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Kivonat

A háromdimenziós virtuális városmodellek széles körben elterjedtek az utóbbi években, szere-
pük a megjelenítés mellet különböző elemzési feladatokban is jelentős. Ugyanakkor az adatok
mennyisége miatt a modellgenerálás nagyfokú automatizálása kulcsfontosságú a hatékonyság
szempontjából.

A LiDAR (Light Detection and Ranging) mérési technológia segítségével nagy pontosságú
levegőből készített háromdimenziós pontfelhőket kaphatunk különböző földrajzi területekről,
ami az optikai úton sztereokép-számítással nyerhető magasságtérkép hatékony alternatívá-
jának számít a városrekonstrukciós feladatokban.

Tudományos diákköri munkám során olyan automatikus és robosztus algoritmusok ki-
fejlesztésére törekedtem, melyek légi LiDAR felvételek feldolgozásával részletekben gazdag
háromdimenziós virtuális városmodelleket generálnak. Fontos célnak tűztem ki, hogy a rend-
szer képes legyen különböző építészeti irányzatot követő háztetőkről is valósághű modelleket
rekonstruálni, másrészt akár több négyzetkilométernyi területet lefedő LiDAR mérések fel-
dolgozását is felhasználói beavatkozás nélkül tudjuk elvégezni.

A feldolgozás bemenetét szolgáló Budapest belvárosáról készült nagypontosságú légi
LiDAR felvételeket az Infoterra Astrium GEO-Information Services Hungary Kft. bocsá-
totta rendelkezésünkre. A felvételek mintegy 300 m-es repülési magasságból készültek, az
adathalmaz az egyes repülési irányoknak megfelelően 3-6 km hosszú és kb 200 m széles
szegmensekből áll, ahol az egyes szegmensek 10-20 millió pontot tartalmaznak.

A feladat megvalósításakor felhasználtam a kutatócsoportunkban korábban kifejlesztett
pontfelhőosztályozó és előzetes tetőszegmentáló eljárásokat. A munkafolyamathoz a követke-
ző algoritmusok kidolgozásával és implementációjával járultam hozzá. A felületnormális ala-
pú tetőszegmentálás alapötletéből kiindulva terveztem egy olyan eljárást, amely a tetőszeg-
mensek határait is figyelembe veszi, így a szomszédos szegmensek résmentesen összeérnek.
Algoritmust dolgoztam ki a tetőrészek éleinek detektálására, és ezek alapján történő poligon
felületek generálásra. Gondot jelentett, hogy mivel a felhasznált háromszögelési eljárások
a tetőszegmensek konvex burkára illesztik a felületmodellt, konkáv tetőszegmensek homorú
külső részeiben hamis háromszögek keletkezhetnek. Erre a problémára egy Markov véletlen
mezős eljárást adtam, melynek segítségével kiszűrtem a hibásan megjelenő háromszögeket.
Az eljárásokat megvalósító szoftvert alkalmassá tettem nagy területet lefedő mérési adatok
feldogozására, módszereim hatákonyságát egy 240m×2.3km területű és kisebb 200m2-es ré-
giók mérési adatain teszteltem. A megfigyelt eredmények alapján a szoftver robosztusnak
bizonyult.

Az elkészült algoritmusokat az MTA SZTAKI Elosztott Események Elemzése Laboratóri-
umában folyó és az Európai Űrügynökség által támogatott DUSIREF projektben szeretnénk
felhasználni a jövőben, különböző légi és földi pontfelhő alapú gépi felismerő eljárásaink ered-
ményeinek a megjelenítéséhez. Másrészt az elkészült háromdimenziós modelleket különböző
időpontokban készül űrképekkel szeretnénk összevetni, megvizsgálva az adaptív textúrázha-
tóság és a változásdetekció lehetőségeit.



Abstract

Three dimensional urban scene modelling became important issue in the last few years.
Beside visual experience, 3D city modelling has gained a significant function in diverse
analysing tasks, however the amount of data requests a high level of automation of model
generation.

LiDAR (Light Detection and Ranging) measurement technologies provide high resolu-
tion three-dimensional aerial point clouds with a high accuracy from different geographical
areas. This type of data is considered as an effective alternative solution of elevation models
generated by optical stereo images.

In my work for the Students’ Scientific Competition, I aim to design automatic and
robust algorithms in order to produce detailed 3D virtual city models by analysing the aerial
LiDAR measurements. An important goal to work out is to construct realistic models for
rooftops following different architectural trends, and to process large LiDAR measurements
covering areas of several square kilometers without user interraction.

As input, we have used high resolution LiDAR records of Budapest city center, which have
been provided by Infoterra Astrium GEO-Information Services Hungary. The measurements
were taken in an altitude of 300m, and the data set corresponding to each flight directions
covers a 3−6 km long and 200m wide area, where each set contains 10-20 million points.

Pursuing my task, I have used a point cloud classification and a preliminary roof seg-
mentation procedure developed by our research group. I have contributed to the process
workflow with the following algorithms and implementations. Proceeding from the idea of
the surface normal based roof segmentation I have designed a procedure, which takes into
account the boundaries of each roof segment, so that the adjacent segments connect without
gaps. I have developed an algorithm to detect 3D edge lines of the rooftops, and a further
polygon generator on the basis of these boundary lines. Since the applied triangulation
methods operate on the whole convex hull of the input points, hollow outer parts of the roof
segments are filled in with false triangles. To solve this problem, I have proposed a method
using a Markov Random Field, in which I filter out the incorrect triangles lying on the con-
cave parts. In order to process large datasets, I have developed a software on the basis of
the previously mentioned functions, and I have been tested it on a cloud of 8 million points
covering a 240m×2.3km large region and on other datasets of smaller territories having area
up to 200m2. Based on the observed results the software proved to be robust.

In the future, the designed algorithms are intended to be used in the ongoing DUSIREF
project of Distributed Events Analysis Research Laboratory of MTA SZTAKI which project
is funded by the European Space Agency. Here the synthesized city model will provide a 3D
visualization environment, where the results of different terrestrial or aerial LiDAR based
computer vision and machine recognition procedures can be displayed. Furthermore, the
obtained three-dimensional models will be compared with satellite photos taken at different
times, analysing the possibilities of adaptive texturing and change detection.



1. Introduction

In the last decade, LiDAR (Light Detection and Ranging) has been widely used in various
remote sensing application fields. LiDAR is an optical remote sensing technology that can
measure the distance of targets from the scanner by illuminating the target with laser light
and analysing the backscattered light, therefore a such a laser scanner yields a 3D point
cloud representing the objects around the scanner.

A specific type of these sensors can be mounted on airplanes, and the provided scans are
appropriate for creating digital terrain models (DTM) and digital elevation models (DEM).
These models are efficient and detailed descriptions of fields, valleys, mountains or other
desert areas. These irregular, rough and mountainous terrain types cannot be represented
as a set of regular shapes.

On the other hand, in case of cities or other urban settlements polygon reconstruction
constitutes another alternative solution for modelling. The main targets of the reconstruction
are the buildings having regular geometrical shapes introducing the possibility to approxi-
mate them with several three-dimensional polygons. Worldwide projects (Google maps 3D,
Nokia maps) are devoted to this topic.

As input, we have used high resolution LiDAR records of Budapest city center, which
have been provided by Infoterra Astrium GEO-Information Services Hungary.

It is a fact that, monumental civil apartment houses with circular corridors built in the
XX. century are very frequent constructions in Budapest, especially in the VI., VII., VIII.
districts. However these building blocks are very complex architectural beings introducing
further challenges.

In this documentation I intend to present my approaches of aerial point cloud processing,
three-dimensional city reconstruction and urban scene modelling.

1.1 Aerial LiDAR
Aerial LiDAR employs a laser fired to the ground from a GPS-monitored aerial sensor (fas-
tened on the bottom of an aircraft) to accurately measure the distance of the airplane from
the ground surface points, providing elevation data. GPS sensors are installed both on the
aircraft, and at a known ground location (base station), which record frequently the posi-
tion of the aircraft relatively to the GPS satellites. Simultaneously, an aerial IMU sensor
records the pitch/yaw/roll of the aircraft, ensuring that the measured LiDAR returns can
be converted into precise 3D point cloud datasets.



First and last return

By reflecting from objects such as tree canopy, structures and complex surfaces, a portion
of the LiDAR pulse returns back to the sensor, where these returns are registered. Another
part of the laser beam propagates towards and reflects from an object at a lower altitude.
The first return reflects higher elevation objects or surfaces such as tree canopy, high voltage
conductors between buildings, curled faces, irregularities etc. The last LiDAR return reflects
the ground level and other regular smooth faces like vehicles and rooftops.

