
Nonlinear feedback design providing
passivity

March 18, 2017

1 Theoretical background

Kérdés:

1. verzio
(Our aim)/(The task) is to find an appropriate output function h(x)
for a nonlinear system ẋ = f(x, u), such that, the zero dynamics of the
feedback linearized system is stable using the designed output function.
2. verzio
It is given an nonlinear system ẋ = f(x, u), and we are looking for an
output function h(x), for which the exact feedback linearization will
give/produce/entail a locally stable zero dynamics.

The problem is feasible (there exists a suitable h(x)) if the system accom-
panied/supplemented with this output law h(x) is feedback equivalent
with a passive system, in other word, if there exist F (x), G(x) functions,
s.t. the system

ẋ = f(x, u) u = F (x)x+G(x)r
y = h(x)

(1)

is passive, more exactly, there exists a positive definite storage function
V (x) satisfying the inequality:

V̇ (x) ≤ yT r + rTy (2)
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2 Output selection using LMI conditions

The nonlinear model representation is given in the following form:

ẋ = A(x)x+B(x)u (3)

We are looking for some matrix functions C(x), F (x), G(x):

u = F (x)x+G(x)r (4)
y = C(x)x (5)

such that the closed loop system

ẋ = Â(x)x+ B̂(x)r Â(x) = A(x) +B(x)F (x)
y = C(x)x B̂(x) = B(x)G(x)

(6)

will be passive, i.e there exists a storage function V (x) = xTP (x)x with
a symmetric P (x) s.t.

V̇ (x) ≤ yT r + rTy (7)

2.1 Passivity as an LMI condition

For the sake of simplicity we omit the arguments (x). The derivative of
the storage function ca be derived as follows:

V̇ = ẋTPx+ xTPẋ+ xT Ṗ x

= (Âx+ B̂r)TPx+ xTP (Âx+ B̂r) + xT Ṗ x

= xT (Ṗ + ÂTP + PÂ)x+ rT B̂TPx+ xTPB̂r

= xT (Ṗ + ATP + F TBTP + PA+ PBF )x
+ rTGTBTPx+ xTPBGr

=
[
x
r

]T [
Ṗ + ATP + F TBTP + PA+ PBF PBG

GTBTP 0

] [
x
r

]
(8)

The right-hand side of equation (7) can be rewritten as a quadratic form:

yT r + rTy = xTCT r + rTCx =
[
x
r

]T [0 CT

C 0

] [
x
r

]
(9)
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Using the above formulas the inequality of equation (7) can be expressed
as: [

x
r

]T [
Ṗ + ATP + F TBTP + PA+ PBF PBG− CT

GTBTP − C 0

] [
x
r

]
≤ 0

(10)

This can be converted into a sufficient matrix inequality:[
Ṗ + ATP + F TBTP + PA+ PBF PBG− CT

GTBTP − C 0

]
≤ 0, ∀x ∈ X

We assume, that P (x) is invertible then we denote Q(x) = P (x)−1. If we
multiply both sides of the inequality by [Q, I]diag, we obtain the following
LMI: [

QṖQ+QAT +QF TBT + AQ+BFQ BG−QCT

GTBT − CQ 0

]
≤ 0 (11)

By differentiating the identity PQ = I, we get that QṖQ = −Q̇. Fur-
thermore, we introduce the following notations: M = FQ, N = CQ,
both of them are matrix function with respect to the variables (x). Using
these notation, we can reach to a parameter dependent LMI:[

−Q̇+QAT +MTBT + AQ+BM BG−NT

GTBT −N 0

]
≤ 0 (12)

[
−Q̇+QAT +MTBT + AQ+BM BG−NT

GTBT −N 0

]
≤ 0 (13)

where A,B are known variables, Q,M,N,G are unknown matrix func-
tions of x. We cannot state that the LMI is linear in x, accordingly,
the feasibility should be checked on an appropriately dense grid in X :
Xgrid =

{
xi ∈ X , i = 1, N

}
, where X is a subset of the state space con-

taining the possible values of the state vector.
Let us denote the left-hand side of equation (12) by Λ(x). The SDP
problem is reduced to:

Λ(x) ≤ 0 , ∀x ∈ Xgrid (14)

As a result, we obtain the matrices Q, M , N , G from which C, F and P
can be calculated.
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2.2 Nonlinear feedback design

The feedback linearization will be processed on the original system with
the previously generated output function, which will ensure that the zero
dynamics of the linearized system will be stable on that region, on which
the feasibility of the LMI (ref) was checked. Let us introduce the following
notations on the original system:

ẋ = A(x)x+B(x)r = f(x) + g(x)r
y = C(x)x = h(x)

(15)

Using the obtained output function, we are going to design a nonlinear
feedback law as presented in [Isidori]. First of all, a coordinates transfor-
mation is defined:

z1 = h(x)
z2 = Lfh(x)
· · ·

zr = Lr−1
f h(x)

zr+1 = Φr+1(x)
· · ·

zn = Φn(x)

where r is the relative degree of the system. In the new coordinates the
differential equation will look like the following:

ż1 = z2

· · ·
żr−1 = zr

żr = b(z) + a(z)v
żr+1 = qr+1(z) + pr+1(z)v
· · ·

 zero dynamics
żn = qn(z) + pn(z)v

if v = 1
a(z)

