called an annihilator of πb(ω) due to the equality N(ω)πb(ω) = 0.
An annihilator has an important role in the LMI condition by making it less conservative.

Assuming that P (ω) and N(ω) are affine functions and L is a constant matrix, one
can obtain a special case of Finsler’s lemma. In that case, the conditions (i) and (ii) are
no longer equivalent, but (ii) still implies (i). Furthermore, (ii) will become a polytopic
LMI (i.e. an affine parameter dependent LMI over a bounded polytopic region) of the
following form

∃L ∈ Rm×q
[
∀ω ∈ Ω

[
P (ω) + LN(ω) +NT(ω)LT > 0

] ]
(2.8)

As stated previously, this polytopic LMI can be transformed into a parameter indepen-
dent system of LMIs by using the following proposition presented in [4] as Proposition 5.4.

Proposition 2.3.2 The LMI (2.8) is satisfied if and only if there exists a matrix L ∈
Rm×q such that P (ω)+LN(ω)+NT(ω)LT > 0 holds for every corner point (i.e. vertex)
of Ω, i.e. ∀ω ∈ ϑ(Ω).

Returning to the Lyapunov function (2.7), a sufficient condition can be formulated
for its positivity if we can find an appropriate affine annihilator N(x, δ) in such a way
that N(x, δ)πb = 0 for all (x, δ) ∈ X ×D.

Example 2. In this example, I want to demonstrate how an annihilator can bring
more freedom into an LMI condition by taking into account the algebraic relationship
between the coordinates of πb. First of all, examine the following possible values of πb
and that of its annihilator N(x):

x =

x1

x2

 , π =

 x2
1

x1x1x2

 , πb =


x1

x2

x2
1

x1x2

 , N(x) =


x2 −x1 0 0
x1 0 −1 0
x2 0 0 −1

 (2.9)

The domain of interest is the unit square, namely: X = [−1, 1] × [−1, 1]. Indeed,
N(x)πb = 0 for every x in X , furthermore, it is obvious that

P + LN(x) +NT (x)LT > 0 (2.10)

is a less conservative sufficient condition for πTb Pπb > 0, than P > 0. In order to
experience the effect of the annihilator, let us consider the following possible numerical
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values of P and L:

P =


1.8 0 0 0
0 1.2 0 0
0 0 −0.5 0
0 0 0 1.2

 , L =


0 0 0
0 0 0
0 −0.79 0

0.02 0 −0.048


P is definitely not a positive definite matrix because it has a negative eigenvalue (−0.5),
however, the condition (2.10) is satisfied for each corner point of the polytope X :
∀x ∈ ϑ(X ) =

{
(1, 1), (−1, 1), (−1,−1), (1,−1)

}
In Section 3.3, I will present the issue of the annihilator generation in detail.

2.4 Dynamical system representation

Using the variables from equations (2.5,2.7), I present a similar differential-algebraic
representation of nonlinear models that was introduced in [1]:

ẋ = f(x, δ) = Ax+Bπ x0 ∈ X

0 = Nπb
(x, δ)πb δ ∈ D, δ̇ ∈ Ď

(2.11)

In comparison with (2.7), π = π(x, δ) ∈ Rp is a column vector function containing only
monomials in (x, δ), except the xi linear elements, or rational terms with monomial
numerators.

This form separates the linear part of the system (x) from its nonlinear part (π). In
case of polynomial systems, the authors of [1] propose that π contains all monomials of
degree less than or equal to the maximal degree term in the system equation. This clearly
causes a combinatorial explosion as the number of variables and their degrees increase.
Therefore, I propose the application of LFT to decrease the number of elements of column
vector π, expecting that the solutions conservatism will not increase significantly. In
Section 3.7., I made a detailed study on the dimensions of the optimization problem,
and how they are affected by the number of elements in π.
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2.5 Linear fractional transformation (LFT)

The LFT is discussed in detail in book [25, Chapter 10.]. This transformation plays an
important role in modeling uncertain rational systems, and it is often used in literature,
as presented in [18]. Using the LFT the linear and nonlinear part of any rational nonlin-
ear uncertain system of the form ẋ = A(x, δ)x can be separated in the following manner:

M11 M12

M21 M22

∆(x, δ)

xẋ
z w

ẋ
z

 =

M11 M12

M21 M22

 ·
x
w

←→ ẋ = M11x+M12w

z = M21x+M22w
(2.12)

w = ∆(x, δ) z (2.13)
where Mij are constant matrices and ∆(x, δ) is a diagonal matrix function of the state
variables and uncertain parameters.

Equation (2.12) can be considered as a linear time invariant (LTI) differential-
algebraic equation with a nonlinear input defined by the nonlinear uncertain function
(2.13). By eliminating z and w from (2.12) and (2.13) and by using an auxiliary step,
one can get the following:

A(x, δ)x = M11x︸ ︷︷ ︸
linear part

+M12(Ip −∆(x, δ)M22)−1∆(x, δ)M21x︸ ︷︷ ︸
nonlinear part

, (2.14)

According to Definition 10.2 of [25], an LFT is said to be well defined (or well-posed) if
(Ip −∆(x, δ)M22) is invertible for all (x, δ) ∈ X ×D.

The auxiliary step during the evaluation of the right hand side of equation (2.14)
constitutes the following identity (the arguments in ∆ will be suppressed):

∆(Ip −M11∆)−1M21 = (Ip −∆M11)−1∆M21 (2.15)

This identity can be easily seen, if Ip is substituted by ∆−1∆, than the left hand side of
(2.15) will be:

∆
(
(∆−1 −M11)∆

)−1
M21 = (∆−1 −M11)−1M21 = (∆−1 −M11)−1IpM21 (2.16)

The same idea is applied on the newly introduced Ip :

(∆−1−M11)−1∆−1∆M21 =
(
∆(∆−1−M11)

)−1∆M21 = (Ip−∆M11)−1∆M21 (2.17)

Note that the first equation of (2.12) resembles the first equation of (2.11). In the
next section, we will see that by choosing π = w, A = M11, B = M12, we will get
the same representation as in (2.11). Furthermore, composing an annihilator matrix for
πb = [x, π]col will also be a quite straightforward operation.
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3. Estimating the domain of
attraction

Since the linear fractional representation (LFR) in equations (2.12, 2.13) is a special case
of (2.11), it can be easily transformed into the general form by introducing the following
notations:

A = M11

B(0) = M12
,

G(x, δ) = −∆(x, δ)M21 ∈ Rp×n

F (x, δ) = Ip −∆(x, δ)M22 ∈ Rp×p

π(0) = w = −F−1(x, δ)G(x, δ)x ∈ Rp

N (0)
πb

(x, δ) = [ G(x, δ) F (x, δ) ] is an annihilator of πb = [x, π]col

(3.1)

We assume that the LFT is well-posed, i.e. the matrix function F is invertible for all
(x, δ) ∈ X × D. The superscripts (i) in case of B(0), N (0)

πb (x, δ) and π(0) suggest that
these variables will be modified during some further algebraic steps. In case of πb, the
superscript (i) will be suppressed, even though, πb will also be modified as well through
the modifications applied on π.

By using the LFT, the following issues emerge that need to be handled:

1. The generated π(0) may contain polynomial functions or rational terms with poly-
nomial numerators.

2. The variables π(0) may contain redundant (linearly dependent or repetitive) ele-
ments.

3. In general, the newly generated annihilator N (0)
πb (x, δ) can be supplemented by fur-

ther annihilator rows, which will introduce further independent decision variables
into the optimization problem, consequently, the LMIs will become less conserva-
tive.

In the next three sections, I propose a possible resolution for each issue.
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3.1 Handling polynomial terms

Considering the properties of the LFR, I can assume that π(0) contains only rational
terms. In this case, the task is to split up the elements with a polynomial numerator,
but then, the size of π(0) will increase significantly. In order to ensure that the model
equations (2.11) hold, it is necessary to modify the related columns of the left multipliers
of π(0) (i.e. B(0) and N (0)

πb (x, δ)) appropriately. The following equation demonstrates this
procedure:

[
f(x, δ)

]
︸ ︷︷ ︸

left multiplier

[
αp(x, δ) + βq(x, δ)

r(x, δ)

]
︸ ︷︷ ︸

π(0)

=
[
αf(x, δ) βf(x, δ)

]
︸ ︷︷ ︸
modified left multipliers


p(x, δ)
r(x, δ)

q(x, δ)
r(x, δ)

 ,
︸ ︷︷ ︸

π(1)

(3.2)

where p(x, δ) and q(x, δ) are monomials, f(x, δ) is an affine function and r(x, δ) is an
arbitrary polynomial in x and δ (it can be 1 as well). The resulting variables are:
B(1), N (1)

πb (x, δ), π(1). As the following example will show, this transformation can
introduce several repetitive elements in π(1):

a b

c d


︸ ︷︷ ︸
B(0)

x2 + 2x2
1

x2


︸ ︷︷ ︸

π(0)

=

a 2a b

c 2c d


︸ ︷︷ ︸

B(1)


x2

x2
1

x2


︸ ︷︷ ︸
π(1)

(3.3)

but the next algebraic step will resolve this problem.

