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a b s t r a c t

In this paper the Fredholm integral equation of the second kind is solved, where Chebyshev
polynomials are applied to approximate a solution for an unknown function in the
Fredholm integral equation and convert this equation to a system of linear equations. Also,
convergence and rate of convergence are given. The accuracy of this method is verified
through some numerical examples and the results are compared to a previous result set to
investigate the effects of choosing Chebyshev and Legendre polynomials.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Given the Fredholm integral equation of the second kind:

ϕ(s) = f (s)+
∫ b

a
K(s, t)ϕ(t)dt, −∞ < a ≤ s ≤ b <∞ (1)

in solving the integral equation with a given kernel K(s, t) and the function f (s), the problem is typically to find the function
ϕ(t). Maleknejad et al. [1] estimated ϕ(t) using Legendre polynomials and solved the integral equation. In this study,
Chebyshev polynomials are employed to approximate theϕ(t), and the effects of the Chebyshev polynomials on the accuracy
of the estimation of ϕ(t) are compared through several numerical problems.

2. Discretization of integral equation

In this section, Eq. (1) is discretized and converted to a system of linear equations. Chebyshev polynomials are chosen as
basis functions to estimate the solution of the integral equation, ϕ(t), together with the collocation method.
The Chebyshev polynomials with the interval of orthogonality [−1, 1] are defined as [2]:

Cn+1(x) = 2xCn(x)− Cn−1(x), and C0(x) = 1; C1(x) = x. (2)

Proposition 1. Let x(t) ∈ Hk(−1, 1) (Sobolev space), Tn(x(t)) =
∑n
i=0 aiCi(t) be the best approximation polynomial of x(t) in

L2-norm, and the truncation error:
||x(t) − Tn(x(t))||L2[−1,1] ≤ C0m

−k
||x(t)||Hk(−1,1), where C0 is a positive constant, which depends on the selected norm and

is independent of x(t) and m; m is the degree of Chebyshev polynomials (Proof [3]).
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At first, we estimate the unknown function ϕ(t)with the Chebyshev polynomials as

ϕ(t) ≈ Tn(ϕ(t)) =
n∑
i=0

aiCi(t). (3)

Substituting (3) into (1) and get

n∑
i=0

aiCi(s) = f (s)+
∫ b

a
K(s, t)

n∑
i=0

aiCi(t)dt. (4)

Hence the residual equation is defined as

Rn(s) =
n∑
i=0

aiCi(s)−
∫ b

a
K(s, t)

n∑
i=0

aiCi(t)dt − f (s). (5)

The unknown coefficients ai are defined by selecting several collocation points sj so that Rn(sj) = 0 for j from 0 to n. In this
study the collocation points are evenly selected from the space [a, b] that

sj = a+
j(b− a)
n

, j = 0, . . . , n. (6)

Thus, this integral equation (Eq. (4)) can be converted to a system of linear equations AnX = bn where

An =
[
Ci(sj)−

∫ b

a
K(sj, t)Ci(t)dt

]n
j=1
, i = 0, . . . , n

bn = [f (sj)], j = 0, . . . , n

XT = [ai]ni=0.

(7)

Theorem 1. Let χ be a Banach space, let κ be a bounded operator from χ into χ , and for a nonzero λ, if λ− κ : χ → χ is one
to one and onto, then we have

||κ − Tnκ|| → 0 as n→∞. (8)

Furthermore, for all sufficiently large n, say n ≥ N , the operator (λ− Tnκ−1) exists as a bounded operator from χ to χ and
is uniformly bounded

sup
n≥N
||(λ− Tnκ)−1|| <∞. (9)

For the solution of (λ− Tnκ)xn = Tny, xn ∈ χ and (λ− κ)x = ywe can have

x− xn = λ(λ− Tnκ)−1(x− Tn(x))
|λ|

||λ− Tnκ||
||x− Tn(x)|| ≤ ||x− xn|| ≤ |λ|||(λ− Tnκ)−1||||x− Tn(x)||.

(10)

(Proof [4]).
From Proposition 1, it is concluded that approximation rate of Chebyshev polynomials is m−k, and Theorem 1 indicates

that ||x− xn|| converge to zero at exactly the same speed as ||x− Tn(x)||.

3. Numerical examples

In this section, several numerical examples of the Fredholm integral equation (Eq. (1)) are considered to show the
accuracy of presented method. In this study, all examples are solved using the method stated in Section 2, and the integral
equations are converted to systems of linear equations following Eqs. (6) and (7). All calculations are performed usingMaple
11 and MatLab; the detailed steps are:

1. Construct n× n square matrix Am (from Eq. (7)).
2. Build up n× 1 vector bm (from Eq. (7)).
3. Calculate X using X = A−1m bm and determine all ai.
4. Estimate ϕ(t) based on the ai using Eq. (3).
5. Compare the approximated ϕ(t) to the exact one and show in figures.
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Fig. 1. Result of Example 1 for n = 2.

Fig. 2. Result of Example 1 for n = 3.

Numerical results are comparedwith the exact solutions and plotted in following figures to illustrate the efficiency of the
proposed method. (In all figures the exact solutions are represented by solid lines while the numerical solutions are plotted
with dashed lines.)

Example 1. Solve Eq. (1) with a = −1, b = 1 and

K(s, t) = e(2s−
5
3 t)

f (s) = e(2s+
1
3 )

where the exact solution is ϕ(t) = e2t and results are shown in Figs. 1 and 2 with different n.
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Fig. 3. Result of Example 2 for n = 3.

Fig. 4. Result of Example 2 for n = 5.

Example 2. Solve Eq. (1) with a = −1, b = 1 and

K(s, t) =
(s− t)3

s2(1+ t2)

f (s) =
√
1+ s2 −

3(
√
2− arcsin h(1))

s
− 2s arcsin h(1)

where the exact solution is ϕ(t) = (1+ t2)1/2 and results are shown in Figs. 3 and 4 with different n.

Comparing the Figs. 3 and 4 to the results obtained byMaleknejad et al. [5], it is proved that both Chebyshev and Legendre
polynomials can be used to successfully solve the Fredholm integral equation of the second kind. Comparatively, Legendre
polynomials are easier to be applied in such problems because such polynomials have a unit weight function. However, as
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concluded by Mason and Hanscomb [6], the partial sums of a first kind Chebyshev expansion of a continuous function in
[−1, 1] converge faster than the partial sums of an expansion in any other orthogonal polynomials. Therefore, the Chebyshev
polynomials usually yield better estimation of the unknown function ϕ(t)when being used for solving such problems.

4. Conclusion

In this paper, the Fredholm integral equation of the second kind is solved by employing Chebyshev polynomials and
the collocation method. Convergence of the presented method and its convergence rate are proved in Proposition 1 and
Theorem 2. As shown in the figures, the proposed method provides good efficiency so that in order to acquire enough
accuracy, we only need to convert the integral equation to the system of linear equations by an order less than five. Besides
the Legendre method presented byMaleknejad et al. [1], this paper proves that the Chebyshev polynomials can also be used
to solve the Fredholm integral equation of the second kind with high accuracy and efficiency. Apparently, in order to have
the convergence of the present method, both kernel functions K(s, t) and f (s) have to be continuous.
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