(
− b(z) + v

)
, then
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ż1 = z2

· · ·
żr−1 = zr

żr = v

żr+1 = qr+1(z) + pr+1(z)
a(z)

(
− b(z) + v

)
· · ·


zero dynamics

żn = qn(z) + pn(z)
a(z)

(
− b(z) + v

)

where

a(z) = LgL
r−1
f h(Φ−1(z)) (16)

b(z) = Lrfh(Φ−1(z)) (17)
qi(z) = Lfφi(Φ−1(z)) , i = r + 1, n (18)
pi(z) = Lgφi(Φ−1(z)) , i = r + 1, n (19)

Φ(z) = [φi(z)]i=i,ncol (20)

3 Numerical examples

3.1 Continuous fermentation process

The input affine model of the centered system is:

f(x) =
[

µ(S0 + x2)(X0 + x1)− F0
V

(X0 + x1)
−F0

V
(S0 + x2 − SF )− µ(S0+x2)

Y
(X0 + x1)

]
(21)

g(x) = − 1
V

[
X0 + x1

S0 + x2 − SF

]
(22)

ẋ = f(x) + g(x)u (23)
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Model parameters and their numerical values:

V = 4 (24)
SF = 10 (25)
Y = 0.5 (26)
µmax = 1 (27)
K1 = 0.03 (28)
K2 = 0.5 (29)

Numerical values of the optimal operating point:

X0 = 4.8907 (30)
S0 = 0.21866 (31)
F0 = 3.2089 optimal input flow rate (32)

Auxiliary variables:

c0 = K2S
2
0 + S0 +K1 (33)

c1 = 2K2S0 + 1 (34)
c2 = K2 (35)
q(x2) = c2x

2
2 + c1x2 + c0 (denominator of the rational terms) (36)

The system’s equation can be written in the form:

A(x) =
−F0c2x2

2+F0c1x2
V q(x2)

µmax(X0+x1)
q(x2) − F0X0(c1+c2x2)

V q(x2)
−S0µmax

Y q(x2) −F0
V
− µmax(X0+x1)

Y q(x2) − F0(S0−SF )(c1+c2x2)
V q(x2)


B(x) = g(x)
f(x) = A(x)x+B(x)u (37)

During the optimization we introduced the following constraints:

• P is a constant matrix (Q is constant as well and Q̇ is zero)

• N(x) and M(x) are affine matrix functions in the elements of π(N)

and π(M), respectively, where π(N) and π(M) contains monomials of x

N(x) = C(x)Q =
p(N)∑
i=1

Ni π
(N)
i

M(x) = F (x)Q =
p(M)∑
i=1

Mi π
(M)
i

(38)
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• G is constant

During the numerical computations, we used:

π(N) =
[
1 x1 x2

]T
(39)

π(M) =
[
1
]T

i.e. M is constant ⇒ F = MP is constant (40)

In this special case, the obtained h(x) = C(x)x = N(x)Px will be a
second order polynomial function.
The grid, on which the optimization was done is:

x = (x1, x2) ∈ L15
[ −1 , 1 ] ×L

15
[ −0.1 , 0.2 ] (41)

3.2 Calculating the zero dynamics

The nonlinear coordinates transformation is defined as follows

z = Φ(x) =
[
h(x)
λ(x)

]
(42)

where λ(x) is defined in [biorektor] as

λ(x) = V (S0 + x2 − SF )
X0 + x1

, λ(0) = −8 (43)

3.3 Notations

Ln
[ a , b ] =

{
a+ k − 1

n− 1(b− a), k = 1, n
}

= linspace(a, b, n) (44)

4 Zero state detectability (Inverted pendu-
lum)

Kérdés:

∀C(x) = xTC1 + C0 -ra ?∃x∗
1 6= 0 ú.h. C(x)x∗ = 0 (45)
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[
C0
C1

]
=


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44
a51 a52 a53 a54

 , x∗ =


x∗

1
0
π
0

 (46)

I. Konstans eset (47)
C =

[
a11 a12 a13 a14

]
(48)

Cx∗ = 0 =⇒ a11x
∗
1 + a13π = 0 =⇒ x∗

1 = −πa13

a11
(49)

II. Lineáris C(x) = xTC1 + C0 eset (50)

C(x) =


a11 + a21x1 + a31x2 + a41x3 + a51x4
a12 + a22x1 + a32x2 + a42x3 + a52x4
a13 + a23x1 + a33x2 + a43x3 + a53x4
a14 + a24x1 + a34x2 + a44x3 + a54x4


T

(51)

C(x∗)x∗ = a21x
2 + ((a23 + a41)π + a11)x+ a43π

2 + a13π = 0 (52)

Diszkrimináns:

∆ = B2 − 4AC = a11
2 + 2πa11a23 + 2πa11a41 + π2a23

2 (53)
+ 2π2a23a41 + π2a41

2 − 4πa13a21 − 4π2a21a43

Egyenlet megoldása:

x∗ = −B ±
√

∆
2A = −a11 + πa23 + πa41 ±

√
∆

2a21
(54)

Következtetés: van olyan C(x) lineáris mátrix, amelyre C(x∗)x∗ 6= 0,
bármely x∗

1 esetén. Ez volt a kérdés?

5 Inverz inga

a(z) =
[
Lfh(x)

]
x=Φ−1(z)

(55)
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