3.2 Eliminating repetitive terms

As mentioned previously, the same monomials (or rational term with monomial numer-
ator) can appear several times in π(1). In Section 3.7, I made a detailed study on the
dimension of the optimization problem and how these are influenced by the sizes of πb
and the annihilators. After that analysis, I found that eliminating the repetitive terms
in π(1) will lead to a significant dimension reduction of the computational problem. In
order to keep the model equations, the corresponding columns in B(1) and N (1)

πb (x, δ)
shall be merged in the following way:

[
a(x, δ) b(x, δ)

]
︸ ︷︷ ︸

left multiplier

αp(x, δ)
βp(x, δ)


︸ ︷︷ ︸

π(1)

=
[
αa(x, δ) + βb(x, δ)

]
︸ ︷︷ ︸
modified left multipliers

[
p(x, δ)

]
︸ ︷︷ ︸

π(2)

(3.4)
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The resulting variables will be: B(2), N (2)
πb (x, δ), π(2). Considering example (3.3) from

the the previous section, the final model will be:

a 2a b

c 2c d


︸ ︷︷ ︸

B(1)


x2

x2
1

x2


︸ ︷︷ ︸
π(1)

=

a+ b 2a
c+ d 2c


︸ ︷︷ ︸

B(2)

x2

x2
1


︸ ︷︷ ︸
π(2)

(3.5)

B(2) and π(2) constitutes the final values of B and π, therefore, the superscripts will be
suppressed in the sequel, but the annihilator N (2)

πb (x, δ) will require further modifications.

3.3 Annihillator generation

As mentioned previously, the annihilator plays an important role in the optimization
problem by making the conditions less conservative. Using annihilators, the algebraic
relations between the dependent variables of the model can be taken into consideration
by the solver. The main objective in searching for an adequate annihilator is, to find as
many independent annihilator rows as possible, in order to exploit the possible degrees
of freedom of the computational problem, therefore, further rows will be appended to
the existing annihilator N (2)

πb (x, δ).

Using Matlab’s symbolic toolbox, I have written an algorithm, which can generate
affine annihilator rows of a special form.

If πb contains only monomials (no rational terms), then it is enough if in each row
of the matrix there appear only two nonzero items because, if an element pk(x, δ) of πb
can be eliminated by some other elements pi(x, δ), for every i chosen from an given index
set Ik, i.e.

∃a, bi : X ×D 7→ R, i ∈ Ik, affine functions of (x, δ)

s.t. pk(x, δ)a(x, δ) +
∑
i∈Ik

pi(x, δ)bi(x, δ) = 0 (3.6)

then pk(x, δ) can be eliminated by only a single element arbitrarily chosen from pi(x, δ),
in other words

∀i ∈ Ik ∃sa,sb : X ×D 7→ R, affine monomials

s.t. pk(x, δ)sa(x, δ) + pi(x, δ)sb(x, δ) = 0
(3.7)

This statement is no longer valid when there are further rational terms with monomial
numerator. Consider the following simple example. If πb =

[
x 1

x2+1
x2

x2+1

]T
, then there

exists an affine annihilator row r(x) =
[
−1 x x

]
, such that r(x)πb = 0. However, if

we chose two arbitrary elements from πb, their linear combination with affine coefficients
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will never be zero. Fortunately, the LFT can produce a few such rows in N (0)
πb (x, δ), that

they fulfill the extra relations between elements of πb having different denominators.
Therefore, I assume that it is enough if in each row only two nonzero items appear,
which eliminate the two corresponding elements in πb. In my algorithm, I search for
annihilator rows of the following form:

· · · αxi · · · βxj · · ·
· · · αxi · · · β · · ·
· · · α · · · βxj · · ·

 (3.8)

I chose two elements from πb, let them be pi(x, δ), pj(x, δ), where i < j. If the numerator
b(x, δ) and the denominator a(x, δ) of their simplified fraction pi(x,δ)

pj(x,δ)

(
= b(x,δ)

a(x,δ)

)
are affine

monomials, then a new affine row can be appended to the annihilator:

r(x, δ) = [ . . . a(x, δ)︸ ︷︷ ︸
ith element

. . . −b(x, δ)︸ ︷︷ ︸
jth element

. . . ]

since pi(x, δ)a(x, δ)− pj(x, δ)b(x, δ) = 0. This procedure is evaluated on each pair of the
elements of πb.

“Advantageous” annihilator

It is clear from the problem definition that the annihilator corresponding to a given
Lyapunov function computation is non-unique, but there are no results in the literature,
how to construct a “good” annihilator. In this section, N(x, δ) will denote an arbitrary
annihilator of a given πb : Rn×D 7→ Rm rational mapping. It is not straightforward to
clearly define which annihilator can be considered as the “best one”, because many things
depend upon the annihilators during the operation of the optimization procedure. It is a
fact that the maximum number of linearly independent rows (in the meaning of classical
matrix theory) in N(x, δ) is m − 1, because πb ∈ Rm, however, it is demonstrated in
Example 3. that using an annihilator containing more rows than this maximal rank may
result in a less conservative condition, since it can introduce more independent decision
variables in the optimization problem.

Example 3. This example is borrowed from [1], characterized by equations (5,7,9,12,13).
Let us consider a third order system ẋ = A(x)x, where

A(x) =


x2 + x3 − 1 1− x2 x2 − x3

−x1 − 1 x1 + x3 − 1 1
−x1 − x2 −x2 − 1 x1 − 1

 (3.9)

Let us choose a quadratic Lyapunov function V (x) = xTPx with a symmetric positive
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definite matrix P . Note that this form of the Lyapunov function is a special case of
(2.7), when πb = x. Its time derivative is: V̇ (x) = xT (AT (x)P +PA(x))x. According to
Finsler’s lemma, if the LMI

AT (x)P + PA(x) + LN(x) +NT (x)LT ≤ 0, ∀x ∈ ϑ(X ) (3.10)

is satisfied, then V̇ (x) is negative for every x ∈ X . In equation (3.10), the matrix function
N(x) is an affine annihilator of x. In this inequality, the P and L are free parameters
of the semidefinite problem (SDP), furthermore, the number of decision variables in L
is equal with the number of elements of annihilator N(x).

I define a polytope X = {x : |xi| ≤ β, xi ∈ R}, on which the inequality will be
tested. The area of this polytope can be arbitrarily chosen by modifying the value of
the parameter β. Then, I demonstrate four different annihilators Ni(x), i = 1, 4 and
find out which of them results in the least conservative condition, in other words, I
try to solve the LMI for larger and larger polytopes (by gradually increasing the value
of β), and approximate its maximal value βmax while the LMI is still feasible. The
least conservative LMI corresponds to the highest βmax value. The annihilators and the
corresponding maximal β values are listed in the following equations.

N1(x) =

x2 −x1 0
0 x3 −x2

 βmax = 0.9296

N2(x) =

x2 −x1 0
x3 0 −x1

 βmax = 1

N3(x) =

 0 x3 −x2

x3 0 −x1

 βmax = 0.71418

N4(x) =


x2 −x1 0
x3 0 −x1

0 x3 −x2

 βmax = 560102.3

(3.11)

One can observe that the rows of N4(x) are linearly dependent, since the second row can
be expressed by the first and the third rows:

x3
x1

[
x2 −x1 0

]
+ x1
x2

[
0 x3 −x2

]
=
[
x3 0 −x1

]
(3.12)

In the same time, annihilator N4(x) produces the least conservative inequality condition,
because it involves more independent decision variables into the problem. This example
clearly demonstrates that annihilator N4(x) is a “better” annihilator than the first three
annihilators, even though, its rows are linearly dependent.
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3.4 Finding an appropriate Lyapunov function

After the previous steps, I consider a model (2.11). A Lyapunov function candidate for
this system is given in the form V (x, δ) = xTP(x, δ)x = πTb P πb (3.13), where P ∈ Rm×m

is a constant symmetric matrix. As it has been mentioned in Section 2.3, the positive
definiteness of V (x, δ) can be expressed by a stricter inequality:

∃Lb ∈ Rm×q, such that:

P + LbNπb
(x, δ) +N T

πb
(x, δ)LTb > 0, ∀(x, δ) ∈ ϑ(X ×D)

(3.14)

The negative definiteness of V̇ (x, δ, δ̇) = ∇V (x, δ) ẋ is ensured by the following sufficient
LMI condition:

∃La ∈ R(n+2p+n2+np)×(2q+n2+nq), such that:

Pa + P Ta + LaNπa(x, δ, δ̇) +N T
πa

(x, δ, δ̇)LTa < 0, ∀(x, δ, δ̇) ∈ ϑ(X ×D × Ď),
(3.15)

where the matrix Pa is defined as:

Pa =

 PAa

0(p+n2+np)×(n+2p+n2+np)

 Aa =

 A B 0n×p 0n×(n2+np)

0p×n 0p×p Ip 0p×(n2+np)

 (3.16)

In order to define the annihilator Nπa(x, δ, δ̇), some auxiliary variables are needed to be
introduced:

sEk = rowk(In)

E0(x) = [x sEk]k=Ě1,n
col = In ⊗ x ∈ Rn

2×n

E1(x, δ) = [π sEk]k=Ě1,n
col = In ⊗ π ∈ Rnp×n

J0 =

 In

0p×n


J1 =

0n×p
Ip

 (3.17)

It is worth mentioning that E0(x) is an affine matrix function of x, while E1(x, δ) is a
rational function of (x, δ) due to its entries are borrowed from π. The affine annihilator
Nπb

(x, δ) of πb is decomposed as follows:

Nπb
(x, δ) = H0 + sH(x) + Ĥ(δ) (3.18)

sH(x) =
n∑
k=1

sHkxk , Ĥ(δ) =
d∑

k=1
Ĥkδk , Ĥ(δ̇) =

d∑
k=1

Ĥkδ̇k (3.19)
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where xk, δk are elements of x and δ, respectively. By using the constant matrices H0,
sHk, Ĥk, the following variables are constructed:

