Nonlinear Dynamical Systems (P-ITEEA-0037)

Lecture 1

version: 2023.09.18. - 12:52:00

1. Pendulum

1.1. Energy

Kinetik energy of pendulum: $T=\frac{m v^{2}}{2}=\frac{m L^{2} \dot{\theta}^{2}}{2}$.
Potential energy of pendulum: $V=m g L(1-\cos (\vartheta))$.
Lagrangian function of the system:

$$
\begin{equation*}
\mathcal{L}(\vartheta, \dot{\vartheta})=T-V=\frac{m L^{2} \dot{\vartheta}^{2}}{2}-m g L(1-\cos (\vartheta)) \tag{1}
\end{equation*}
$$

The energy of the system is:

$$
\begin{equation*}
-\mathcal{L}+\dot{\vartheta} \cdot \frac{\partial \mathcal{L}}{\partial \dot{\vartheta}}=\frac{m L^{2} \dot{\vartheta}^{2}}{2}+m g L(1-\cos (\vartheta)) \quad(=T+V) \tag{2}
\end{equation*}
$$

1.2. Equation of motion

Equation of motion using Euler-Lagrange equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\vartheta}}\right)-\frac{\partial \mathcal{L}}{\partial \vartheta}=M_{\text {ext }} \text { (external torque and/or damping) } \tag{3}
\end{equation*}
$$

The damping force is generally proportional to the velocity, but its direction is opposite to the direction of the velocity, therefore:

$$
\begin{equation*}
F_{\mathrm{ext}}=-b v=-b L \dot{\vartheta} \tag{4}
\end{equation*}
$$

In this case the external torque is

$$
\begin{equation*}
M_{\mathrm{ext}}=L M_{\mathrm{ext}}=-b L^{2} \dot{\vartheta} \tag{5}
\end{equation*}
$$

Finally, the equation of motion is:

$$
\begin{equation*}
m L^{2} \ddot{\vartheta}+b L^{2} \dot{\vartheta}+m g L \sin (\vartheta)=0 \tag{6}
\end{equation*}
$$

Consider the following model simplifications:

$$
\begin{equation*}
\underbrace{m}_{1} \ddot{\vartheta}+b \dot{\vartheta}+\underbrace{\frac{m g}{L}}_{1} \sin (\vartheta)=0 \tag{7}
\end{equation*}
$$

Then, the simplified equation is:

$$
\begin{equation*}
\ddot{\vartheta}+b \dot{\vartheta}+\sin (\vartheta)=0 \tag{8}
\end{equation*}
$$

1.3. State-space representation

In order to solve the ordinary differential equation (ODE) (8) with MATLAB, we should write the ODE in the form of a system of first order ODEs.
Let us introduce the following variables:

$$
\left\{\begin{array} { l }
{ x _ { 1 } = \vartheta } \tag{9}\\
{ x _ { 2 } = \dot { \vartheta } }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ \dot { x } _ { 1 } = \dot { \vartheta } = x _ { 2 } } \\
{ \dot { x } _ { 2 } = \ddot { \vartheta } = - b \dot { \vartheta } - \operatorname { s i n } (\vartheta) = - b x _ { 2 } - \operatorname { s i n } (x _ { 1 }) }
\end{array} \Rightarrow \left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-b x_{2}-\sin \left(x_{1}\right)
\end{array}\right.\right.\right.
$$

If we introduce the vectorial (vector-valued) variable $x=\binom{x_{1}}{x_{2}}$, then Eq. (9) can be written in the form:

$$
\begin{equation*}
\dot{x}=f(x) \text { where } f(x)=f\left(x_{1}, x_{2}\right)=\binom{x_{2}}{-b x_{2}-\sin \left(x_{1}\right)} . \tag{10}
\end{equation*}
$$

Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be called the vector field of the ODE.
In fact, MATLAB can solve differential equation numerically of a more general form, namely:

$$
\begin{equation*}
\dot{x}=f(t, x) \tag{11}
\end{equation*}
$$

where the $f:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is allowed to depend on time directly.

1.4. Task

1. Visualize the energy function, the energy levels, and the vector field of the ODE (surf, quiver, contour).
2. Analyze the dynamical properties of the following differential equations:
(a) $\ddot{y}+y=0$,
(b) $\ddot{y}+b \dot{y}+y=0$,
(c) $\ddot{y}+y=\cos (\omega t)$,
(d) $\ddot{y}+b \dot{y}+y=\cos (\omega t)$,
3. Find an initial condition for $\ddot{y}+b y+\sin (y)=0$ using Bolzano shooting, such that the (numerical) solution approaches a saddle point as the time goes to infinity.
