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Abstract

Fault detection of MIMO LTI systems using output passivisation with Luenberger dynamic observer
design

1 Introduction

1.1 Problem statement

There exists an LTI system with unstable zeros and poles (no direct feedthrough for the moment being,
D = 0). Our intention is to design a dynamic output passivisation controller (from about a passivisation
signal r) downto a performance output yp. We use dynamic principles to passivity. The over all closed loop
system will be stable and passive, this hence means having stable zero dynamics. Consequently, a stable
dynamic inversion w.r.t. any unknown inputs (faults, disturbance) can be created. This gives rise to a new
paradigm in fault detection and estimation see ??.

2 MIMO, v → yp passivisation, feedback equivalence with a passive
system

Having an LTI MIMO system, which is somehow fed back through a controller (either tuned by output vector
or by the full state vector). The actuator is assumed to be faulty. We intend to detect its fault using system
inversion. However, the system is not invertible, since its zeros are unstable and/or its relative degree is
not {1, ..., 1}, therefore, we augment the system with an additional (linear) dynamics, which is tuned by the
system’s output y and the designed control input u (Luenberger observer). The goal is to chose matrices L,
C1, D1 such that the system v → yp be feedback equivalent to a passive system with relative relative degree
r = {1, ..., 1}.
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Figure 1: Block diagram of the augmented (open-loop) system with state observer without actuator fault.

Proposition 1. If there is no actuator fault (d(t) = 0), signal v̂(t) can be reconstructed from signals yp
and x̂, such that v̂(t) converges exponentially to v(t).

Proof . The equation of the original system and the Luenberger state observer with artificial output yp are{
ẋ = Ax+Bv

y = Cx

{
˙̂x = (A− LC)x̂+Bv + LCx

yp = D1Cx+ C1x̂
(1)

Introducing the new state vector X = ( x
x̂ ), the equation of the augmented system v → yp is{

Ẋ = ÂX + B̂v

yp = ĈX
where Ĉ =

(
D1C C1

)
, Â =

(
A 0
LC A− LC

)
, B̂ =

(
B
B

)
(2)

The derivative of the artificial output is

ẏp = ĈÂX + ĈB̂v =
(
D1C C1

)( A 0
LC A− LC

)(
x
x̂

)
+
(
D1C C1

)(B
B

)
v

=
(
D1CA+ C1LC

)
x+

(
C1A− C1LC

)
x̂+

(
D1C + C1

)
Bv

=
(
D1CA+ C1LC

)
e+

(
D1CA+ C1LC

:::::

)
x̂+

(
C1A−C1LC

::::::

)
x̂+

(
D1C + C1

)
Bv

=
(
D1CA+ C1LC

)
e+

(
D1CA+ C1A

)
x̂+

(
D1C + C1

)
Bv

(3)

Since r = {1, ..., 1}, ĈB̂ =
(
D1C + C1

)
B is non-singular and hence invertible, therefore, the control input

can be explicitly expressed as:

v = Mẏp −M
(
D1CA+ C1A

)
x̂︸ ︷︷ ︸

can be computed

−M
(
D1CA+ C1LC

)
e︸ ︷︷ ︸

e is unknown

, where M =
[(
D1C + C1

)
B
]−1

(4)

In case of a stable observer, the observation error e = x− x̂ tends exponentially to zero, hence

v̂ := Mẏp −M
(
D1CA+ C1A

)
x̂ ⇒ ev = v − v̂ = −M

(
D1CA+ C1LC

)
e→ 0 (5)

Tends exponentially to v, which completes the proof. During this derivation, we used only the relative degree
r = {1, ..., 1} property of the system, passivity is not required yet. �
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Figure 2: Block diagram of the augmented (open-loop) system with state observer without actuator fault.

Proposition 2. If there is actuator fault (d(t) 6= 0), residual signal v̂(t)− v(t) will not vanish. Residual
signal v̂(t)− v(t) can be constructed using the

. observed state vector x̂(t),

. artificial output yp(t),

. designed control input v(t).