ĎMµ =
[

sHkJ0
]k=Ě1,n
row ∈ Rq×n

2
Mµ(x, δ) = In ⊗Nπb

(x, δ)J0 ∈ Rqn×n
2

ĎMη =
[

sHkJ1
]k=Ě1,n
row ∈ Rq×np Mη(x, δ) = In ⊗Nπb

(x, δ)J1 ∈ Rqp×np
(3.20)

W (x, δ, δ̇) = Ĥ(δ̇) +Nπb
(x, δ)J0[A B] (3.21)

Due to the properties of Nπb
(x, δ), the matrix functions Mµ and Mη are affine in (x, δ),

furthermore, W (x, δ, δ̇) is an affine matrix function of (x, δ, δ̇). Finally, one can construct
the following object:

Nπa(x, δ, δ̇) =


Nπb

(x, δ) 0q×p 0q×n2 0q×np
W (x, δ, δ̇) Nπb

(x, δ)J1 ĎMµ
ĎMη

E0(x)[A B] 0n2×p −In2 0n2×np

0nq×m 0nq×p Mµ(x, δ) Mη(x, δ)

 (3.22)

Nπa is an (2q + n2 + nq) × (n + 2p + n2 + np) affine matrix function of (x, δ, δ̇) and it
is the annihilator of πa(x, δ, δ̇) = [πb, π̇, µ, η]col, which appears in the derivative of the
Lyapunov function (3.13):

V̇ (x, δ, δ̇) = πTa

(
Pa + P Ta

)
πa (3.23)

The latter two artificial variables in πa = πa(x, δ, δ̇) are defined as:

µk = µk(x) def= xẋk , µ = [µk]k=Ě1,n
col = E0(x)ẋ ∈ Rn

2

ηk = ηk(x, δ)
def= πẋk , η = [ηk]k=Ě1,n

col = E1(x, δ)ẋ ∈ Rnp
(3.24)

In comparison with the formulas presented in [1], in the definition of the µ there appear
a difference in its sign, fortunately in the expression of V̇ (x, δ, δ̇) the µ is multiplied
by zeros, therefore, Pa can remain the same, furthermore, the affine matrix function
Nπa(x, δ, δ̇) is constructed by merging the two annihilators Ca(x, δ, δ̇) and ℵπa(x, δ, δ̇),
keeping in mind that sign of µ was changed. The previous two matrix functions Ca and
ℵπa are defined in [1] by equations (40,43).

Derivation of Nπa(x, δ, δ̇)

It is trivial that the first row of Nπa(x, δ, δ̇) is indeed an annihilator of πa. The second row
is constructed by using the expansion of the time derivative of the equality Nπb

(x, δ)πb =
0, that is

dNπb
(x, δ)πb
dt = dNπb

(x, δ)J0x

dt + Nπb
(x, δ)J1π

dt = 0. (3.25)
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After computing the derivatives entrywise, one can get

Ṅπb
(x, δ)J0x+Nπb

(x, δ)J0ẋ+ Ṅπb
(x, δ)J1π +Nπb

(x, δ)J1π̇ = 0. (3.26)

As presented in equation (3.18), the annihilator Nπb
(x, δ) can be decomposed as the sum

of the objects H0, sH(x) and Ĥ(δ), then the equality will look like

sH(ẋ)J0x+ Ĥ(δ̇)J0x+Nπb
(x, δ)J0[A B]πb + sH(ẋ)J1π+ Ĥ(δ̇)J1π+Nπb

(x, δ)J1π̇ = 0

Using the expression of matrix functions sH(x) and Ĥ(δ), one can obtain

(
Ĥ(δ̇) +Nπb

(x, δ)J0[A B]
)

︸ ︷︷ ︸
W (x,δ,δ̇)

πb +Nπb
(x, δ)J1π̇+

n∑
k=1

sHkJ0µk +
n∑
k=1

sHkJ1ηk = 0 (3.27)

from which the final form of the second row can be obtained.

The third row of Nπa(x, δ, δ̇) is coming from the fact that µ = E0(x)ẋ = E0(x)[A B]πb.
Regarding the fourth row, one shall note, that [Mµ(x, δ) Mη(x, δ)] is an annihilator of
[µ, η]col, because

Mµ(x, δ)µ+Mη(x, δ)η = 0 (3.28)

In order to prove this equality, we should evaluate the left hand side of equation (3.28).
Replacing variables µ and η by their definitions introduced in equations (3.24), the
obtained form is:

Mµ(x, δ)E0(x)ẋ+Mη(x, δ)E1(x, δ)ẋ (3.29)

After substituting the matrices Mµ, Mη, E0(x) and E1(x, δ) with their definitions, the
expression (3.29) develops into the form:

(In ⊗Nπb
(x, δ)J0) (In ⊗ x) ẋ+ (In ⊗Nπb

(x, δ)J1) (In ⊗ π) ẋ (3.30)

Since the Kronecker product is distributive with respect to the addition and matrix
multiplication, we can pull out the Kronecker product operation to the front of the
equation:

(
In ⊗

(
Nπb

(x, δ)J0x+Nπb
(x, δ)J0π

))
ẋ (3.31)

Using the definitions of J0 and J1 and then evaluating the inner sum, one can make cer-
tain, that the expression (3.28) is indeed the zero vector:

(
In ⊗Nπb

(x, δ)πb
)
ẋ = 0 ∈ Rnm×1

For details, see Theorem 4.1 in [1, Section 4].
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3.5 Finding the maximal level set for a given polytope

My solution for finding the maximal level set of Lyapunov functions is based on two
popular approaches from the literature. The differences between the methods proposed
in [19] and [1] are related to the definition of the sets, on which the conditions are stated,
and the objective function, which is used to maximize the size of the invariant region.

1. Topcu required the Lyapunov function to be positive definite on the whole Rn but
the function’s time derivative should be negative definite only in the inside of the
level set ε, which would be the final invariant level set as it reaches its maximal
size (Lemma 1. in [19]). In order to maximize the size of ε, Topcu defined a
region Pβ =

{
x ∈ Rn

∣∣ p(x) ≤ β
}
, which should lie inside ε, while the variable β is

maximized. The polynomial p(x) is a design factor, which determines the shape
and the orientation of the inner region.

2. On the other hand, in [1] the authors do not prescribe any constraint outside a given
polytopic set X ⊂ Rn, but for every x ∈ X the Lyapunov function and its derivative
is required to be positive and negative definite, respectively. Furthermore, an
additional constraint is introduced, namely the level set ε1 =

{
x ∈ Rn

∣∣ V (x) = 1
}

should lie in the inside of the polytope X . In this case, the objective function to
be minimized is the sum of values of the Lyapunov function in some points x ∈ X ,
which are strategically chosen. Such an objective function can ensure that the level
set V (x) = 1 is as close to the boundary of X as possible.

In order to find the maximal invariant level set, I adopted a combined method of these
two techniques. First of all, I defined a small polytope Y around the locally stable origin
inside X . Similarly to the first approach, the size of the polytope Y can depend on a
parameter and can be maximized, producing a maximal level set around Y. The challenge
is that the matrix inequality conditions are no longer linear using this approach, hence
the need arises for further relaxations.
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X polytope
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εα level set
ε1 level set

X
εα Yε1

Figure 3.1

Instead, I define the polytope Y ⊂ X
to have a small but constant size, looking
for a level set εα =

{
x ∈ X

∣∣ V (x) = α, 1 ≤ α
}

that is inside of X , while ε1 is outside of Y.
Then, I have to maximize α, under the condi-
tions

1. εα lies in the inside of X

2. Y is inside ε1 (without this condition the
function V (x) can be scaled arbitrarily lead-
ing to an unbounded optimum).

Transforming into LMI conditions
ϑ
(
F (X )

k

)
={vk−1, vk}

X polytope
∂X

Nk

vk

vk−1 F(X )
k

Qk

〈n
k
, x
〉 ≤

d k

nk

O

dk

x

Figure 3.2

The first condition is satisfied if the value of the
Lyapunov function is greater than α along the
boundary of X (denoted by ∂X ). Formally:

V (x, δ) = πTb Pπb ≥ α ∀δ ∈ D, ∀x ∈ ∂X (3.32)

It is obvious that ∂X is not a convex set, but it can
be obtained as the union of the facets of X , which
are indeed convex (n − 1 dimensional) manifolds
(see Figure 3.2). Therefore, the same condition is
tested several times for each facet of X , which are
converted into LMI conditions. First of all, let me
introduce some auxiliary notations:

• F (X )
k is the kth facet of X , where k = Ğ1,MX , MX is the number of facets of X ,

• dk is the distance of facet F (X )
k from the origin,

• nk is a normal vector orthogonal to facet F (X )
k pointing towards F (X )

k ,
(Figure 3.2, red arrows)

• Finally the vector ak = nk
dk

satisfies F (X )
k ⊂

{
x : 〈ak, x〉 = 1

}
.

With the intention of demonstration, Figure 3.2 illustrates that an arbitrary point x ∈ Rn

is an element of X if 〈nk, x〉 ≤ dk, equivalently, if 〈ak, x〉 ≤ 1 for all k = Ğ1,MX .
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Using the notations, the inequality (3.32) can be reformulated as:

∀k = Ğ1,MX : V (x, δ)− α = πTc

P 0
0 −α

πc ≥ 0 ∀δ ∈ D, ∀x ∈ F (X )
k (3.33)

where πc =

πb
1

 ∈ Rm+1

Similarly to [1], further notations are introduced:

C0 = [In 0n×p] ∈ Rn×m Nπc(x, δ) = [C0 − x] ∈ Rn×(m+1)

Ck = [aTkC0 − 1] ∈ R1×(m+1) Qk =

 Im

aTkC0

 ∈ R(m+1)×m
(3.34)

Observe that C0πb = x and Nπc(x, δ)πc = 0 for all x ∈ Rn. Furthermore, knowing that
x ∈ F (X )

k ⊂
{
x : aTk x = 1

}
follows that aTkC0πb − 1 = Ckπc = 0 but only for x ∈ F (X )

k

(and not for every x ∈ Rn), therefore the constant matrix Ck can be considered as an
annihilator of πc, which describes the extra properties of x regarding to the fact that x
is an element of F (X )

k . On the other hand, CkQk = 01×m, consequently, the columns of
Qk span the null-space of Ck.