1.2 Related works on urban scene modelling
This research domain has considerably progressed during the last decade. Many of computer
vision researchers have developed new techniques and algorithms in order to create not only
realistic but also simple1 city-models at the same time. Regarding the latest publications,
significant results have been encountered by Lafarge et al. [4, 5], Zhou et al. [9–13], Huang
et al. [7, 8] and Verma et al. [14]. Zhou’s approach consists in geometrical and topological
corrections of an initial mesh on the basis of local observations of the buildings’ orientation.
Whereas Lafarge and Huang defined geometric 3D primitives to fit them to the different
building types and rooftop shapes appearing in the point cloud. Lafarge et al. [4, 5] also
handled non-planar primitives as cylinders, spheres and cones.

A new technique has been proposed for shape recognition and template fitting, com-
mencing with edge detection, which is realized by minimizing a quadratic distance error of
the LiDAR points from the corresponding fitted 3D segments. Secondly, the planar struc-
tures, including the most common roof shapes, were extracted by applying a region growing
(i.e. flood-fill) process. Thirdly, non-planar shapes were detected from the remaining points,
which had not been fitted by any of the planes. The detected roof structures were marked
with different labels, so that the points belonging to a specific structure were assigned the
same label. In the next step, the 3D points were projected onto a horizontal 2D grid2 storing
each point’s label and its z coordinate value. The second parameter (the elevation value)
was essential because without it the inverse operation of projection (elevation into the 3D
space) cannot be done. Afterwards a label propagation had been adopted on the grid using
a Markov Random Field, which provided an arrangement of structuring elements (planes,
cylinder, etc...). After this arrangement Lafarge proposed an inverse operation (elevation
into 3D space) resulting in an impressive regular 3D model. Finally, virtual 3D models were
obtained by elevating the structuring elements.

Huang et al. [7, 8] created complete roof models (composed by planar primitives) and
attempted to fit them to the cloud regions classified as buildings using different statistical
methods (in particular likelihood function maximization). After a geometrical adjustment,
the primitives were “merged” into a plausible model.

Verma et al. [14] also used a statistical approach, by building a dual graph from the roof
segments. However, this technique only worked for planar roof models.

1in the means of reduced number of facets
2the 2D grid is represented by an image
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Figure 1.1. Workflow of the proposed method

1.3 A brief description of my proposed reconstruction
algorithm

The workflow includes four steps as illustrated in Figure 1.1. First, the point cloud is clas-
sified using an unsupervised method (presented in Chapter 3), distinguishing four different
classes: ground, building, vegetation and clutter.

In Section 3.1, the point cloud regions classified as buildings are divided into several parts
in order to reduce the complexity of the further steps. Each part of the cloud will contain a
reduced number of points belonging to a single complex rooftop.

The proposed algorithm approximates each rooftop by planar shaped faces. These planar
roof segments are extracted by a robust method detailed in Chapter 4. The points of a roof
component determine a plane, which is calculated through minimizing the sum of squared
distances of the points from the plane.

The next step consists in generating a 3D skeleton model for each building by detecting
the roof’s so called feature lines. Before exactly defining the feature lines let us introduce the
concept of inner and outer edges. Inner edges lie alongside the connection of two neighboring
faces of the roof, and they are determined by intersection of the neighboring planar roof
components. Outer edges are intersection lines of the vertical walls and the roofs. We note
here that in the airborne LiDAR point clouds, we have usually no reflection from the vertical
walls, therefore outer edges are calculated through image processing techniques.

These two types of boundary lines are called as feature lines, which will form together a
three-dimensional skeleton model, reflecting the main characteristics of the roof’s shape. As
illustrated in Figure 1.1, the final three-dimensional model is made of several, approximately
planar shaped polygon meshes built by triangulating the endpoints of the roof segments’
feature lines.



Figure 1.2. Demonstration of the convex hull problem as a
result of Delanuay triangulation. The blue dots represent the
points of this roof segment. The light magenta areas describe
the true concave shape of the roof component, in which all tri-
angles have at least one point in their interior. Green triangles
do not contain any points but they are proposed to take part in
the segment’s polygon approximation, in order to fill in the mi-
cro concavities (holes, hollow parts) alongside the rough edges.
The whole colored area highlights the convex hull of the shapes,
where turquoise triangles form the concave bay (large concave
area) needed to be eliminated from the final mesh.

To obtain a more realis-
tic model, further correction
modules are designed especially
for handling concave triangu-
lation problems described in
Chapter 6.

Concave shaped roof seg-
ments appear frequently, how-
ever several well established tri-
angulation methods, such as
the used Delanuay triangula-
tion3 provided by CGAL [38],
generate triangle meshes on
the whole convex hull of the
given points4. Consequently, as
shown in Figure 1.2, irregulari-
ties on the roof sections’ bound-
aries will be filled in concealing
the rough edges.

At the same time, large
concave areas (the turquoise
field in Figure 1.2), which con-
stitute important architectural
features of the building, will
also be filled in. This second
effect means a severe data loss,
therefore, I designed a proce-
dure (detailed in Section 6.2) in which triangles lying on the concave parts of the mesh
will be erased preserving the smooth boundaries. The procedure is based on a probabilistic
graphical model described in Section 2.1.

3described in detail by Gallier et al. [31] in Section 8.3 Delaunay Triangulations
4“there is an intimate relationship between convex hulls and Delaunay triangulations”, pronounced by

Gallier et at. [31] in Section 8.4 Delaunay Triangulations and Convex Hulls



2. Used mathematical tools and
algorithms

2.1 Markov Random Field
A Markov Random Field (MRF) is probabilistic graphical model, consisting of a set of
random variables and a Markovian dependency model described by an undirected graph1. A
Markov Random Field resembles a Bayesian network2 in its representation of dependencies,
but the main differences are that Bayesian networks are directed and acyclic, whereas Markov
networks are undirected and may be cyclic.

MRFs are often used to model images, point clouds, triangle meshes because all these
objects can be interpreted as a regular or irregular undirected graph3 in which Markov
properties can be assumed. Markov properties4 ensure that the random variable assigned to
a vertex depends only on random variables assigned to neighboring vertices. In other words
two vertices are linked to each other only if the distance5 between them is small enough.

2.1.1 Definition6

Let S be a finite set representing the vertices of an undirected graph G = (S,E). Let
Ω = (Ωs)s∈S be a family of random variables defined on the set S, in which each random
variable Ωs takes a value ωs ∈ L, which means that every site s ∈ S is assigned variable Ωs.
The family Ω is called a random field.

We use the notation Ωs = ωs to denote the event that Ωs takes the value from a prelim-
inary defined domain ωs and the notation (Ωs1 = ωs1 , . . . ,Ωsm = ωsm) , si ∈ S to denote the
joint event. For simplicity, a joint event is abbreviated as Ω = ω, where ω = {ωs1 , . . . ,ωsm}
is a configuration of Ω corresponding to a realization of the field. For a discrete label set
L, the probability that random variable Ωs takes the value ωs is denoted P (Ωs = ωs), ab-
breviated P (ωs) unless there is a need to elaborate the expressions. The joint probability
P (Ωs1 = ωs1 , ...,Ωsm = ωsm) is denoted P (Ω = ω) and abbreviated P (ω).

1for more information see [21], in Chapter Markov fields on graphs, pgs 24-34
2Stan Z. Li et al. [20] in Section 2.12 Graphical Models: MRF’s versus Bayesian Networks
3Stan Z. Li et. al [20] on pg 23., Lavoué et al. [19]
4described by Chapman et al. [23] in Section 2.2.2 Markov properties of GMRFs, Stan Z. Li et al [20] in

Section 2.10 Strong MRF Model,
5in our case Euclidean distance
6definition given by Stan Z. Li et. al [20], pgs 24-26



Let us generate a neighboring system N = {Ns |s ∈ S} from the undirected graph G =
(S,E), so that s ∈Nr, r ∈Ns and {s,r} ∈ N if and only if s,r ∈ S and (s,r) ∈ E.

Definition. Ω is said to be a Markov Random Field on S with respect to G if and only if
the following two conditions are satisfied:

P (ω)> 0, ∀ω ∈ Ω (positivity) (2.1)
P (ωs |ωS\{s}) = P (ωs |ωNs) (Markov property) (2.2)

where ωS\{s} denotes the set of labels at the sites in S \{s}, and ωNs = {ωs |s ∈Ns} stands
for the set of labels at the sites neighboring s.

Condition 2.2 means that an Ωs random variable is conditionally independent of all other
non-adjacent variables given its neighbors. In other words:

Ωs ⊥⊥ Ωr | ΩNs ∀s ∈ S, r ∈ S \{i}\Ns

As a consequence, the following conditions also hold:

Pairwise Markov property: Any two non-adjacent variables are conditionally indepen-
dent given all other variables:

Ωs ⊥⊥ Ωr | ΩS\{s,r} ∀s,r ∈ S, (s,r) ∈ E

Global Markov property: Any two subsets of variables are conditionally independent
given a separating subset:

ΩA ⊥⊥ ΩB | ΩC , A,B,C ⊂ S

where every path from a node in A to a node in B passes through C

2.1.2 Segmentation with MRF
Markov Random Fields are very useful in classification problems, especially in image and
video processing, 3D point cloud and triangle mesh labeling due to the fact that many of
these problems can be handled by graph based approaches7.