Proof . The equation of the original system and the Luenberger state observer with artificial output yp are{
ẋ = Ax+Bv +Bd

::

y = Cx

{
˙̂x = (A− LC)x̂+Bv + LCx

yp = D1Cx+ C1x̂
(6)

Introducing the new state vector X = ( x
x̂ ), the equation of the augmented system v → yp isẊ = ÂX + B̂v + Êd

::

yp = ĈX
, where Ĉ =

(
D1C C1

)
, Â =

(
A 0
LC A− LC

)
, B̂ =

(
B
B

)
, Ê =

(
B
0

)
(7)

The derivative of the artificial output is

ẏp = ĈÂX + ĈB̂v + ĈÊd =
(
D1CA+ C1LC

)
e+

(
D1CA+ C1A

)
x̂+

(
D1C + C1

)
Bv +D1CBd

::::::
(8)

Since r = {1, ..., 1}, ĈB̂ =
(
D1C + C1

)
B is non-singular and hence invertible, therefore, the control input

can be explicitly expressed as:

v = Mẏp −M
(
D1CA+ C1A

)
x̂−M

(
D1CA+ C1LC

)
e−MD1CBd

::::::::
, where M =

[(
D1C + C1

)
B
]−1

(9)

Since the observation error e(t) and the actuator fault d(t) is unknown, the original control input signal can
be estimated as follows

v̂ = Mẏp −M
(
D1CA+ C1A

)
x̂ (10)

If the actuator fault input is non-zero, the residual signal

−ev(t) = v̂(t)− v(t) = M
(
D1CA+ C1LC

)
e(t)︸ ︷︷ ︸

→0

+MD1CBd(t)
::::::::::: (11)

will not vanish, unless d(t) ∈ Ker
(
MD1CB

)
. �
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Proposition 3. (Vector relative degree – a feasibility study for r = {1, ..., 1}) LTI MIMO

If matrix B is full column rank, ∃C1 such that the system u→ yp will have relative degree r = {1, .., 1}.

Proof .

ẏp =
(
D1C C1

)( A 0
LC A− LC

)
X +

(
D1C C1

)(B
B

)
u+D1CBd

=
(
D1CA+ C1LC C1(A− LC)

)
X +

(
D1CB︸ ︷︷ ︸

could be rank deficient

+C1B
)
u+D1CBd

(12)

Let R ∈ Rm×m be full rank matrix. Then, for C1B = R−D1CB, we have infinitely many solutions, since it
is an under-determinant system of linear equations in C1 unknown. The least Frobenius norm solution for
C1 is:

C1 = (R−D1CB)(BTB)−1BT (13)

Since B is full column rank, BTB ∈ Rm×m is invertible, thus, D1CB + C1B = R is a rank matrix. �
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Figure 3: Passive state feedback equivalent of the augmented model.

Observer filter design for model inversion using optimization (no actuator fault)

In this section, the model of the augmented system is built differently compared Eq. (2). The state vector
of model is chosen to be ξ = ( x

e ). According to Eq. (1), the error dynamics is

ė = (A− LC)e, (14)

therefore, the dynamics of the augmented open-loop system (Figure 3, v → yp) can be given as follows:{
ξ̇ = Ãξ + B̃v

yp = C̃ξ
, where Ã =

(
A 0
0 A− LC

)
, B̃ =

(
B
0

)
, C̃ =

(
D1C + C1 −C1

)
(15)

The dynamics of the feedback equivalent of the augmented open-loop system (Figure 3, r → yp) is the
following (subscripts “c” stand for “closed-loop”):{

ξ̇ = Ãcξ + B̃cr

yp = C̃ξ
, where Ãc =

(
A−BK BK

0 A− LC

)
, B̃c =

(
BG
0

)
(16)

Proposition 4. (Feedback equivalence of (15) and (16)) According to definition presented in [1], system
v → yp (15) is feedback equivalent with system r → yp (16), since there exist α(ξ) = −Kx̂ and β(ξ) = G
functions, such that the input v = α(ξ) + β(x)r applied to system v → yp generates system r → yp.