Two more matrix functions are defined as:

Rk(x, δ)=

Lck
Nπb

(x, δ)+N T
πb

(x, δ)LTck
0m×1

01×m 01×1

+Mck
Nπc(x, δ)+Nπc(x, δ)TMT

ck

(3.35)

P (α)
ck

(x, δ) =

P 0
0 −α

+Rk(x, δ) (3.36)

It is important to mention that P (α)
ck (x, δ) is an affine matrix function in x and δ. The

identities Nπb
(x, δ)πb = 0q×1 and Nπc(x, δ)πc = 0n×1 for all (x, δ) ∈ X × D imply that

πTc Rk(x, δ)πc = 0 for all (x, δ) ∈ X × D. To conclude, a sufficient condition for (3.33)
can be formulated:

∀k = Ğ1,MX : πTc P
(α)
ck

(x, δ)πc ≥ 0 ∀δ ∈ D, ∀x ∈ F (X )
k (3.37)

With reference to the equivalence of (i) and (iii) in Finsler’s lemma, and using that
Ckπc = 0 for all x ∈ F (X )

k , where Ck has a null-space Qk, (3.37) is equivalent to the
following LMI:

∀k = 1,MX : ∃Lck
∈ Rm×q , ∃Mck

∈ R(m+1)×n, such that:

QTk P
(α)
ck

(x, δ)Qk ≥ 0, ∀(x, δ) ∈ ϑ
(
F (X )
k ×D

)
, (3.38)
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In the same way, the second condition (Y lies in the inside of ε1) can be formulated as:

∀k = 1,MY : ∃sLck
∈ Rm×q , ∃ĎMck

∈ R(m+1)×n, such that:
sQTk

sP (1)
ck

(x, δ) sQk ≤ 0, ∀(x, δ) ∈ ϑ
(
F (Y)
k ×D

)
, (3.39)

Finally, the optimization problem to find an appropriate Lyapunov function and its
maximal invariant level set completely inside of the given polytope X becomes:

min
1≤α

(−α) s.t. (3.14), (3.15), (3.38), (3.39) (3.40)

3.6 Finding the most appropriate outer polytope

I used an iterative procedure in order to find the most suitable polytope X , in which the
Lyapunov conditions could be satisfied. The basic idea is to choose an initial polytope
X (0), which satisfies the LMI conditions, then enlarge it iteratively to obtain X (k). In each
iteration step the maximal level set ε(k)

α is found, then a larger polytope X (k+1) defined
considering the shape of ε(k)

α . One possible solution can be to choose some uniformly
distributed discrete points lying on level set ε(k)

α . These points span a polytope, which
should be enlarged by a given increment, without changing its shape (practically, the
coordinates of every corner point are multiplied by an 1 < γ � 2 scalar factor).

A similar iteration can be applied, when constraining the polytope X to be rectan-
gular. This assumption can be very advantageous during the analysis of a higher (nth)
order system, because X has 2n corner points

This iteration is also convenient during the analysis of dynamical systems with
a significantly asymmetric DOA. In such cases, the corner points of X were chosen
manually.
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3.7 Dimensions of the optimization problem

In this section, I want to illustrate quantitatively the dimensions of the optimization
problem. The number of decision variables of each free matrix variable are the following:

matrix var. number of decision variables
α 1
P 1

2 m(m+ 1)
Lb mq

La (n+ 2p+ n2 + np)(2q + n2 + nq)
Lck

and sLck
(MX +MY) × mq

Mck
and ĎMck

(MX +MY) × (m+ 1)n

(3.41)

Consequently, the number of decision variables of the whole computation procedure is
the sum of the previous items. The formulas in equation (3.41) use the notations:

n : number of state parameters of the system (size of x)
p : number of elements in π
m : number of elements in πb (n+ p)
q : number of rows in the final Nπb

(x, δ)
MX : number of corner points of X
MY : number of corner points of Y

Further important dimensional properties of the optimization problem are the num-
ber of LMIs and their sizes. These are presented in the next table:

eq. nr. description fist dimension of the LMIs nr of LMIs
(3.14) positivity of V (x, δ) m MX ·MD
(3.15) negativity of V̇ (x, δ) n+ 2p+ n2 + np MX ·MD ·MĎ
(3.38) V (x, δ) ≥ α for all x ∈ ∂X m+ 1 2MX ·MD
(3.39) V (x, δ) ≤ 1 for all x ∈ ∂Y m+ 1 2MY ·MD

As one can observe, truncating π (decreasing p) reduces significantly the number of
decision variables and the sizes of the LMIs, especially the LMIs corresponding to the
derivative of the Lyapunov function. Not to mention the fact that, in general, a smaller
π produces less rows (q) in the annihilator Nπb

(x, δ).
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4. Illustrative examples and
results

In this chapter, I illustrate the applicability of the approach presented above through
different numerical examples.

The results presented in this section have been computed in the Matlab environment.
For symbolic computations, I used Matlab’s built-in Symbolic Math Toolbox based on
Mupad. For linear fractional transformations (LFT), I used the Enhanced LFR-toolbox
[6, 5]. To model and solve semidefinite optimization (SDP) problems I used Mosek solver
with YALMIP [8].

In each example the values of the following variables are given:

1. the generated column vector π containing the nonlinearities of the system,

2. the model matrices A, B and the annihilatorNπb
(x, δ) appearing in equation (2.11),

3. the corner points x(i) ∈ ϑ(X ) of the final polytope X . For the sake of simplicity,
ϑ(X ) is given in the following matrix form:

ϑ(X ) =
{
x(i)

∣∣∣ i = 1,MX
}
→

“


x

(1)
1 x

(2)
1 . . .

. . . . . . . . .

x
(1)
n x

(2)
n . . .


”

(4.1)

4. the resulting matrix P of the Lyapunov function: V (x, δ) = πTb Pπb and the value
of α. The variables of π, P and α uniquely determine the maximal invariant level
set εα of the Lyapunov function: εα =

{
x ∈ X

∣∣ V (x) = πTb Pπb = α
}
. In case of

uncertain systems, a robust invariant set is computed.

5. the area/volume (A/V ) of the inner region bounded by εα, which is given in square
units (u2) and cubic units (u3), respectively.
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Figure 4.1: DOA estimation of the time inverted Van der Pol system

4.1 Van der Pol dynamics

The system

ẋ1 = −x2

ẋ2 = x1 − δ(1− x2
1)x2 with δ = 1

(4.2)

describes a time-inverted oscillator introduced by the Dutch electrical engineer and physi-
cist Balthasar van der Pol. This system has an asymptotically stable equilibrium point
at the origin, and it has a limit cycle, which determines the boundary of the system’s
DOA. This limit cycle (dashed red line) and some trajectories (blue lines: not converging
to the studied equilibrium point, red lines: converging to the equilibrium point) of the
system can be seen in Figure 4.1, which also illustrates the maximal invariant level set
(green line, right hand side) generated by the algorithm described in Chapter 3. The
nonlinear monomials of π used in [1] were

πT =
[
x1

2 x1 x2 x2
2 x3

1 x2
1 x2 x1 x

2
2 x3

2

]
(4.3)

In comparison, my approach generates a smaller number of monomials:

πT =
[
x2

1 x2 x1 x2
]

(4.4)
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The model matrices of (2.11) are:

A =

0 −1
1 −1

 , B =

0 0
1 0

 , Nπb
(x) =


0 0 1 −x1

0 x1 0 −1
x2 0 0 −1
x2 −x1 0 0

 (4.5)

The polytope X was generated iteratively, then further corner points were added manu-
ally, which together comprise the final X . The corner points of X are:

ϑ(X ) :
−1.1428 −0.2637 1.3806 1.7875 1.8223 1.7875 1.5278 1.2014 . . .

−2.3149 −2.3149 −0.72525 −0.2637 0.26138 0.9084 1.6456 2.3735 . . .


. . . 0.77679 0.3223 −1.4321 −1.7289 −1.8591 −1.7289 −1.1428
. . . 2.5733 2.3735 0.68844 0.3223 −0.29084 −1.1428 −2.3149

 (4.6)

The matrix P and the invariant level set εα obtained by my method are the following:

P =


5.961 −4.3596 1.1176 −0.033319
−4.3596 5.0502 −4.5011e-6 −0.0073781
1.1176 −4.5011e-6 −0.057457 0.019362
−0.033319 −0.0073781 0.019362 0.25254

 (4.7)

εα =
{
x ∈ X

∣∣ V (x) = α = 17.4086
}

(4.8)

The area bounded by εα is A = 10.4882u2. In comparison, the area of that obtained
in [1] by using the first value of π in (4.3) was approximately 12.58u2. The area of the
actual DOA is 13.6832u2. At the same time, the dimensions of the optimization problem
are much smaller in case of π containing only two elements. In Section 3.7, it was
presented in detail, how the number of the decision variables and the dimensions of the
LMIs are affected by the number of elements in π. The solver’s running time in case of
my algorithm was approximately 0.5 seconds, whereas, the running time using the larger
π in equation (4.3) was 15.16 seconds.