In fact, a classification problem consists in determining the optimal realization of the
field Ω. The optimal realization can be described by the label mask ωopt = {ωs |s ∈ S} whose
probability meets global maximum of the previously defined probability function, by using
various observed features x = {xs |s ∈ S} about the graph G. If the space of all possible
configurations is denoted as Γ = L|S|, the optimal labeling can be obtained as

ωopt = argmax
ω∈Γ

P (ω |x)

7Stan Z. Li et al [20] in Section 1.1 Labeling for Image Analysis (image labeling), Rui Hu et al. [29] (video
processing), Lavoué et al. [19] (3D mesh segmentation), Börcs et al. [2, 3] (point cloud classification)



Applying the Bayes’ rule we get:

ωopt = argmax
ω∈Γ

p(x |ω)P (ω)
p(x) = argmax

ω∈Γ
p(x |ω)P (ω)

= argmin
ω∈Γ

(
ln p(x |ω)−1− ln P (ω)

) (2.3)

Prior model

The joint probability P (ω) constitutes the a priori knowledge on the model (i.e. knowl-
edge before the observation) . In 1971, Hammersley and Clifford theoretically proved that
Markov Random Fields show to be equivalent to Gibbs distributions [24]. Consequently, the
join probability P (ω) can be modeled by a Gibbs distribution:

P (ω) = Z−1× e−
1
T ·λEs(ω)

hidden layer
(ωs)

observed feature
layer (xs)

Figure 2.1. Inordered dependency graph of a
Markov Random Field. The small blue nodes
are observed, the black nodes are hidden.

where

Z =
∑
ω∈Ω

e−
1
T ·λEs(ω)

is a normalizing constant, λ is a smooth-
ness coefficient, T is a temperature fac-
tor being assumed to be 1 for simpli-
city. Es(ω), henceforth denoted as Es8,
is the so called smoothness energy,
a kind of measure of the classification’s
smoothness, favoring homogeneous re-
gions. With reference to Kolmogorov
et al. [25], the smoothness energy is de-
fined as follows:

Es =
∑

{s,r}∈N
V (ωs,ωr) (2.4)

where V is a user defined cost function, hence called smoothness cost. Let V (i, j) be
equivalent with the Kronecker delta δ(i, j) = δ(i− j) = 1 if and only if i= j.

Observation model

The observation or data model represents the knowledge of some kinds of indirect infor-
mations about the field’s realization, which is given by the following probability:

p(x |ω) =
∏
s∈S

p(xs |ωs) (2.5)

Considering the negative logarithm of 2.5 we get:

ln p(x |ω)−1 =
∑
s∈S

ln p(xs |ωs)−1︸ ︷︷ ︸
d(xs | ωs)

= Ed (2.6)

8“s” stands for smoothness, not to be confused with s ∈ S



where xs values constitute the observed features on each s vertex (eg. pixel values of an
image), d(xs | ωs) are called data costs or data terms, and their sum over the set S gives
the data energy (Ed).

Substituting equation (2.6) into equation (2.3) we get the final energy function, which
should be optimized to obtain the best ωopt global labeling:

ωopt = argmin
ω∈Γ

∑
s∈S

d(xs | ωs) +λ
∑

{p,q}∈N
δ(ωs,ωr)

= argmin
ω∈Γ

(Ed+λEs) (2.7)

To conclude, the optimal labeling is a configuration which minimizes the energyE = Ed+λEs.
Further challenges rest upon defining the d(xs | ωs) data costs, but this problem is very task
specific, therefore I will detail this issue in Section 6.2 in which I have used this method for
a triangle mesh classification.

A typical example for using MRF models is foreground-background segmentation of a
grayscale image. Here the pixels correspond to the vertices of the graph (S). The edges
of the graph (E) are represented by the neighboring pixel pairs, consequently every pixels’
label (whether belongs to the background or foreground) depends on their neighboring pixels’
label.

Since ωopt ∈ Γ, the number of possible realizations is |L||S|, thus finding the global opti-
mum is a non-polynomial problem. However many relaxation algorithms (simulated anneal-
ing, iterated conditional modes, etc.) are devoted to find the optimal or at least an efficient
sub-optimal solution in an efficient way.

To find the quasi global minimum of the energy function we used the graph cuts based op-
timization technique developed by Olga Veksler, using the libraries provided by Yuri Boykov
and Vladimir Kolmogorov [25–28].



3. Point cloud classification

In this section I will present the initial classification method based on the work of Börcs and
Horváth et al. [1] for the Students’ Scientific Competition and the method introduced by
Lafarge et al. [4, 5] and Zhou et al. [13].

A point cloud is a set of three dimensional points, which are described by their (x,y,z)
coordinates. Besides its coordinates, each point is assigned further parameters provided by
the aerial LiDAR scanner. One of these parameters constitutes the number of returns of the
radiated laser ray (nr) that yields information about the object’s surface. Each return is
stored as a separate point and it is labeled with the ordinal number (k < nr) of its arrival,
representing the second mentioned parameter, the return number.

Figure 3.1. In this case of multiple
return, a single laser ray will pro-
duces 5 returns resulting 5 points.
The nr = 5 for all 5 points, while
k = 1,2,3,4,5 is the ordinal number
of their return.

As we have mentioned in Section 1.1, when
multiple returns occur, the first reflections belong
to objects in higher altitudes with irregularities
like tree canopy (nr > 1 and k 6= n). By means
of these two attributes, vegetation could be dis-
tinguished beside clutter. Vegetation and clutter
make up the so-called outliers. Clutter regions
consists of sparse cloud sections constituting ver-
tical objects like building walls, and characteristic
lines, so called power lines like building edges or
power cables in higher altitudes.

Since vegetation constitutes an important part
of the reconstruction, we have to extract vegeta-
tion from the outliers. First, sparse cloud section
of clutter can easily be excluded, considering the
number of neighboring points within a given ra-
dius (R). However building walls often contain
small oblong cloud pieces below each other repre-
senting the shoulders of the vertical walls at the
level of the different buildings floors. These ob-
long segments, and other power lines differs from
tree canopies in their scatter characteristics. Con-
sequently vegetation can be excluded considering
the cloud’s local covariance.

Inlier points are well-structured dense cloud
sections containing approximately horizontal reg-
ular objects with large area such as roofs, ground



or larger vehicles. After we have extracted the ground points using the random sample
consensus (RanSaC)1 optimal plane fitting method, we are able to calculate the elevation
relatively to the ground. Objects close to the ground level are likely to be vehicles which is
out of our interest, therefore we concentrate on higher level cloud sections.

3.1 Extracting connected roof components
In this step we separate connected building blocks in order to reduce the roof segmentation’s
complexity and increase its robustness exploiting local regularities. To extract building
blocks, Lafarge et al. [4] used image processing algorithms analysing the cloud’s planimetric
projection, however this task does not require long processing time even if we do it in the
three-dimensional space.

Therefore, we use a 3D region-growing (flood fill) algorithm starting from an arbitrary
point in the roof cloud. After the flood fill stops we extract the retrieved cloud segment, and
we start again with a new arbitrary seed point until the remaining cloud becomes empty.

Figure 3.2. Each connected roof compenent is
illustrated with a specific color

This procedure results in several point
clouds, where each contain a single roof
section. These components are illus-
trated in a common cloud with differ-
ent coloring in Figure 3.2. In order to
obtain a reasonable processing time we
used a kd-tree structure2, so that the
neighborhood searching algorithm oper-
ates in O(n logn) fashion. As a result,
we obtain point clouds containing a re-
duced number of points.

In fact, this task can also belong
to the point cloud classification module
considering its functionality. We will ap-
ply a further filtering operation, which
extracts small components, like insignifi-
cant building fragments, remained cloud
pieces from the previous classification (eg. not recognized tree canopies).

More specifically, the core algorithm is processed several times on each building block
whose measurement data set is smaller than 50000 points but larger than a given value, in
order to avoid noise reconstruction.

