## Functional analysis

## Exercise Problems

14.03.2018.

## Metric space, Normed space, Inner product space

N1. Check whether the following formulas define metric on $\mathbb{R}$ :
a) $d(x, y)=||x|-|y||$
b) $d(x, y)=\sqrt{|x-y|}$
c) $d(x, y)=|\operatorname{arctg} x-\operatorname{arctg} y|$

N 2 . Check whether the following formulas define metric in $\mathbb{R}^{2}\left(x=\left(x_{1}, x_{2}\right)\right.$ és $\left.y=\left(y_{1}, y_{2}\right)\right)$ :
a) $d(x, y)=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$,
b) $d(x, y)=\min \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$,

N3. Verify that the following $\|\cdot\|$ defines a norm in $\mathbb{R}^{2}(a, b \in \mathbb{R}$ are fixed parameters):

$$
\|x\|=\sqrt{\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}}, \quad x=\left(x_{1}, x_{2}\right) \epsilon \mathbb{R}^{2} .
$$

Sketch the open unit ball in $\mathbb{R}^{2}$ with respect to this norm, when
a) $a=2, b=1$,
b) $a=3, b=\frac{1}{3}$.

N4. (Test exercise in 2015.) Let $V$ be the space of $3 \times 2$ matrices. Verify that the following formula defines a norm in this linear space:

$$
\|A\|:=\max _{i=1,2,3}\left(\left|a_{i 1}\right|+\left|a_{i 2}\right|\right), \quad A=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right) \epsilon \mathbb{R}^{3 \times 2} .
$$

N5. (Test exercise in 2015.) Let $V$ be the space of $2 \times 4$ matrices. Verify that the following formula defines a norm in this linear space:

$$
\|A\|:=\max _{i=1,2,3,4}\left(\left|a_{1 i}\right|+\left|a_{2 i}\right|\right), \quad A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right) \in \mathbb{R}^{2 \times 4} .
$$

N6. (Exam exercice from 2016) Do these funtions define norms on $\mathbb{R}^{2}$ ? Verify.

$$
\|(x, y)\|_{a}=||x|+5| y| |, \quad\|(x, y)\|_{b}=||x|-5| y| |, \quad(x, y) \in \mathbb{R}^{2}
$$

If it is a norm, some more questions:
a) What is the induced metric?
b) Sketch the open unit ball in $\mathbb{R}^{2}$ with respect to this norm.

N7. Consider the linear space of continuously differentiable functions defined on $[0,1]$, denoted by $C^{1}[0,1]$ terét. Which of the following formulas give norme on this vector space?
a) $N_{1}(f)=\max _{x \in[0,1]}|f(x)|$,
b) $N_{2}(f)=\max _{x \in[0,1]}\left|f^{\prime}(x)\right|$,
c) $N_{3}(f)=\max _{x \in[0,1]}|f(x)|+\max _{x \in[0,1]}\left|f^{\prime}(x)\right|$,
d) $N_{4}(f)=|f(0)|+\max _{x \in[0,1]}\left|f^{\prime}(x)\right|$.

N8. (Test exercise in 2014.) In $\ell^{1}$ let us consider sequences that have only finite number of nonzero element. Verify that they form a dense subset in $\ell^{1}$-ben.
$\left(+\right.$ Is a similar statement true in $\ell^{\infty}$ ?)
N9. (Test exercise in 2012.) Consider the following sequence space:

$$
H=\left\{\left(x_{n}\right) \mid \sum_{n=1}^{\infty} x_{n}^{2}\left(1+n^{2}\right)<\infty\right\} .
$$

a) Show that it is az inner product on $H:\langle x, y\rangle_{H}:=\sum_{n=1}^{\infty} x_{n} y_{n}\left(1+n^{2}\right)$.
b) Verify that $H \subset \ell^{2}$.
c) Verify for the induced norm: $\|x\|_{H} \geq\|x\|_{2}$, ha $x \epsilon H$.

N10. Recall the definition of the sequence spaces $c, c_{0}, \ell_{1}, \ell_{2}, \ell_{\infty}$ and consider the sequences $x=\left(x_{n}\right), n=1,2, \ldots$ (denoted also by $\left\{x_{n}\right\}_{n=1}^{\infty}$ or $\mathbf{x}=$ $=\left(x_{1}, x_{2}, \ldots\right)$ or $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$ etc. $)$
(a) $x_{n}=(-1)^{n}$,
(b) $x_{n}=\frac{1}{\sqrt{n} n}$,
(c) $x_{n}=(-1)^{n} \frac{1}{2^{n}}$,
(d) $x_{n}=\frac{\sqrt[n]{2}}{n^{2}}, \quad n=1,2, \ldots$.

Do they belong to $c, c_{0}, \ell_{1}, \ell_{2}, \ell_{\infty}$ or not?
N11. Compute the norms of the sequences
(a) $x_{n}=1$,
(b) $x_{n}=\frac{1}{n}$,
(c) $x_{n}=(-1)^{n} \frac{1}{n}$,
(d) $x_{n}=\frac{1}{n^{2}}, \quad n=1,2, \ldots$
in the sequence spaces $c, c_{0}, \ell_{1}, \ell_{2}$, and $\ell_{\infty}$.
N12. Point out that the standard $\|\cdot\|_{\infty}$ norm on $d b R^{n}$ cannot be induced by a scalar product.

N13. Point out that the standard $\|\cdot\|_{\infty}$ norm on the sequence space $\ell^{\infty}$ cannot be induced by a scalar product.