Quadratic Lyapunov function

Figure 4.1 also features a smaller DOA (bounded by green line in Figure 4.1a), which was
obtained by the algorithm with the constraint that the Lyapunov function is quadratic.
This was obtained by constraining P to the following form:

P =

 sPn×n 0n×p
0p×n 0p×p

 , sPn×n is symmetric (4.9)
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The generated Lyapunov function is quadratic in x:

sPn×n =

12.8311 −3.0838
−3.0838 10.7177

⇒ V (x) ' 13x2
1 −

31x1x2
5 + 11x2

2 (4.10)

The maximal invariant level set is εα =
{
x ∈ X

∣∣ V (x) = α = 21.2364
}
, its area

is A = 5.8852u2. The final polytope X was generated automatically by applying the
iterative method presented in Section 3.6, and its corner points are:

ϑ(X ) :
 −1.3522 −1.3522 −1.0276 −0.37861 0.27043 0.74679 1.1358 . . .

−9.9967e-3 −0.74951 −1.281 −1.5157 −1.3612 −1.0276 −0.53397 . . .


. . . 1.3522 1.3522 1.0276 0.37861 −0.27043 −0.74679 −1.1358 −1.3522
. . . 9.9967e-3 0.74951 1.281 1.5157 1.3612 1.0276 0.53397 −9.9967e-3

 (4.11)

4.2 Uncertain Van der Pol dynamics

Here, the classical time-inverted Van der Pol model (4.2) is considered with an uncertain
parameter δ. The algorithm has generated the following model representation:

π =


δx2

δx2
1x2

δx1x2

 , A =

0 −1
1 0

 , B =

 0 0 0
−1 1 0

 (4.12)

Nπb
(x, δ) =


0 0 0 1 −x1

0 0 x1 0 −1
0 δ −1 0 0
x2 −x1 0 0 0

 (4.13)

During my work, I have analysed three different types of uncertainty:

1. First of all, I assumed δ ∈ [δmin, δmax] to be an unknown constant parameter,
therefore, its time derivative is zero. In the numerical calculations I used δ ∈ [1, 3].
In Figure 4.2a, the limit cycle of the system is shown for three different values
of δ. The area of the obtained invariant domain (bounded by the green line) is
A = 5.677u2. The generated matrix P of function V (x, δ) and the value of α are:

P =



15.2167 −4.7641 −0.42159 0.66543 −0.0048827
−4.7641 10.3229 0.054745 0.37397 0.041035
−0.42159 0.054745 0.011178 8.015e-07 −0.0067726
0.66543 0.37397 8.015e-07 0.023439 −0.0053948
−0.0048827 0.041035 −0.0067726 −0.0053948 −0.24081


α = 22.3339 (4.14)
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Due to the fact that the uncertain parameter δ appears in the Lyapunov function,
the maximal invariant level set depends on δ. In this case, the estimated robust
DOA (meaning the domain that is attracting for any value of δ) is computed as
the intersection of the bounded regions of the maximal invariant level sets for all
possible values of δ:

estimated robust DOA: ε∗α =
⋂
δ∈D

{
x ∈ X

∣∣ V (x, δ) ≤ α
}

(4.15)

Equivalently, ε∗α can be obtained as the bounded region of the α-level set of the
function V ∗(x) = max

δ∈D
V (x, δ), i.e.

ε∗α =
{
x ∈ X

∣∣ α ≥ V ∗(x) = max
δ∈D

V (x, δ)
}

(4.16)

This can be done, because for every x0 ∈
⋂
δ∈D

{
x ∈ X

∣∣ V (x, δ) ≤ α
}
it is true that

V (x0, δ) ≤ α for every δ in D, therefore, V (x0, δ) ≤ max
δ∈D

V (x0, δ) ≤ α. Computa-
tionally, this second approach in equation (4.16) is more advantageous to calculate
the robust invariant region ε∗α.

2. Secondly, I assumed δ = δ(t) to be known, but it depends on time. In the compu-
tations, I used δ = a+ b sin(ωt), therefore, the possible values of δ belong to the
interval D = [a − b, a + b], while the time derivative of δ operates on the interval
Ď = [−ωb, ωb]. Figure 4.2b illustrates the approximated boundary of the DOA.
The approximation was obtained by simulating the time-inverted system consider-
ing an initial state close to the origin. If (a, b, ω) are given the values (1,0.8,10.5),
the area of the estimated DOA is A = 3.6226u2. The generated P and the value
of α are:

P =



19.1483 −1.7335 −0.052569 0.061823 −1.5114e-06
−1.7335 18.7567 −0.012468 0.035501 −0.002132
−0.052569 −0.012468 0.0096831 6.0841e-06 0.0029395
0.061823 0.035501 6.0841e-06 −0.0050423 −0.0017709
−1.5114e-06 −0.002132 0.0029395 −0.0017709 −0.032403


α = 21.7805 (4.17)

Considering that the uncertain parameter δ(t) can vary independently from the
state variable x(t), I am looking for a region ε∗α, in which the value of V (x, δ) is
smaller than α for every possible values of δ(t) ∈ D, therefore, the region ε∗α can
be calculated as presented in equation (4.16).
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3. Finally, δ = δ(x1) is known parameter, but it depends on the state variable x1.
In this case, determining the domain of δ̇ is slightly more complicated, because ẋ1

appears in the expansion of δ̇. Let δ = a+ b sin(ωx1). Fortunately, ẋ1 = −x2 easily
implies that δ̇ = −bωx2 cos(ωx1). The maximum amplitude of δ̇ is bωx(max)

2 , where
the extremal value of x2 can be computed from the polytope X . It is important
to consider that the sign of the cosine in the expression of δ̇ varies independently
from the amplitude of δ̇, therefore, x(max)

2 = max
x∈X
|x2|. Consequently, the value of

δ̇ is an element of the interval Ď =
[
− ωbx

(max)
2 ωbx

(max)
2

]
. In the numerical

computations the parameters (a, b, ω) were given the values (2,1.5,10). The area
of the estimated DOA is A = 3.5895u2. The generated Lyapunov function and its
maximal invariant level set are:

P =



19.073 −3.1506 −0.018822 0.017114 −0.00050213
−3.1506 17.1091 −0.015033 0.0549 −0.0018608
−0.018822 −0.015033 0.00022283 1.5593e-05 −0.0034762
0.017114 0.0549 1.5593e-05 −0.024593 0.0042279
−0.00050213 −0.0018608 −0.0034762 0.0042279 0.0031101


α = 20.3254 (4.18)

In comparison with the previous to cases, the values of the state variables determine
the value of the uncertain parameter δ. Practically, the Lyapunov function depends
only on the state vector x. Consequently, the maximal invariant region εα is
calculated as the α-level set of the function V̂ (x) =

[
V (x, δ)

]
δ=δ(x).

In all the presented cases, the polytope X is evaluated gradually in an automated manner
as described in Section 3.5. The initial polytope was chosen to be X (0) = [−0.3, 0.3]2.
The corners of the final polytopes in the three different cases are the following:

ϑ(X1) :
 −1.3012 −1.254 −0.92327 −0.30907 0.21064 0.63586 1.0217 . . .

−0.093464 −0.94709 −1.4997 −1.6628 −1.3761 −0.98564 −0.51164 . . .


. . . 1.2996 1.2501 0.91934 0.30513 −0.21458 −0.64198 −1.0284 −1.3012
. . . 0.086228 0.94399 1.4907 1.6583 1.3748 0.98303 0.50474 −0.093464

 (4.19)

ϑ(X2) :
−1.1027 −1.0586 −0.80391 −0.43838 0.1741 0.59969 0.90921 . . .

0.15356 −0.41983 −0.81969 −1.0596 −1.1088 −0.92089 −0.61639 . . .


. . . 1.1027 1.0586 0.80359 0.43702 −0.1741 −0.59969 −0.90921 −1.1027
. . . −0.15355 0.41986 0.81971 1.0596 1.1088 0.92134 0.61649 0.15356

 (4.20)

ϑ(X3) :
 −1.115 −1.0286 −0.72375 −0.29341 0.25429 0.64551 0.95848 . . .

−0.023927 −0.55731 −0.96418 −1.1669 −1.1178 −0.88651 −0.5051 . . .


. . . 1.115 1.03 0.72375 0.29341 −0.25429 −0.64551 −0.95848 −1.115
. . . 0.023403 0.5572 0.96671 1.1679 1.1172 0.8857 0.50502 −0.023927

 (4.21)
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4.3 Mass-action kinetic systems

Mass-action kinetic (MAK) systems are used in chemistry and chemical engineering for
the modeling of chemical reaction networks [26].

4.3.1 Time inverted Sel’kov model

The Sel’kov system [27]

ẋ1 = 1− x1x
γ
2

ẋ2 = αx2(x1x
γ−1
2 − 1)

with
γ = 2

α = 1.1
(4.22)

is a special case of MAK systems, which has an unstable steady state at x0 = [1, 1], and
an attractive stable limit cycle. Substituting sx(−t) + x0 into x(t), I obtained a time
inverted shifted system:

ṡx1 = sx1 + 2sx2 + 2sx1sx2 + sx1 sx2
2 + sx2

2

ṡx2 = 1.1(−sx1 − sx2 − 2sx1sx2 − sx1sx2
2 − sx2

2)
(4.23)

which has an asymptotically stable steady state at the origin with an unstable limit cycle
around it (Figure 4.3). However, the origin is “less attracting” than in case of the Van
der Pol system in the sense that the Sel’kov system orbits around the origin several times
before it converges to it (see blue trajectory in Figure 4.3a). Accordingly, estimating the
DOA is more difficult in this case, and I cannot expect to obtain a large invariant level
set.