1a detailed description is available by Börcs and Horváth et al. [1]
2implemented by Point Cloud Library et al. [37] (http://www.pointclouds.org/)



4. Roof segmentation

In this section we are going to extract planar roof segments on the basis of their orientation.
First of all, we estimate a surface normal at every point of the roof cloud using the Point
Cloud Library’s [37] implementation of Moving Least Squares (MLS) algorithm (Figure
4.1a). Since we know every point’s normal, we apply a clustering algorithm to detect the
representative directions in which the planar roof components face (black vectors in Figure
4.1b). These few directions will represent separate clusters with different labels. As Figure
4.1c illustrates, every point will be assigned an appropriate label (i.e. color), depending the
point’s normal. As a result, the points of every roof segment having similar orientation will be
given the same label. Afterwards, a region-growing is applied on the cloud knowing the labels
that the roof points belong to. In Section 4.5, we are going to apply a smoothing algorithm to
eliminate insignificant, small segments and other noises generated by region-growing (Figure
4.1c). Consequently, every planar continuous roof component will be distinguished by a
unique segment ID, and then we will be ready to perform the polygon approximation for
every roof segment, which step is detailed in the next chapter.

(a) (b) (c) (d)

calculating
normals (MLS)

shifting normals
to origin

extract dense
regions

(filtering)

detect main
directions
(clustering)

assign every
point a label

roof seg-
mentation

(region-growing)

smoothing
(KNN)

Figure 4.1. Workflow of roof segmentation.



4.1 Shifting normals into origin
As we have mentioned in this chapter’s introduction, the roof classification’s assembly com-
mences with an MLS algorithm that estimates a surface normal at each point through
analysing its neighborhood.

Henceforth, every p point will have six parameters: the ~rp = (xp,yp, zp) coordinates, de-
scribing its position, and ~np = (nxp,nyp,nzp) coordinates of its normal vector, where ‖~np‖= 1.
If we consider ~np as a three-dimensional Np(nxp,nyp,nzp) point, Np is located on the surface
of the unit sphere, since ‖~np‖= 1. Then we store each Np point in a new cloud obtaining a
spherical, origin centered cloud, which is shown in Figure 4.1b.

To rephrase, we shift every unit length normal to the origin and we consider their end-
points which together consolidate a cloud around the unit sphere. This cloud can provide
us later useful global statistical information about the normal vectors over the whole scene.

In the following step, we remove sparse cloud sections from the spherical cloud. The
remained dense regions, shown in Figure 4.1b, correspond to the dominant normal directions
of the original point cloud, which may indicate different planar surface components.

4.2 Clustering
A cluster is a group of similar elements gathered or occurring closely together. In our
case, a cluster is defined as a set of points located very close to each other being arranged
within a relatively small area. Furthermore, we introduce the concept of cluster point, which
represents a particular cluster, and it is determined as the arithmetic mean position of all
the points in the same cluster.

In order to retain the main directions, we estimate the cluster points from the dense
regions of the spherical cloud. The task is not trivial in view of the wide range of types of
the occurring normals’ cloud, which are demonstrated in Figure 4.2. According to a human
observer, the single red cloud section in Figure 4.2b can be considered as a single cluster but
also as two, or even four overlapping clusters. On the other hand, the cloud in Figure 4.2d
features five significant directions, but in addition, small dense sections appear there which
can also be presumed to be separate clusters.

(a) (b) (c) (d)

Figure 4.2. A few examples of normals’ clouds. The green points constitute the original normals’ cloud,
from which dense regions, being colored red, are extracted. The filtering consists in removing every point
having less neighbors within a given radius R than a given threshold K. The filtering algorithm is adaptive
in a sense that R is inversely and K is directly proportional to the size of the cloud (i.e. number of points
in the cloud).



In order to detect cluster points, we will follow two different strategies. First, we will
proceed an algorithm which operates on the normals’ cloud in the three-dimensional space,
described in Section 4.2.1, in which we will try to extract from all dense regions at least
one separate cluster even if this will result in several needless cluster points. As for our
second approach, we project the filtered normals’ cloud onto the xy plane, as proposed in
Section 4.2.2. Then we use morphological operations on binary images to find as few cluster
points as possible.

4.2.1 Finding cluster points in 3D
This step is an iterative algorithm which processes on the filtered cloud of normals. In the
initial stage, we have no detected cluster points, and every normal point is independent in the
sense that they have not been given any label yet (i.e. do not belong to any of the existent
clusters). Then the algorithm iteratively generates new cluster points with new labels. In a
single iteration, we choose randomly an independent point from the filtered cloud of normals.
The chosen point will be a new cluster point introducing a new label, which will be assigned
to all independent points in the new cluster point’s neighborhood within a given radius
called deviation. The algorithm repeats these steps until no independent points are found.
A pseudocode of the proposed clustering algorithm is shown below.

1 function clustering_in_3D (normals_cloud)
2

3 cluster_points = empty_list;
4

5 % number of independent points
6 count = size(normals_cloud);
7

8 while count > 0
9 new_point = a random point from normals_cloud;

10 new_label = a random integer from 1 to 16777215 (0xffffff);
11

12 cluster_point.append(new_point);
13

14 for p in normals_cloud
15 if (p.label = null) and dist(p, new_point)
16 p.label = new_label;
17

18 % updating the number of independent points
19 count = count − 1;
20 end
21 end
22 end
23

24 return cluster_points
25 end



4.2.2 Finding cluster points by projection
First of all, the cloud of the normals is projected onto the xy-plane in the following way: if a
point’s projection hits a cell on the 2D grid, that cell will be given value 1, otherwise value 0.
As Figure 4.3e demonstrates, this projection returns a binary image containing black spots
(objects) corresponding to the dense cloud sections of normals’ cloud in Figure 4.3d.

As discussed earlier, our objective is to detect as few cluster point as possible, therefore,
we eliminate small black objects using a few morphological operations, as illustrated in Figure
4.4. Then a morphological shrinking1 is adopted to obtain each black object’s centroid. The
challenge is that on the boundaries (near the unit sphere’s “equator” at z = 0, see Figure
4.3a) the shapes of the objects deforms significantly during the projection. In order to avoid
this pitfall, we transform these (x,y,z) vectors to a spherical (ϑ,ϕ,r) coordinate system,
where r marks the point’s distance from the origin, ϕ points the angle between the z-axis
and the plane’s normal, respectively ϑ indicates the normal’s orientation on the xy-plane.
Next we shrink this spherical cloud around the sphere’s north pole (i.e. we decrease the
value of ϕ by scaling it). Since r =

√
x2 +y2 + z2 = 1, the transform should look like the

following:
ϕ= arccos(z)

ϑ= sgn(y) arccos
(

x

sinϕ

)

ϕ= ϕ

A
,

(4.1)

where A ∈ (1,∞) is a scaling factor. The inverse transform into Cartesian space lends its
shape:

K =
(

sin π

2A

)−1

x=K sinϕ cosϑ
y =K sinϕ sinϑ
z = cosϕ,

(4.2)

where K is a normalization factor, that scales the spherical sector from region[
−sin π

2A,sin
π

2A

]
×
[
−sin π

2A,sin
π

2A

]
×
[
cos π

2A,1
]
.

into

[−1,1]× [−1,1]×
[
cos π

2A,1
]

The obtained cloud of normals can easily projected. After the morphological shrinking,
we elevate and transform the remained black points into Cartesian space. Finally the cluster
points are retained.

1More description available et al [16], pgs 411-414



(a) The proposed transform, which makes the cloud of normals more flat. The original shape of
the cloud (left) is shrinked adopting the transform in eq. 4.1 (middle), and scaled using the inverse
transform in eq. 4.2 (right). We can compare the contour plots of the first and third mesh. In the
first contour plot, the concentric circles are lying near the “equator” with a high density. On the
third plot the circles are lying in an approximately uniform distribution around the origin.

(b) normals’ cloud (c) transformed cloud (red) (d) dense regions

(e) projection (f) morphological operations (g) clusters in 3D

Figure 4.3. A detailed illustration of clustering.



(a) The clustering algorithm, which processes in 3D, has detected 21 cluster points.

(b) After the projection we are able to operate on the image, so that the irrelevant objects disappear.
The first figure constitutes the binary image of the cloud’s projection in which five large objects
can be found surrounded by smaller spots. We generate a morphological closing to merge these
small spots into the large black areas (second image). Afterwards, we proceed a morphological
erosion to eliminate the remained irrelevant black items (third image). The previous step necessity
depends on the projection of the filtered cloud, because if the dense regions corresponding to the
main directions are relatively small, this step will erase the respective black objects. Finally, a
morphological shrinking is adopted which shrinks each black object into a single pixel which are
highlighted in the last figure. In contrast to our first approach, this method correctly detects only
5 cluster points corresponding to the five main directions.