N14. Set $f(x)=x$ and $g(x)=x^{2}$ whenever $x \in[0,1]$. Compute the distance between functions $f$ and $g$ with respect to the
(a) maximum-norm on $C[0,1]$
(b) the $L_{1}-$ norm on $C[0,1]$,
(c) the $L_{2}-$ norm on $C[0,1]$

## Toplogy in metric spaces

T1. $\left(N, d_{N}\right)$ is a metric space, $A \subset N$ is an open set. $a \in A$ is an arbitrary point. Show that $A \backslash\{a\}$ is an open set.

T2. Let $f_{n}, f \epsilon C[a, b]$. Show that if $f_{n} \rightarrow f$ in $\|\cdot\|_{\max }$ norm, then $f_{n} \rightarrow f$ in $\|\cdot\|_{1}$ norm too. Is the converse statement true?

T3. $\left(N, d_{N}\right)$ is a metric space, $K \subset N$ has finite number of elements. Verify that $K$ is compact.

T4. $(+)$ Let $(X, d)$ be a compact metric space, and let $\left\{U_{i}: i \epsilon I\right\}$ be an open cover of $X$. Verify that $\exists r>0$, such that $\forall x \epsilon X$ we have $B_{r}(x) \subset U_{i}$ for some $i$.

T5. $(+) X=(0,1) \cup\{2\}$ with the usual metric $d(x, y)=|x-y|$. Which of the following sets are open or closed in this metric space: $(0,1),(0,1) \cup\{2\},\{2\},\left(0, \frac{1}{2}\right] ?$

T6. (Test exercise in 2016.) Let $E \subset \mathbb{R}, E \neq \emptyset$, such that $m(E)=0$.
a) Verify that $\operatorname{int}(E)=\emptyset)$.
b) Is it possible, that $E$ is open? If yes, give an example.
c) Is it possible, that $E$ is closed? If yes, give an example.

T7. Let $\mathcal{S}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \epsilon \ell_{2} \mid x_{n}=0\right.$ for each $n>N=$ $=N(\mathbf{x})\}$. Is $\mathcal{S}$ a linear subspace of $\ell_{2}$ ? Is it a closed subspace? Is it a complete subspace? Is it a dense subspace? Is $\mathcal{S}$ a Hilbert space? Can You construct a sequence in $\mathcal{S}$ without convergent subsequences? (A natural basis in $\mathcal{S}$ will do.)

T8. Prove that countable subsets of $\mathbb{R}$ are of measure zero.
T9. Recall that $C[0,1]=\left(C[0,1],\|\cdot\|_{\max }\right)$ is complete. Consider now (a) $\left(C[0,1],\|\cdot\|_{2}\right)$ and (b) $\left(C[0,1],\|\cdot\|_{1}\right)$, the spaces of continuous real functions defined on the interval $[0,1]$ and equipped with the norms
(a) $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$ and (b) $\|f\|_{2}=\sqrt{\int_{0}^{1}|f(x)|^{2} d x}, \quad f \epsilon C[0,1]$,
respectively. Prove that none of them is complete.
T10. Consider the sequence space $\ell^{\infty}$ and prove that its unit sphere $S_{1}=$ $=\left\{x \epsilon \ell^{\infty}:\|x\|_{\infty} \leq 1\right\}$ is closed but not compact. Is there a countable dense set in $\ell^{\infty}$ ?

## Lebesgue-measure. Measurable functions.

M1. Let us consider the following set with the usual metric $d(x, y)=|x-y|)$ :

$$
H=\left\{x=\frac{j}{2^{k}}: \quad k \in \mathbb{N}, \quad 1 \leq j \leq 2^{k}\right\}
$$

a) Is it open? Is it closed? Is it compact?Ez a halmaz nyílt? Zárt? Kompakt?
b) Is $H$ Lebesgue-measurable? If yes, compute it's measure.

M2. Let $E \subset \mathbb{R}$ be a null-set. Show that it has no interior point.
M3. Define $H=\left\{x=\frac{p}{q} \sqrt{2}: \quad p<q \in \mathbb{N}\right\}$. Is it measurable? If yes, compute it's measue.

M4. Let $E \subset \mathbb{R}$ be a set of measure zero. Is it possible that $E$ contains an interval?

M5. $C \subset[0,1]$ is the Cantor set. Let us define:

$$
C^{(2 k)}:=\{2 k \cdot x: x \in C\}, \quad k=1,2, \ldots
$$

and finally

$$
C^{(\infty)}:=\bigcup_{k=1}^{\infty} C^{(2 k)}
$$

Is $C^{(\infty)}$ measurable? If yes, compute it's measure.
M6. Prove that the measurability of function $|f|$ is a consequence of the measurability of function $f$. Is also the reverse implication true?

M7. Check the following properties of characteristic functions:
(a) $\chi_{A} \cdot \chi_{B}=\chi_{A \cap B}$,
(b) $\chi_{A}+\chi_{B}-\chi_{A \cap B}=\chi_{A \cup B}$,
(c) $\left|\chi_{A}-\chi_{B}\right|=\chi_{A \triangle B}, \quad \forall A, B \subset \mathbb{R}^{n}$.

Is it true or not:

1. A metric space is automatically a normed space.
2. $\ell_{1}$ is a proper subspace of $\ell_{2}$.
3. Dimension of $\ell_{2}$ is 2 .
4. Equipped with the Euclidean metric, $X=\mathbb{R}^{2}$ is separable.
5. Equipped with the discrete metric $d_{\text {discr }}, X=\mathbb{R}^{2}$ is not separable.