The model matrices obtained using the consecutive transformations are:

A =

 1 2
−1.1 −1.1


B =

 2 1 1
−2.2 −1.1 −1.1


πT =

[
x1x2 x1x

2
2 x2

2

]
Nπb

(x) =



0 0 0 1 −x1

0 0 x2 −1 0
0 0 x2 0 −x1

0 x1 −1 0 0
0 x2 0 0 −1
x2 0 −1 0 0
x2 −x1 0 0 0


(4.24)
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Figure 4.3: Time inverted Sel’kov process

The value of P and α and the area of εα are:

P =



4847.7483 4412.1706 −4.4108 −189.8757 158.3735
4412.1706 8401.5745 −541.1394 −1542.4252 −4626.3811
−4.4108 −541.1394 2329.3606 110556.3912 7641.0107
−189.8757 −1542.4252 110556.3912 −966760.864 38803.7307
158.3735 −4626.3811 7641.0107 38803.7307 38069.5409


(4.25)

α = 49.1609 , A = 0.032452u2 (4.26)

The final polytope was defined manually by iteration:

ϑ(X ) :
−0.1436 −0.1412 −0.1339 −0.1041 −0.0149 0.0545 . . .

0.1042 0.0656 0.0355 −0.0127 −0.0792 −0.1053 . . .


. . . 0.1526 0.1842 0.0767 −0.054 −0.0929 −0.1183 −0.1436
. . . −0.1204 −0.0606 0.0605 0.1115 0.1174 0.1169 0.1042

 (4.27)
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Figure 4.4: Minimal MAK system, trajectories from a few starting points (filled points).
The blue trajectories tend to infinity while the red ones converge to the origin.

4.3.2 Minimal MAK system with an unbounded DOA

During my work I used a modified model presented by Wilhelm et.al. [28] with a specific
parameter configuration:

ẋ1 = v1 − k2x1x
2
2

ẋ2 = k2x1x
2
2 − k3x2

, where

v1 = 4

k2 = 1

k3 = 2

(4.28)

This model with these parameter values has an unbounded DOA and a stable steady
state at xT0 =

[
x1 x2

]
=
[
v1
k3

k2
3

k2v1

]
=
[
2 1

]
In order to analyze the stability region of x0, I have translated the equilibrium point

into the origin by substituting sx+ x0 into x obtaining the following:

ṡx1 = −k2 v1
2

k3
2 sx1 − 2 k3 sx2 −

2 k2 v1
k3

sx1 sx2 − k2 sx1 sx2
2 −

k3
2

v1
sx2

2

ṡx2 = k2 v1
2

k3
2 sx1 + k3 sx2 + 2 k2 v1

k3
sx1 sx2 + k2 sx1 sx2

2 + k3
2

v1
sx2

2

(4.29)

After substituting the numerical values into the parameters v1, k2, k3 I got:

ṡx1 = −4 sx1 − 4 sx2 − 4 sx1 sx2 − sx1 sx2
2 − sx2

2

ṡx2 = 4 sx1 + 2 sx2 + 4 sx1 sx2 + sx1 sx2
2 + sx2

2

(4.30)
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Executing the consecutive model transformations, the model matrices are the following:

A =

−4 −4
4 2


B =

−4 −1 −1
4 1 1


πT =

[
x1x2 x1x

2
2 x2

2

]
Nπb

(x) =



0 0 0 1 −x1

0 0 x2 −1 0
0 0 x2 0 −x1

0 x1 −1 0 0
0 x2 0 0 −1
x2 0 −1 0 0
x2 −x1 0 0 0


(4.31)

The Lyapunov function and its maximal invariant level set are described by:

P =



4.3344 4.1886 1.709e-3 3.149e-5 1.0377e-4
4.1886 5.5407 −0.47346 −1.3918e-5 −1.8757

1.709e-3 −0.47346 0.43649 0.45061 −0.17843
3.149e-5 −1.3918e-5 0.45061 6.0537e-3 0.23054
1.0377e-4 −1.8757 −0.17843 0.23054 0.90654


(4.32)

α = 6.3666 , A = 6.9019u2 (4.33)

The final polytope was defined manually by iteration:

ϑ(X ) :
−0.94797 −0.5647 0.019036 0.5345 1.0376 1.5789 1.7445 1.7705 . . .

−0.33122 −0.605 −0.91751 −1.079 −1.1459 −1.0466 −0.8672 −0.67511 . . .


. . . −0.3227 −0.6958 −1.442 −1.916 −2.0067 −1.6134 −1.4218 −0.94797
. . . 2.9647 3.3782 2.8437 1.5227 0.7361 0.2824 0.1008 −0.33122


(4.34)

The results of the computations can be seen in Figure 4.4.
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4.4 Third order rational system
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Figure 4.5: Estimated DOA of the third or-
der rational system illustrated by the red
polygon. The outer rectangular polygon
constitutes the polytope X .

In order to illustrate the performance of the al-
gorithm, a third order rational system is taken
from [1]:

ẋ1 = x2 + ε3x3 + ε1ζ(x)

ẋ2 = −x1 − x2 + ε2x
2
1

ẋ3 = ε3(−2x1 − 2x3 − x2
1)

(4.35)

where

ζ(x) = x1
x2

2 + 1 , x =


x1

x2

x3


ε1 = ε2 = ε3 = 1

2

This system has a locally asymptotically sta-
ble equilibrium point at the origin. This fact
is implied by the negative eigenvalues of matrix
A, which is in fact the Jacobian matrix of the
system at the equilibrium. The model matri-
ces A and B obtained for this system are the
following:

A =


0.5 1 0.5
−1 −1 0
−1 0 −1

 (4.36)

B =


0 0 0 −0.5 0 0
0 0 0.5 0 0 0
0 0 −0.5 0 0 0

 (4.37)
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The column vector π and the annihilator of πb are:

πT =
[
x1x2ζ(x) x1ζ(x) x2

1 x2
2ζ(x) x2ζ(x) x1x2

]
(4.38)

Nπb
(x, δ) =



0 0 0 0 0 0 1 −x2 0
0 0 0 0 0 x2 0 0 −x1

0 0 0 0 x2 0 0 −x1 0
0 0 0 1 0 0 0 −x1 0
0 0 0 1 −x2 0 0 0 0
0 0 0 x2 0 0 −x1 0 0
0 x1 0 0 0 0 0 0 −1
0 x3 −x2 0 0 0 0 0 0
x1 0 0 0 −1 0 −x1 0 0
x1 0 0 0 0 −1 0 0 0
x2 0 0 0 0 0 0 0 −1
x2 0 0 0 0 0 −x2 −1 0
x2 −x1 0 0 0 0 0 0 0
x3 0 −x1 0 0 0 0 0 0



(4.39)

The maximal invariant level set of V (x) = πTb Pπb, and the generated matrix P are:

P =



0.24682 0.048679 0.11214 0.042366 −14.9084 14.9247 −0.050515 12.3269 −12.2731
0.048679 0.2128 0.031464 0.021364 0.10189 −0.15608 −0.047148 0.060929 0.021878
0.11214 0.031464 0.11504 −0.0067033 0.00080533 0.0178 −0.0095644 −0.0020643 0.0040921
0.042366 0.021364 −0.0067033 0.01445 −0.00141 −0.0030255 −3.9744 3.9999 −4.0343
−14.9084 0.10189 0.00080533 −0.00141 0.0031407 0.0025979 −4.0152 −3.9773 5.268
14.9247 −0.15608 0.0178 −0.0030255 0.0025979 0.011247 −10.8675 −1.3232 −0.0065652
−0.050515 −0.047148 −0.0095644 −3.9744 −4.0152 −10.8675 56.6889 −0.023007 12.3672

12.3269 0.060929 −0.0020643 3.9999 −3.9773 −1.3232 −0.023007 56.4424 −28.2011
−12.2731 0.021878 0.0040921 −4.0343 5.268 −0.0065652 12.3672 −28.2011 0.014463


εα =

{
x ∈ X

∣∣ V (x) = α = 4.0394
}

(4.40)

The volume of the estimated DOA for the system in [1] is 32.022u3. My improved
automated algorithm by applying the LFT generates an invariant level set of 398.3350u3.
The possible cause of this difference can be the increased numerical stability obtained by
the dimension reduction of the problem by considering fewer entries in π and eliminating
the repetitive (redundant) rows from the annihilator matrices.

The polytope X was generated automatically, and it was bound to be a rectangular
region, which results in a smaller number of facets being considered in the optimization
task, furthermore, this regularity assumption makes easier to approximate iteratively the
most appropriate rectangular X . The estimated DOA is shown in Figure 4.5. The final
polytope was: X = [−3.7710, 3.5195]× [−4.6077, 5.1943]× [−8.4274, 6.7204].
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Figure 4.6: Estimated DOA of the inverted pendulum is illustrated by the red polygon.
The outer polytope was chosen manually as X = [−1.2, 1.2]× [−16, 16]× [−2.4, 2.4].

4.5 Stability of a controlled inverted pendulum

Especially in robotics, there appear nonlinear mechanical models containing trigonomet-
ric functions, for which the stability analysis is often a challenging task. The inverted pen-
dulum is a classical bench-mark example for this class of nonlinearities. In Section 4.2, I
have already presented a nonlinear system (uncertain Van der Pol) featuring a sinusoid
nonlinearity, which was wrapped into a state-dependent uncertain parameter. However,
in case of the pendulum, important characteristic features disappear from the dynamics
if I try this approach. Instead, I used Taylor approximation of the trigonometric nonlin-
earities, and a Lyapunov function V (x) is computed using the simplified rational model.
Then, I check the negativity of the time derivative of the obtained Lyapunov function on
the whole X , and V̇ (x) is computed by substituting the original (trigonometric) dynamics
into ẋ.