Figure 4.4



original and
filtered cloud
of normals

1. method
extracting

cluster points
in 3D

2. method
morphological
operations

without erosion

3. method
morphological
operations in-
cluding erosion

Figure 4.5. A comparative study of the two different clustering techniques on further exam-
ples. The first column presents the original (green) and the filtered normals’ cloud (red).
The second column represents the cluster points calculated in 3D. The third and fourth
columns illustrate the cluster points determined by the binary morphological operations.
The difference between the last two columns is that in the third column we missed out the
step of morphological erosion. In case of the sample in the first row, the morphological ero-
sion eliminates a few objects corresponding to the significant directions, therefore the second
method proved to be the best choice. On the other hand, in case of the second sample, too
many cluster points are found without erosion, hence we chose method no. 3. Concerning
the last sample, we cannot use shrinking because the large, continuous oblong shaped object
will be eroded into a single pixel representing a single cluster, so we use the first method
here.



4.3 Roof labeling
In the following, our task is to assign a proper label to each roof point considering the surface’s
normal vector at the respective point. However, there are cases (Figure 4.5 - third example)
when several cluster points are extracted from a single dense region of the normals’ cloud,
which can cause problems. In particular, if we assign each roof point the nearest cluster
point’s label, the points of a certain roof component with a specific orientation can belong
to different labels, due to the fact that small differences in direction can occur even among
points of the same segment. To handle the problem, we designed a simple procedure, in which
every point will be assigned the label of the first found cluster point, whose distance from
the respective roof point is smaller than a given threshold, called tolerance. The distance is
Euclidean and is calculated in the following way:

d=
√

(nxp−xl)2 + (nyp−yl)2 + (nzp− zl)2,

where ~np = (nxp,nyp,nzp) is the normalized normal vector and ~pl = (xl,yl, zl) is the cluster
point belonging to label l. If the tolerance is high enough, the roof points with small differ-
ences in their corresponding normals will be given the same label. The main aspects of the
algorithm are presented in the following pseudocode.

1 function roof_labeling(cloud, cluster_points, tolerance)
2 for each point in cloud do
3 min_dist = inf
4 min_label = 0
5
6 -- itereting through all possible cluster points
7 for each cluster_point in cluster_points do
8 dist = distance(point.normal_xyz, cluster_point.xyz)
9

10 -- if the distance is less then the tolerance,
11 -- the cluster point has already been decided,
12 -- even thought there could be closer cluster points
13 if dist < tolerance then
14 point.label = cluster_point.label
15 min_label = 0
16 break
17 end
18
19 -- in case when no close cluster point is found,
20 -- we store the label of the nearest cluster point
21 if dist < min_dist then
22 min_dist = dist
23 min_label = cluster_point.label
24 end
25 end
26
27 -- if no close cluster point was found, the actual point
28 -- is assigned the label of the nearest cluster point
29 if (min_label != 0) then
30 point.label = min_label;
31 end
32 end
33 end

Figure 4.6. Pseudocode of the roof clustering presuming the cluster points. Parameter cloud
represents the filtered normals’ cloud



4.4 Segmentation
The segmentation itself is a conditioned flood-fill process in which we are looking for contin-
uous cloud sections with points assigned the same label. Let us call these continuous cloud
sections roof components or roof segments. Since the points belonging to a certain
roof component have the same label (i.e. their corresponding normals represent the same
orientation), the roof segments are approximately planar shaped cloud segments, henceforth
we will often model them by their approximated plane equation and centroid, especially
in geometrical calculations. A roof component’s centroid constitutes the arithmetic mean
of its points, and its optimally (in least mean square fashion) estimated plane equation is
determined by Principal Components Analysis (PCA). To distinguish the roof segments we
will assign each component a unique ID (represented by a color value in Figure 4.7)

4.5 Correction by local features
The segmentation produces a slight noisy result. The problem is that small roof segments are
also detected, since we have not yet prescribed any minimum requirements concerning their
size (number of points contained). In view of the fact that a specific point’s label depends
mainly on it’s neighbors (i.e. two points situated far from each other are to be considered
conditionally independent points), the noise could be reduced using K-nearest neighbors
(KNN) algorithm. According to Lavoué et al. [19] the previously mentioned algorithm could
be replaced by a smoothing algorithm based on MRF in order to improve the correction’s
performance. Since, the above mentioned KNN performs sufficient well in our considered
test data, we decided to schedule the implementation of Lavoué’s technique et al. [19] only
for future work.

Figure 4.7. Roof segmentation output in a relatively large point cloud. The separate colors
mean different IDs. We can see, that the great majority of the corresponding roof segments
are colored with a single color (their points are given the same unique ID)



5. Reconstruction

This system part implements a key element of the workflow, because here we will generate
a complete 3D model from the cloud regions segmented as roof. The reconstruction consists
in triangulating every planar roof segment using the detected boundary lines.

5.1 Generating 3D skeleton
In this section I aim to present my approach of generating a 3D skeleton model from the
previously segmented roofs cloud. First, inner edges will be computed, then a projection is
adopted intending to detect outer boundary lines using OpenCV’s Canny edge detector. The
edge detector identifies points in a digital image at which the pixel values changes sharply.
The detected points are marked black in the output image having white background. After
elevating the black points of the Canny edge image we retain an edge cloud that will need a
further tangent estimation considering each point’s neighbors. Knowing the tangent vectors
of the boundary points, a line fitting step is proceeded in a straightforward way using a
common principal component analysis (PCA) technique.

5.1.1 Plane intersections
Before all, we have to compute the equations of all planes representing each roof segment.
This can be fulfilled using PCA, that will fit a plane to the respective roof points in a
least mean square (LMS) manner. Afterwards, inner edges are computed as the intersection
of two neighboring planes. There are cases when we cannot rely on the intersection, in
particular, if the two segments are nearly parallel. Therefore, we select points from the
common boundary of the two segments and fit a line to them. This common line guarantees
the model’s watertightness, because it will take part in triangulation of both roof-segments,
therefore the two polygons, representing the two roof segments, will interlock.

5.1.2 Outer edge detection
Outer edge points could be detected in various ways. For example, the Point Cloud Library
provides a boundary detection procedure based on 3D techniques. Lafarge et al. [4,5] has also
been chosen a 3D way to detect edges by minimization of the squared error. My approach,
consists in projecting the cloud onto the xy plane generating a grayscale pixel grid (image).
This mapping is also called as planimetric projection.



Figure 5.1. Outer edge de-
tection’s assembly - projec-
tion - median filtering - ele-
vation into the 3D space and
segment fitting.

The value of each pixel in the projected image, con-
stituting the projection of the corresponding point, is the
linear transformation of the z value of the respective point.
In cases when no points are projected into a specific pixel,
its value remains 0 (ground level). Henceforward, we call
this projected image as z-image.

As Figure 5.1 illustrates, the projection of the cloud
does no cover the whole area on the image, therefore we
fill in the white pixels using a median filter1. Afterwards,
an edge detection is applied on the filtered z-image, in
order to identify the edges lying between ground and roof
points.

Our objection is that elevation differences below a
given minimal threshold should not be marked as an edge,
otherwise many spurious lines would be generated in the
following steps, which would produce a highly complex
and unmanageable mesh.

At the same time, each relevant outside wall should
be detected. Consequently, we have to design a transform
that scales the cloud, so that its projection underlines the
difference between the ground level and roof level. To
obtain this, the difference between the values of projections
of the ground points and the lowest level roof points should
be high enough for the sake of being noticed.

Edge elevation

After the application of the Canny operator, we map the
black pixels of the edge image to the real 3D space applying
the inverse of the projection transform. In fact projection
is not an invertible operator, but now the the elevation val-
ues are stored in the z-image. This will result a new edge
cloud indicating the edge points of the roofs in the cloud.
We compute the covariant matrix of the neighbors of each
point of the elevated edge cloud to retrieve the eigenvec-
tor of the highest eigenvalue (the direction followed by the
neighboring points). In other words, we need to know the
tangent vectors of the cloud in each point of the cloud.

Figure 5.1 illustrates the workflow of the outer edge
detection. The 1st figure illustrates the original 3D point
cloud, which is projected onto the xy plane (2nd figure).
We apply a median filtering on the z-image (3rd figure),
then edge detection is applied (4th figure) which is elevated
into the 3D space using the pixel values of the z-image. A

1a detailed descriptions is available at [16], pgs. 271-275



further segment fitting step is applied on the retained edge cloud resulting in the 3D outer
edges, as illustrated in the 5th image of Figure 5.1.

5.1.3 Segment fitting by minimizing squared error
In the following we have to fit lines to the elevated edge points. Our first approach was to
cluster the edge points by their three-dimensional direction. We used the same technique that
we have mentioned as a solution for roof segmentation, apart from considering each point’s
tangent vector in stead of their normal’s. This realization resembles a two dimensional
Hough transform in performance. Long segments have been recognized well, but shorter
ones have been punished. To avoid this conflict I have implemented a second approach that
collects neighboring points whose tangents are close to each other (i.e. a conditioned flood-fill
algorithm without an anticipatory clustering on their direction vectors).