In the sense of principle of separation of estimation and control, we can design a stabilizing state feedback
gain K and a stable observer with gain L independently, which both gives a stable control loop fed by
observed state vector (Figure 3, w → y). Since the value of K is irrelevant in the model inversion point of
view, it can be design arbitrarily before the optimization (eg. pole placement), matrix G = Im is chosen to
be the identity matrix. During the optimization, we search for appropriate values for matrices C1, D1 and L
(being free variables of the optimization), such that the closed-loop system r → yp (the feedback equivalent
of v → yp) be strict output passive, meaning that the following inequality must hold:

V̇ (ξ) ≤ rT yp + yTp r − yTp Wyp, (17)

where

V (ξ) = ξTPξT , P = PT ∈ R2n×2n (18)
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is a quadratic storage function for system r → yp. Inequality (17) can be developed further into the form:

s(ξ, r) := ξT
(
ÃTP + PÃ

)
ξ + ξTPB̃cr − rT C̃ξ − ξT C̃T r + ξT C̃TWC̃ξ ≤ 0 (19)

which is equivalent to the following matrix inequality

s(ξ, r) =

(
ξ
r

)T

Λ1

(
ξ
r

)
≤ 0 ⇔ Λ1 =

(
ÃTP + PÃ+ C̃TWC̃ PB̃c − C̃T

B̃T
c P − C̃ 0

)
� 0 (20)

In order to linearise (20), the Lyapunov matrix P is constrained to be block diagonal

P :=

(
Q 0
0 S

)
� 0, P ∈ R2n×2n, (21)

Furthermore, if we introduce N := SL, the bilinear expression in the first element of matrix Λ1 can be
evaluated further as follows:

ÃTP + PÃ =

(
Q(A−BK) + (A−BK)TQ QBK

KTBTQ SA+ATS − SLC − CTLTS

)
=

(
Q(A−BK) + (A−BK)TQ QBK

KTBTQ SA+ATS −NC − CTNT

)
,

(22)

which is a linear expression in the matrix valued indeterminates Q, S and N . Since S is invertible (S � 0),
matrix L can be reconstructed in the knowledge of matrices N and S after the optimization.

2.1 Numerical results (in case of H2(s) – stable)

We design a stabilizing feedback gain K for the original system (u = −Kx):

p =
(
−2 −1.8 −1.6 −1.4 −1.2 −1

)
K = place(A,B, p) =

(
−1.5456 −0.3636 −0.1654 0.0854 0.0847
0.0668 0.0156 −0.6457 −0.677 −0.6302

)
G = I2

(23)

If we have a stable observer ˙̂x = CLx + (A − LC)x̂ + Bu, applying u = −Kx̂ will stabilize the system
(separation principle). Assuming that G = I2, we chose L,C1, D1 such that the observer be stable, and the
closed loop system with yp = D1Cx + C1x̂ performance input be strict output passive (from r to yp). We
obtain:

C1 =

(
0.0048 0.0022 0.0015 −0.001 −0.0009
−0.0005 0.0018 −0 0.0044 0.0006

)
, D1 =

(
0.0031 0.0001
0.0083 −0.0005

)
LT =

(
−11.8203 11.0372 2.8894 −13.6842 7.1631
−3.5266 −2.2015 7.9634 −0.3426 −0.4627

) (24)

Poles and zeros of the open-loop system:

POLES =
(
−5 −2 −1 −3 −2

)
, ZEROS =

(
−3.3395 −0.3282 −1.2477

)
(25)
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Inversion using just x_obs

Inversion using x and x_obs

Augmented OLS

Observer

Tudom, hogy ennek nincs sok ertelme ==>
de gondoltam megiscsak kiprobalom... 

x' = Ax+Bu
 y = Cx+Du
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