The inverted pendulum system, can be described by the following 4th order differ-
ential equation:

dx̂
dt = f(x̂) + g(x̂)u, where x̂T = [r ϕ v ω] (4.41)

f(x̂) =


v

ω
1

q(ϕ)
(
− 4mlω2 sin(ϕ) + 1.5mg sin(2ϕ)

)
1

lq(ϕ)
(
− 1.5mlω2 sin(2ϕ) + 3g(m+M) sin(ϕ)

)

 (4.42)

g(x̂) = 1
lq(ϕ)


0
0
4l

3 cos(ϕ)

 , where q(ϕ) = 4(m+M)− 3m(cosϕ)2 (4.43)

38



The variables and parameters of the system are listed in the following table.

r linear position of the chart [m]
ϕ angle of the rod with the vertical [rad]
v linear velocity of the chart [m/s]
ω angular velocity of the rod [rad/s]
l length of the rod 1 [m]
m mass of the rod 0.5 [kg]
M mass of the chart 1 [kg]
g gravitational accelerations 9.8 [m/s2]

Since the linear position of the chart r does not appear on the right hand side of
equation (4.41), the dynamics of the system does not depend on r. In other words, the
linear position r has no effect on the system’s dynamics, therefore, the first equation
(ṙ = v) can be omitted from the stability analysis as it is often done in literature. Let
the state vector of the reduced system be xT = [x1 x2 x3], where x1 = ϕ, x2 = v and
x3 = ω. This system has an unstable equilibrium point at the origin, which can be
locally stabilized using a static state feedback u = −Kx, where the row vector K ∈ R3

is the feedback gain. The 3rd order model is of the form ẋ = h(x), where

h(x) =


x3

1
q(x1)

(
− 4mlx2

3 sin(x1) + 1.5mg sin(2x1)− 4Kx
)

1
lq(x1)

(
− 1.5mlx2

3 sin(2x1) + 3g(m+M) sin(x1)− 3 cos(x1)Kx
)
 (4.44)

As the LFT cannot handle trigonometric nonlinearities, these functions are approximated
around the equilibrium point by (at most) a 2nd order Taylor polynomial:

sin(x1) ' x1

cos(x1) ' 1− 0.5x2
1

cos(x1)2 ' 1− x2
1

ζ(x) := 1
3mx2

1 + (m+ 4M) '
1

q(x1) (4.45)

The resulting rational nonlinear system will be ẋ = h̃(x), where

h̃(x) = 1
l


lx3

ζ(x)
(
− 4ml2x1x

2
3 + 3mglx1 − 4lKx

)
ζ(x)

(
− 3mlx1x

2
3 + 3g(m+M)x1 − 3(1− x2

1)Kx
)
 (4.46)

In the numerical computations, the feedback gain K has the value [36 − 1 12], which is
the rounded value of an optimal feedback gain generated by a linear quadratic regulator
(LQR) design. The system with this rounded feedback gain is still locally asymptotically
stable. Substituting the numerical values into the parameters l, m, M , g, the model
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ẋ = h̃(x) can be transformed into the representation (2.11):

A =


0 0 1

−28.7333 0.88889 −10.6667
−14.2 0.66667 −8

 , B =


0 0 0 0 0 0 0

9.5778 0 −0.2963 0 3.5556 0 −0.44444
16.7333 0 −0.55556 0 6.6667 0 −0.33333



π = 3
x2

1+3



x3
1

x2
1

x2
1x2

x1x2

x2
1x3

x1x3

x1x
2
3


Nπb

(x) =



0 0 0 0 0 0 0 0 x3 −1
0 0 0 0 0 0 0 1 −x1 0
0 0 0 0 0 0 0 x3 0 −x1

0 0 0 0 0 0 x3 0 −x2 0
0 0 0 0 0 1 −x1 0 0 0
0 0 0 0 0 x3 0 −x2 0 0
0 0 0 0 x2 −1 0 0 0 0
0 0 0 0 x2 0 −x1 0 0 0
0 0 0 0 x3 0 0 −1 0 0
0 0 0 0 x3 0 0 0 −x1 0
0 0 0 1 −x1 − 1

36
x1
36

1
3 −x1

3 0
0 0 0 1 −x1 0 0 0 0 0
0 0 0 x2 0 −x1 0 0 0 0
0 0 0 x3 0 0 0 −x1 0 0
0 0 x1 0 0 0 0 −x1

3 −1 0
0 x1 0 0 0 −x1

3 −1 0 0 0
0 x3 −x2 0 0 0 0 0 0 0
x1 0 0 −x1

3 −1 0 0 0 0 0
x2 0 0 −x2

3 0 0 −1 0 0 0
x2 −x1 0 0 0 0 0 0 0 0
x3 0 0 −x3

3 0 0 0 0 −1 0
x3 0 −x1 0 0 0 0 0 0 0



(4.47)

The matrix P from the Lyapunov function, the maximal invariant level set and its volume
are:

P =



3.7519 −0.092361 0.44941 −1537.3922 −1.9857e-08 3723.7945 0.00090873 −1517.9758 −0.0044609 −3207.8085
−0.092361 0.019392 −0.069085 −3595.1177 −0.00090873 0.043468 −1.3016e-10 −12.5226 5.0049 0.0412

0.44941 −0.069085 0.86706 9.124 0.004461 −0.04595 −5.0049 3446.765 −1.3857e-09 −0.13625
−1537.3922 −3595.1177 9.124 1020.752 1.0702e-08 −42.8946 16.2659 502.2325 −0.0032803 1027.9664
−1.9857e-08 −0.00090873 0.004461 1.0702e-08 3081.1585 −16.2659 −128.4693 0.0032802 1508.4604 −0.00036152

3723.7945 0.043468 −0.04595 −42.8946 −16.2659 −0.031519 1.0843e-10 4.0599 −4754.3435 0.0077353
0.00090873 −1.3016e-10 −5.0049 16.2659 −128.4693 1.0843e-10 −0.11092 4754.3435 12.7507 −1.8194e-09
−1517.9758 −12.5226 3446.765 502.2325 0.0032802 4.0599 4754.3435 −2213.8946 0.00036151 0.1324
−0.0044609 5.0049 −1.3857e-09 −0.0032803 1508.4604 −4754.3435 12.7507 0.00036151 −478.3034 1.9762e-08
−3207.8085 0.0412 −0.13625 1027.9664 −0.00036152 0.0077353 −1.8194e-09 0.1324 1.9762e-08 0.010434


εα =

{
x ∈ X

∣∣ V (x) = α = 3.5465
}
, V = 116.4431u3

(4.48)

The estimated DOA is shown in Figure 4.6. The polytope X was chosen manually:
X = [−1.2, 1.2]× [−16, 16]× [−2.4, 2.4].
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Table 4.1: Variables and parameters of the fermentation process

X Biomass concentration [g/l]
S Substrate concentration [g/l]
F Feed flow rate [l/h]
V Volume 4 [l]
SF Substrate feed concentration 10 [g/l]
Y Yield coefficient 0.5
µmax maximal growth rate 1 [l/h]
K1 Saturation parameter 0.03 [g/l]
K2 Inhibition parameter 0.5 [l/g]
Steady-state operating point:
X0 equilibrium point of X 4.8907 [g/l]
S0 equilibrium point of S 0.2187 [g/l]
F0 Inlet feed flow rate 3.2089 [l/h]

4.6 A continuous fermentation process

It is known that bioreactors often show strongly nonlinear dynamical behaviour and their
efficient control is a challenging task [29].

In this section, I present an isothermal nonlinear continuous fermentation process
model taken from [2] with constant volume V and constant physico-chemical properties.
The dynamics of the process is given by the state-space model

dX
dt = µ(S)X − XF

V
(biomass component mass balance) (4.49)

dS
dt = µ(S)X

Y
+ (SF − S)F

V
(substrate component mass balance) (4.50)

µ(S) = µmax
S

K2S2 + S +K1
(growth rate function) (4.51)

The variables and parameters of the model together with their units and values are given
in Table 4.1. The above model can be easily written in standard input-affine form with
the centered state vector

x =
[
x1 x2

]T
=
[
S − S0 X −X0

]T
(4.52)

consisting of the centered biomass and substrate concentrations. The centered input flow
rate is chosen as a manipulate input variable as follows: u = F −F0. The centered model
is: ẋ = f(x) + g(x)u

f(x) =
(x1 +X0) · µ(x2 + S0) − (x1+X0)F0

V

− (x1+X0)·µ(x2+S0)
Y + (SF−(x2+S0))F0

V

 (4.53)

g(x) = − 1
V

 x1 +X0

x2 + S0 − SF

 (4.54)
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The origin of the coordinates system is an equilibrium point if

f(0) =

 X0 · µ(S0)−X0F0/V

−X0 · µ(S0)/Y + (SF − S0)F0/V

 = 0, (4.55)

meaning that F0 = V µ(S0) and X0 = (SF − S0)Y . The coordinate S0 of steady state
operating point of the system is computed so that the biomass production X0F0 is
maximal:

S0 = argmax
S0>0

(SF − S0)µ(S0) =
−K1 +

√
K2

1 + S2
FK1K2 + SFK1

K2SF + 1 (4.56)

The computational steps of the previous statement can be seen in the sequel. Firstly,
the expression of X0S0 is transformed to a simplified form:

X0F0 = V Y µ(S0)(SF − S0) = µmaxV Y
−S2

0 + SFS0
K2S2

0 + S0 +K1

= µmaxV Y

K2

−K2S
2
0 +K2SFS0

K2S2
0 + S0 +K1

= µmaxV Y

K2

(
−1 + (K2SF + 1)S0 +K1

K2S2
0 + S0 +K1

)
(4.57)

In order to obtain the maximal value of the above expression, its derivative is computed
with respect to S0.

max
S0

: d
dS0

X0(S0)F0(S0) = 0

⇔ d
dS0

(K2SF + 1)S0 +K1
K2S2

0 + S0 +K1
= 0

⇔(K2SF + 1)(K2S
2
0 + S0 +K1)− (2K2S0 + 1)((K2SF + 1)S0 +K1)

(K2S2
0 + S0 +K1)2

⇔(K2SF + 1)S2
0 + 2K1S0 − SFK1 = 0 (4.58)

Finally, the optimal value of S0 can be derived. The numerical operating point values
are given in Table 4.1.