5.2 Mesh generation from skeleton model
Knowing the edges of each roof segment, we loop over the roof segments and apply the
triangulation one by one. Before triangulating, we transform the roof component, so that
the plane fitted to it becomes equivalent to the xy plane, then we project outer edges onto
the roof’s plane (now xy plane). With these transforms the 3D triangulating problem has
just been reduced to a 2D triangulation problem. The triangulation itself that we used was
a non-constrained Delaunay triangulation applied on the endpoints of roof segment’s edges.
The implementation we used triangulates on the whole convex hull of the edge endpoints,
which means, that the concave parts of the roofs are erroneously filled with false triangles.
Therefore, I have developed an algorithm which analyzes the concavity of each roof segment
and refines the polygon if the difference between the convex hull and the desired shape
is relevant. Using the proposed improvement, even concave roof parts can be correctly
reconstructed. Since handling the concave problem is a key contribution of my thesis, I
dedicated the whole Chapter 6 to this issue.



6. Solutions for concave problem

Figure 6.1. The input of the
concave roof reconstruction - the
point cloud (blue) of a concave
roof segment end its inner (red)
and outer (green) boundaries

In this chapter I propose a new method for two-dimensional
concave polygon triangulation using a Markov Random
Field. The algorithm refines an initially generated trian-
gle mesh on the whole convex hull of the polygon by elimi-
nating the invalid triangles appearing on the external parts
of the shape. At the same time, the procedure preserves
smooth boundaries of the final mesh even if the input poly-
gon contains rough edges. Before introducing the proposed
algorithm (Section 6.2), we also demonstrate the limita-
tions of a publicly available solutions for the same problem,
called PSLG (Section 6.1).

The algorithms of this chapter are used for reconstruct-
ing the concave shaped roof components from their corre-
sponding point cloud sections, which have been extracted
by the algorithm proposed in Chapter 4, and from their boundary lines detected from the
source cloud by the procedure detailed in Chapter 4. The illustration in Figure 6.1 highlights
the input of our proposed concave roof reconstruction.

6.1 Concave problem with Triangle Software
Triangle Software provides a 2D polygon triangulation technique as a generic solution for
the concave problem. Triangle is an open-source two-dimensional quality mesh generator
and Delaunay triangulator, winner of the 2003 James Hardy Wilkinson Prize in Numerical
Software1.

Triangle can generate a constrained Delaunay triangulation (CDT) on a Planar Straight
Line Graph (PSLG), which can be interpreted as a bounded, continuous 2D region with
possibility of containing arbitrary number of holes and concavities. Furthermore, edges
representing the PSLG’s boundaries are allowed to intersect each other.

A constrained Delaunay triangulation operates within the bounded region of a PSLG,
hence the concave parts at the outer boundary will not be triangulated. With the purpose
of generating such kind of triangulation, first a PSLG has to be generated knowing the edges
of the given roof segment. Assuming that our roof components do not contain holes we can
interpret PSLG as an arbitrary polygon with a reasonable prospect that its edges intersects
one another.

1prize awarded by Argonne National Laboratory, the National Physical Laboratory, and the Numerical
Algorithms Group in honor of the outstanding contributions of Dr. James Hardy Wilkinson to the field of
numerical software (http://www.mcs.anl.gov/research/opportunities/wilkinsonprize/index.php)



Figure 6.2. Concave problem, points of a concave roof segment (left), triangulation on
the whole convex hull (middle), triangles on the concave part removed by an a stochastic
algorithm described in Section 6.2 (right)

(a) original edges (b) triangulation on convex hull (c) generated polygon

(d) concave triangulation (e) eliminating bad triangles (f) outer sides

Figure 6.3. A demo algorithm using Triangle software on a fictive roof segment assuming
that outer edges are already known. First we have tried a common Delaunay triangulation on
its convex hull (b). Next we generate a polygon from its side edges as described in Section
6.1.1 (c). We produced a PLSG triangulation on the polygon with Triangle retrieving a
rough polygon mesh (d). After eliminating triangles with no neighbour triangles (triangles
connecting just by one corner) we obtain a simplified polygon mesh (e) with regular outer
sides (f).



(a) detected edges (b) generated polygon (c) triangulation with Triangle

1 function generate_polygon(in edgelist, out polygon)
2

3 -- chosing one of the two endpoints (eg. ’a’) of the first edge
4 -- this will be the reference point at the first iteration
5 reference = edgelist.first_edge.endpoint_a
6

7 while (reference exists)
8 -- finding the closest free endpoint to the actual reference point
9 new_endpoint = closest free endpoint to reference

10

11 -- appending the previously selected edge represented by its endpoints
12 -- having the assurance it exists
13 polygon.append( Edge(reference, reference.pair) )
14

15 -- changing the reference to the other endpoint of the newly selected edge
16 reference = new_endpoint.pair
17 end
18 end

(d) A brief pseudo code of polygon generation from the detected edge segments.

(e) The generated shape includes mi-
cro concavity, that will result in a frag-
mented model.

(f) An illustration of the weakness of the PSLG method
on a real roof segment. The generated mesh has very
rough horizontal walls that can not be accepted.

Figure 6.4. Results of polygon generation and PSLG triangulation on real problems



6.1.1 Experiments with the PSLG method
The needed polygon is to be produced from the topologically sorted boundary lines of the
respective roof segment.

Let us call free those edges that do not take part in the polygon yet. Consequently an
endpoint is free if it belongs to a free edge. Now, we choose an arbitrary edge to be the first
side of the polygon. Next, in each iteration we find the closest free endpoint to last edge’s
endpoint in the polygon. The closest endpoint of the newly selected edge is linked to the
endpoint of the last edge in the polygon. In the next iteration we will produce the same
but now the reference point will be the non-linked endpoint of the newly selected edge. The
iteration is stopped when no free edges are found. In Figure 6.4d we can see a brief pseudo
code of the algorithm.

In fact the roof segments roughness and the irregular arrangement of the boundary lines
lead to fragmented polygons having several micro-concavities on the boundaries, thus the
observed results do not proved to be acceptable.

6.2 Concave problem - stochastic approach

Figure 6.5. 3D triangle
mesh and its correspond-
ing undirected (triangula-
tion) graph

As we have seen in Figure 6.4, the previously generated
shapes often show some degree of concavity, therefore they
are very fragmented resulting unappealing rough building
blocks. The convex hull has a little smoothing effect on
the 2D meshes concealing micro-concavities and boundary
irregularities.

In this section we aim to design an algorithm that pre-
vents convex triangulation on relatively large concave areas
(bays) but preserves smooth edges on other parts of the
mesh filling in the micro-concavities. Let us denote the set
of all triangles by S.

According to Gansner, Hu and Kobourov et al. [33] a tri-
angle mesh is defined by the included triangles (S) and the
neighborhood connections (N ) between them, hence it can
be modeled as an undirected graph (Figure 6.5) where each
triangle is considered as a separate vertex (s ∈ S), and each
neighborhood connection as an undirected link ({s,r} ∈N )
between two vertices (s,r ∈ S) corresponding to the neigh-
boring triangles. Furthermore, some of the triangles in the
mesh need to be deleted because they are lying on the concave parts of the roof segment. As
a consequence, we have to assign a random variable (Ωs) to each vertex that marks the fact
that the corresponding triangle needs to be eliminated or not. After classification, we call a
given triangle as relevant triangle, if it should be kept in the final mesh. These Ωs variables
are defined on the set of vertices (S), therefore they form a Ω = (Ωs)s∈S random field with
respect to N .



Markov property

In our case planar graph models can also be used, since the considered meshes are open2 (i.e.
they have at least three triangles having neighbors fewer then three), and do not contain
any wholes. Planar graphs3 can be drawn on the plane, so that their edges intersect only at
their endpoints. It is convenient to use them, since they satisfy the below constraints4:

• we have an upper limit for the number of edges: e≤ 3v−6, where e is the number of
edges and v is the number of vertices.

• the maximum number of vertices of a fully connected (complete5) sub-graph is 4.

With reference to Gansner, Hu and Kobourov et al. [33] (Lemma 1. on pg. 5.) we cannot
draw on the plane 4 triangles which are all connected to each other, therefore the maximum
number of vertices of a complete sub-graph is 3. Accordingly, the vertices of the graph are
usually connected with a reduced number of other vertices especially in their close proximity
(Markov property). Furthermore, we presume that every triangle’s label is conditionally
independent of any other non-adjacent node’s label, given the labels of all neighboring tri-
angles. With regard to Stan Z. Li et al. [20], Ω is said to be a Markov Random Field on S
with respect to N .
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Figure 6.6. Demonstration of the angle cost (α′s) = cos(ϕs)cos(ϑs)cos(π − ϕs − ϑs).
In the region R =

{
(ϕ,ϑ)

∣∣∣ ϕ,ϑ > 0; ϕ + ϑ < π
}
, α′s has its maximum (0.125) if

ϕ= ϑ= π
3 , and its minimums (−1) if one of its three angles tends to be zero.