In the following, I present the computational results of the method. Firstly, the
procedure is applied to the open-loop system, then the effect of a negative substrate
feedback is analyzed.
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Figure 4.7: Lyapunov function and its derivative (OLS, k = 0)
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Figure 4.8: Lyapunov function and its derivative (CLS, k = −0.8)
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4.6.1 Open-loop system (OLS)

If the centered input flow rate u = 0, the model can be transformed into the following
nonlinear state-space model:

ẋ = f(x) = A(x)x, where

A(x) =


− F0(c2x

2
2 + c1x2)

q(x2)V
µmaxV (x1 +X0)−X0F0(c2x2 + c1)

q(x2)V

− µmaxS0
q(x2)Y − F0

V
− µmax(x1 +X0)

q(x2)Y − F0(S0 − SF )(c2x2 + c1)
q(x2)V


q(x2) = c2x

2
2 + c1x2 + c0

c0 = K2S
2
0 + S0 +K1

c1 = 2K2S0 + 1

c2 = K2
(4.59)

The model matrices for this system are

A =

 0 0.40111
−1.6045 −1.6045

 , B =

0.082016 −1.4716 −0.7358 −8.9905
−0.16403 2.9432 1.4716 17.981


π =

[
x1x2 x1x

2
2 x3

2 x2
2

]T
· ζ(x2) , where ζ(x2) '

(
3.6688 q(x2)

)−1

(4.60)

The approximated value of Nπb
(x) with 4 decimal digit accuracy is:

Nπb
(x) =



0 0 0 0 1 −x2

0 0 0 1 0 −x1

0 0 0 x2 −x1 0
0 0 x2 −1 0 0
0 0 x2 0 0 −x1

0 −0.2463x2 0 0 0.4517x2 + 0.101 x2 + 0.2463
0 −0.2237x1 0.2237 0 0.4103x1 x1

0 −0.2237x2 0 0 0.4103x2 x2 + 0.2237
x2 −x1 0 0 0 0

−0.2463x2 0 x2 + 0.2463 0.4517x2 + 0.101 0 0
−0.2237x2 0 x2 + 0.2237 0.4103x2 0 0



(4.61)

The generated P , α and the area of the estimate are:

P =



971.2401 450.6579 11177.6448 243310.7436 6332.5198 −14173.4478
450.6579 637.0046 20799.7569 87571.9883 −13185.8278 1712.5523

11177.6448 20799.7569 −265074.8729 −488241.4065 43817.9314 −38256.3894
243310.7436 87571.9883 −488241.4065 −361262.1183 −14259.2742 −277713.8548
6332.5198 −13185.8278 43817.9314 −14259.2742 −96549.5592 −134720.6252
−14173.4478 1712.5523 −38256.3894 −277713.8548 −134720.6252 22741.6173


α = 1.3354 , A = 0.010699u2 (4.62)
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Figure 4.9: Green area: domain of attraction of the continuous fermentation process
without feedback. The final invariant level set for the open-loop system (OLS) is shown in
the magnified plot (magenta and green, for two different polytopes X ). The final invariant
level sets for the closed loop system (CLS) are shown in different colors according to the
different feedback gains k.

4.6.2 Effect of linear substrate feedback

Let us define the centered input flow rate as u = −kx2, where k > 0 is the feedback
gain. From (4.53,4.54), the equation of the closed-loop system can be transformed into
the following form:

ẋ = A(x)x, where A(x) =

A11(x) A12(x)
A21(x) A22(x)


A11(x) = −F0(c2x

2
2 + c1x2)

r(x2)V − kx2
V

A12(x) = µmaxV (x1 +X0)−X0F0(c2x2 + c1)
r(x2)V − kX0

V

A21(x) = −µmaxS0
r(x2)Y

A22(x) = F0(SF − S0)(c2x2 + c1)
r(x2)V − µmax(x1 +X0)

r(x2)Y − k(x2 + S0 − SF ) + F0
V

(4.63)
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After the necessary transformations and using k = 0.8 as a feedback gain, the rounded
numerical values of model matrices with 4 decimal digit accuracy are

A =

 0 1.3792
−1.6045 −3.5607

 , B =

0.082016 0.2 −1.4716 −0.7358 −8.9905 0
−0.16403 0 2.9432 1.4716 17.981 0.2


πT =

[
(x1x2)ζ(x) x1x2 (x1x

2
2)ζ(x) x3

2ζ(x) x2
2ζ(x) x2

2

]
, ζ(x) '

(
3.6688 q(x2)

)−1

Nπb
(x, δ) =



0 0 0 0 0 1 −x2 0
0 0 0 0 1 0 −x1 0
0 0 0 0 x2 −x1 0 0
0 0 0 x2 0 0 0 −x1

0 0 x2 0 −1 0 0 0
0 0 x2 0 0 0 −x1 0
0 x1 0 −1 0 0 0 0
0 x2 0 0 0 0 0 −1
0 −0.2463x2 0 0 0 0.4517x2 + 0.101 x2 + 0.2463 0
0 −0.2237x1 0.2237 0 0 0.4103x1 x1 0
0 −0.2237x2 0 0 0 0.4103x2 x2 + 0.2237 0
x2 0 0 −1 0 0 0 0
x2 −x1 0 0 0 0 0 0

−0.2463x2 0 x2 + 0.2463 0 0.4517x2 + 0.101 0 0 0
−0.2237x2 0 x2 + 0.2237 0 0.4103x2 0 0 0


(4.64)

The generated P , α and the area of the estimate are:

P =



1.1199 0.92033 −30.625 30.4466 −124.0099 135.835 17.7229 −6.9136
0.92033 2.0768 −107.4816 88.8882 −484.882 98.0527 −5.2247 −12.5877
−30.625 −107.4816 −33.3373 4.1097 −67.6147 534.8658 48.412 −21.4304
30.4466 88.8882 4.1097 2.1802 −67.8471 −387.9268 −31.6243 0.78088
−124.0099 −484.882 −67.6147 −67.8471 −7.4534 −23.2976 −348.0484 241.5972

135.835 98.0527 534.8658 −387.9268 −23.2976 −215.8171 −279.9563 23.7192
17.7229 −5.2247 48.412 −31.6243 −348.0484 −279.9563 87.3201 13.5614
−6.9136 −12.5877 −21.4304 0.78088 241.5972 23.7192 13.5614 0.61819


α = 17.2450 , A = 24.5595u2 (4.65)

The plot of the Lyapunov function and its time derivative is illustrated in Figure 4.8. I
have measured the area of the estimated DOA using different feedback gains. The results
of the computations can be seen in Figure 4.9 alongside the estimated DOA of the open-
loop system. Apparently, the closed-loop system features a much larger invariant level
set than the open-loop system. Thus, it is clearly shown that a simple linear substrate
feedback may ensure a practically useful guaranteed stability region.
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5. Conclusions

In this work, I presented an optimization-based computational method for determining
Lyapunov functions and invariant regions for nonlinear dynamical systems. The start-
ing point of the method is the approach presented in [1]. The improvements and new
contributions can be summarized as follows:

1. The model transformation to the required form for optimization is done automati-
cally using LFT and further algebraic model transformation steps. This technique
results in the dimension reduction of the problem compared to known solutions in
the literature.

2. An algorithm was given for the generation of appropriate annihilators for the vector
πb.

3. An improved method was proposed for determining the largest possible invariant
set for the dynamics using the computed Lyapunov function.

4. A simplified formula was given for the LMI, which ensures the negative definiteness
of the Lyapnov function. The simplification was done by merging the two annihila-
tors of πb from the representation (2.11). The formula does not require the system
matrix F (x) to be quadratic in the model (2.11). Therefore, it can be considered
as a generalization of the formula presented in [1].

The operation of the approach was illustrated through examples taken from the
literature. The results confirmed the applicability of the proposed method, and the
estimated DOAs were very similar or bigger than in [1]. It is worth mentioning again the
third order rational system in Section 4.4, for which I obtained approximately 10 times
larger DOA than the authors in [1].

Although the method is appropriate only for rational systems, it was adopted on
the model of the inverted pendulum with state feedback, that contains trigonometric
terms as well. These terms were approximated by 2nd order Taylor polynomials, finally
obtaining a rational system.
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The method was applied for the stability analysis of a simple continuous bioreactor
model. The Lyapunov functions for the open and closed loop cases, were successfully
computed and the corresponding guaranteed stability regions were determined for dif-
ferent feedback gains.

Future plans, possible improvements

In the future, we aim to automate the iterative evaluation of the polytope X in which
the Lyapunov conditions are required to be satisfied. Furthermore, we aim to test the
algorithm on even higher dimensional system models assuming rectangular polytope X ,
and it is also motivating to analyse the performance of different dynamical or nonlinear
control feedback laws. Finally, our plan is to study the evaluation of the possible anni-
hilators based on the conservativeness of the corresponding LMI conditions, while the
number of decision variables of the optimization problem is kept as low as possible.
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