2they are open 2-manifolds (Smith et al. [34] on pg. 14.)
3see definition given by Balakrishnan et al. [35] (Definition 8.2.1 on pg. 175.)
4see theorems and their consequences formulated by Balakrishnan et al. [35] in Section 8.3 Euler Formula

and Its Consequences
5see definition given by Balakrishnan et al. [35] (Definition 1.2.11)



Prior and observation model

As for the prior model, we used the energy function presented in Section 2.1.2. Regarding
to equation (2.4), the smoothness energy is defined as follows:

Es =
∑

{s,r}∈N
V (ωs,ωr)

where V implements again a smoothing constraints, using the Kronecker delta: V (ωs,ωr) =
δ(ωs = ωr). In case of a particular s ∈ S triangle, our observation model uses the
following descriptors:

ns : number of points projected into s
As : area of s

ϕs,ϑs : two arbitrary angles of s

Using these measures we will generate a single xs value for each triangle s, so that xs will
be approximately proportional with the likelihood of the fact that s constitutes a relevant
element in the concave triangulation, which should not be deleted from the final mesh. As
for the first feature, we calculate the density of the projected points in each triangle ( ns

As
),

and we divide the calculated value by a

K = max
si∈S

nsi

Asi

normalization coefficient, so that we obtain a density feature in the interval [0,1]. Let us
introduce the following notation for this descriptor (ρ stands for density):

ρs = 1
K
· ns
As
∈ [0,1] (6.1)

Next, we use our observation that bays (i.e. internal regions of the mesh which should
be likely eliminated) contain mainly acute-angled triangles, while micro concavities on the
boundaries of the open mesh consist of long and thin obtuse triangles. As a consequence,
we introduced a so-called angle cost that measures how much a given triangle is obtuse. Let
us define angle cost as the product of each angle’s cosine values in the triangle.

α′s = cos(ϕs)cos(ϑs)cos(π−ϕs−ϑs) ∈ [−1,0.125]

αs =
(

cos(ϕs)cos(ϑs)cos(π−ϕs−ϑs) + 1
)
· 1
1.125 ∈ [0,1]

As illustrated on the 3D plot in Figure 6.6, the angle cost gives its maximum value (0.125
without scaling), if the triangle is equilateral (ϕ= ϑ= π/3). Otherwise, the more a triangle
is acute, the more its angle cost tents to −1.

Finally, a joint fitness value, i.e. a pseudo probability is defined as the product of ρ and
(1−α), which indicates us whether, a given triangle is a relevant convex part of the mesh.
These xs = ρs · (1−αs) values will form our observed features.

However, during our experiments we perceived that excluding triangles just by their low
xs values using a given hard threshold can cause several false positive/negative triangles. In



other words, the designed feature (xs) is not enough in itself to decide whether a triangle
belongs to the concave parts of the mesh or not. To overcome this limitation, we started
to compare each triangle’s class label with labels in its neighborhood, hence we took the
advantage of the prior model. Just for illustration (Figure 6.7), let us color relevant triangles
red and triangles able to be skipped gray. This color can also be interpreted as a label marking
that the corresponding triangle is relevant or removable. If two or three neighboring triangles
are gray the actual triangle is likely to be gray too, especially when the nearby triangles have
larger area then the actual one.

For the ds(ωs) = d(xs | ωs) data cost I have chosen the following functions:
d(xs | Ωs = relevant) = f(1−xs)
d(xs | Ωs = removable) = f(xs) ∀ s ∈ S

where f(x) is the sigmoid function, operating as a soft threshold:

f(x) = 1
1 + e−n(x−x0) · (b−a) +a, f : [0,1]−→ [a,b]

with gradient n = 20, shift x0 = 0.5, offset and scale (a,b) = (0.2,2). Thereafter the data
model of the MRF has the following form:

p(xs | ωs) = e−d(xs | ωs)

Note that the above quantities define pseudo probabilities, since they are unnormalized.
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Using our defined prior and observation model, we can determine the posterior like-
lihood P (ω |x) of every possible global labeling over the triangle-graph, and we have no
other tasks but choosing the most probable global labeling that will point out the desired
(relevant) triangles. According to equation (2.7) in Section 2.1.2, we have to optimize the
following energy function using graph cuts based optimization technique developed by Olga
Veksler, using the libraries provided by Yuri Boykov and Vladimir Kolmogorov [25–28]:

ωopt = argmin
ω∈Γ

∑
s∈S

d(xs | ωs) +λ
∑

{s,r}∈Ns

δ(ωs,ωr)
 (6.2)



Figure 6.7. Removing triangles that do not belong to the concave hull. The first two columns
demonstrate a hard threshold of the xs feature, without the MRF smoothing constraint: we
can observe several false triangles in the resulting meshes (2nd column). The 3rd column
shows the optimal label mask where maximum probability is met. In the first column it
can also be observed through coloring how the points are associated to the corresponding
triangles.



6.2.1 Calculating the ρs density feature
As we have seen by equation (6.1), the ρs density factor is calculated using the ns and As
descriptors, from which As is calculated in O(1) fashion by the cross product of two side
vectors (~a, ~b) of triangle s:

As = ‖~a×
~b‖

2

Figure 6.8. Projected bi-
nary image (1st), dilated bi-
nary image (2nd), triangle
mask (3rd), triangle mask
covered by the dilated bi-
nary image (4th)

On the other hand calculating ns consumes exceedingly
much time especially if we do not use any space-partitioning
techniques, because we have to loop over the roof segment’s
points checking if each point falls into the s triangle.

This procedure’s complexity for a single roof segment
is O(N ·K), where N and K are the numbers of points
respectively triangles. For example, in case of the relatively
large6 roof component in Figure 6.7 (at the bottom) the
processing time is approximately 2 minutes.

We have already gained experiences, how much can
valuable time can be saved by using only 2D images in-
stead of 3D cloud processing. Thus we use a planimetric
projection again, but now we produce two images with the
same size: a colored and a binary image. Before projec-
tion we rotate the cloud to make it parallel to the xy plane
and each pixel that a point has been fallen onto is colored
white. As a result we obtain a leaky white shape with black
background, as illustrated in the 1st image of Figure 6.8.
The holes can be filled by some number of binary dilation
(2nd image of Figure 6.8).

In the following we generate a mask (a colored image) by
projecting each triangle onto to mask using different colors
for every single triangle. Not to mention, that the polygon
mesh is already in 2D, since the projection is inevitable
during the triangulation.

After the two images have been created, we compare
them by counting how many white pixels fall onto the col-
ored mask in each triangle (3rd image of Figure 6.8. Then
the density measure, that we introduced in the previous
section, is going to be adjusted by the proportion n′s/A

′
s,

where A′s is the area of s triangle’s colored projection onto
the mask, and n′s is the number of white points on the bi-
nary image located within this s triangle’s area. To put it
another way, n′s is the number of luminous pixels in s triangle of the last image of Figure
6.8, which have been produced by covering the colored triangle mask with the dilated image
of the the concave roof segment.

6having 35778 points



At the same time, statistics shows that very thin triangles with small areas appear quite
frequent and their projection’s area is zero due to the limited resolution of the triangle mask
image (i.e. the global labeling). To avoid division by zero we use a kind of correction:

ρs = n′s+k

A′s+k+ 1

For practical reasons we allowed k to be 9, which means that we give quite a good chance
for small triangles to take part in the final concave mesh, but they can easily be removed by
their larger neighbors.

As for the processing time, it takes less than 2 seconds for reconstructing the roof segment
of Figure 6.7 (at the bottom). Besides its speed, this method has another advantage, namely,
the fact that it handles the problem of boundary micro concavities by using a few additional
dilation. Dilating three-four times the binary image, triangles on the concave parts will be
covered in some degree by the white object of the dilated image (i.e. the image of the roof
segment).



7. A detailed assessment of the
algorithm

The roof segmentation algorithm produces an adequate result, the great majority of planar
roof sections are distinguished, and the neighboring roof sections are touching. We have
experienced a reliable performance of the initial classification and the inner edge detection
steps.

One part of the observed errors has been produced by the outer edge detection step,
because the procedure has been executed without knowing anything about roof components.
Consequently, false common edges, which belongs to different neighboring roof segments,
have also been detected in some cases (Figure 7.1c, 7.1d).

On the other hand, the algorithm tries to generate a detailed model, therefore rough lines
may be fragmented into very short pieces, as illustrated in Figure 7.1b. Furthermore, no
simplification or generalization is made before performing the mesh generation. As presented
by Zhou et al. [13] global regularities could be found and an initial simplification could be
performed for the sake of an improved flexibility. However as Lafarge et al. [5] states,
that these presumptions proposed by Zhou would fit “Manhattan-world” environments and
“well-organized” urban landscapes, but they are less efficient for towns with old architectural
buildings, historical towers like in several districts of Budapest.

(a) (b) (c) (d)

Figure 7.1. Demonstration of the edge detection step, with also featuring the limitation of
the approach (image c). The turquoise segments are inner edges, the pink ones are outer
edges.



Processing time

The main CPU consumer module of the system is the roof segmentation step, where a
moving least squares (MLS) algorithm is executed followed by a complex point cloud filtering
process in the three-dimensional space. Nevertheless, the system is offline, our aim was to
improve a reasonable processing time which has been achieved. In case of data belonging to
a measurement of 0.5km2 area (corresponding to a cloud having 8 million points) takes in
one and a half hour in a standard desktop computer.

7.1 Strength of the system
First, the algorithm was designed using a training cloud presented in Figure 1.1 containing
approximately 100 thousands of points. Then we tested the system on different clouds pre-
senting several types of buildings. The core algorithm did not require any modifications but
the former application framework needed some optimizations, generalizations and corrections
in order to be able to process the algorithm on larger clouds.

After minor improvements of my basic configuration, the software generated quite im-
pressive models, even for old architectural constructions like the central “K” building of the
Budapest University of Technology and Economics or the Grate Marked Hall (Vásárcsarnok)
alongside Vámház boulevard in Budapest. Notice, that both of them have two square based
pyramid shaped towers on their front side. To our firm opinion, the obtained reconstruction
results are quite acceptable considering that the system was initially designed for planar
roof shapes. On the upper images in Figure 7.2 you can see a larger city area with old civil
apartment houses, where different irregular constructions appear, like the garage in the red
frame in Figure 7.2 surrounded by towering civil houses. These asymmetries do not confuse
the system, moreover the concerning building shapes are precisely reconstructed.

Figure 7.3b demonstrates a typical “Manhattan-world” environment proving that my
implementation performs well on these types of urban scenes too.

As a further development, I have optimized the system, making it appropriate for pro-
cessing even larger clouds as illustrated in Figure 7.3a. Here we have performed an initial
fragmentation using libLAS1’s las2las software, which splits up the the original dataset into
multiple clouds having at most 2 million points each. The resulting large fragments are
separated into connected building blocks, and our algorithm guarantees a reasonable model
for each block.

1http://www.liblas.org/



Figure 7.2. Our polygon reconstruction results (left), and the reference aerial photos (right)
of various landmarks of Budapest. Civil apartment houses - Budapest’s site between Mária
St., Nap St., Futó St. and Baross St. (top), Vásárcsarnok Market, Vámház körút (middle),
Budapest University of Technology and Economics (BUTA), K building (bottom)



(a) Large city area on the South part of Buda near Móricz Zsigmond square. Left side of the model presents rural scenes with family houses and smaller flat buildings.
Large concave blocks appear in the middle of the image.

(b) Towering flat buildings near Petőfi bridge, Buda abutment at Goldmann György square. These constructions resemble a “Manhattan-world” environment.

Figure 7.3



8. Framework for displaying and
processing data

In this chapter I intend to give a brief description about the used software libraries and the
implemented framework.

8.1 Development tools
The core functions are written in the C++ programming language on Linux platform which
are compiled into several dynamic libraries according to the specific modules. These subrou-
tines are called from external scripts written in Python2.7 programming language, where all
necessary parameters can be set without the need of recompiling the whole software again.
There is a bash script which executes the initial fragmentation using the las2las software. Fi-
nally the same bash script performs the reconstruction algorithm for each fragment using the
Python scripts. Demo visualizer applications for tests and demonstrations were developed
using Qt4.7 library.

8.2 Point Cloud Library
The Point Cloud Library1 (PCL) is a standalone, large scale, open project for 2D/3D image
and point cloud processing. I have used PCL’s type representations (point types, point
cloud) and several data structures, algorithms (kd-tree structure, filtering, etc...).

8.3 Computational Geometry Algorithms Library
The Computational Geometry Algorithms Library2 (CGAL) provide easy access to efficient
and reliable geometric algorithms in the form of a C++ library. In my project I have
used CGAL’s 3D object representations (vector, point, plane, transform matrix, etc...), 3D
geometrical and linear algebra operations (plane intersection, Euclidean distances, matrix
transformations, etc...) and several triangulations (2D simple and constrained triangulations,
Delaunay triangulations).

1et al. [37] (http://www.pointclouds.org/)
2et al. [38] http://www.cgal.org/



8.4 Simplified Wrapper and Interface Generator
The Simplified Wrapper and Interface Generator3 (SWIG) is a software development tool
(SDK) that connects programs written in C and C++ with a variety of high-level program-
ming languages (eg. Python). I have used this SDK to generate Python scripts, which are
able to call C++ functions compiled into shared libraries.

8.5 Implemented framework
The main functions are implemented in C++ and are subdivided into several modules, which
are listed as follows:

basic synthesis
initial point cloud classification, connected roof cloud extraction (Chapter 3)

roof segmentation
estimating surface normals, filtering normals, clustering, roof point labeling and seg-
mentation (Chapter 4)

outer edge detection
an assembly which detects outer outer boundary points (Figure 5.1)

segment fitting
finds the 3D boundary lines which fit the edge cloud, the last step of outer line detection
(Figure 5.1 - last figure)

reconstruction
a wrapper classes which can handle inner edge detection, skeleton generation (Chapter 5),
triangulation using CGAL, calculating xs feature for all triangle, etc... (Section 6.2.1)

MRF
a wrapper classes for the MRF APIs developed by Olga Veksler, using the libraries
provided by Yuri Boykov and Vladimir Kolmogorov (Chapter 6)

demonstration module
is a complex Qt based application, in which I have visualized the intermediate results
(Figures 1.1, 5.1, 6.1, 6.3, 6.7, 7.1)

PCL types
an auxiliary module, in which I have developed a wrapper class around PCL’s Point-
Cloud using C macros. This wrapper gave us the possibility to manage PointCloud
objects in Python scripts in a straightforward way (loading from / write to external file,
load cloud to a PCL’s kd-tree, conversion between clouds and Python lists, color cloud
points, conversion between PCL’s different PointCloud representations). Furthermore
we can pass cloud objects between Python and C++ functions.

3http://www.swig.org/



9. Future plans and possible
improvements

In the future, we aim to use the developed algorithms in the ongoing DUSIREF project of
the Distributed Events Analysis Research Laboratory of MTA SZTAKI, which project is
funded by the European Space Agency. Here the synthesized city model will provide a 3D
visualization environment, where the results of different terrestrial or aerial LiDAR based
computer vision and machine recognition procedures can be displayed.

Furthermore, the obtained three-dimensional models will be compared with optical im-
ages taken from the space in different times, analysing the possibilities of adaptive texturing
and change detection.

I also plan to improve the proposed algorithms at certain points. In order to achieve a
more precise model, the outer segment fitting step should be reconsidered because that is
the weakest link in the whole algorithm even though it is relatively fast. I plan to implement
a least mean square based line fitting in the knowledge of the tangent vector field of the
edge cloud in each edge point. For example a RanSaC can be applied that will fit a line
to the longest edge segment. Then points in the proximity of the previously defined line
will be removed from the edge cloud and we do it again until the cloud becomes empty. An
important question for the future is to determine the maximal reachable processing speed.

Further possibilities of development can be extracting topologically complex ground sur-
faces with significant slopes using stochastic segmentation approaches and modelling them
efficiently by sparse triangle meshes. These types of sites appear frequently even in Budapest,
for example we can mention the Gellért Hill, or scenes around Buda Castle.



10. Conclusion

My work’s primary objective was to design an automatic and robust method to process aerial
LiDAR data and produce three-dimensional geometric models from them. Indeed, a long
way have had to be taken during the last ten months to pursue our objective, and many
obstacles appeared, especially in feature line detection and mesh generation steps.

My main contributions consist of the proposed robust roof segmentation, the edge detec-
tion algorithm, and the concave mesh generation procedure based on a probabilistic graphi-
cal model. Further improvements have been made in point cloud classification, in which we
have extracted vegetation and buildings. I optimized the method by splitting up the cloud
(Section 3.1), using image processing algorithms instead of 3D point cloud processing, and
introduced several automatic steps (Section 8.1) which give us the possibility to test our
algorithm on large point clouds.

As the results illustrate, the algorithm can be applied for a wide range of building types
even though it solely estimates the geometry of objects by several planar elements (polygons).
We have reconstructed city sites featuring urban civil apartment houses (Figures 1.1 and 7.2
- city site), buildings with complex architectural roof models (Figure 7.2 - Market Hall and
BUTE K-building), large concave blocks of flat (Figure 6.2 and 7.3b), rural (Figure 7.3a),
and “Manhattan-world” environments (Figure 7.3b).
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