FUNCTIONAL ANALYSIS

Exercise Problems

14.03.2018.

Metric space, Normed space, Inner product space

N1. Check whether the following formulas define metric on \mathbb{R} :

a)
$$d(x, y) = ||x| - |y|||$$

b) $d(x, y) = \sqrt{|x - y|}$
c) $d(x, y) = |\operatorname{arc} \operatorname{tg} x - \operatorname{arc} \operatorname{tg} y|$

N2. Check whether the following formulas define metric in \mathbb{R}^2 $(x = (x_1, x_2)$ és $y = (y_1, y_2)$):

a)
$$d(x, y) = \max(|x_1 - y_1|, |x_2 - y_2|),$$

b) $d(x, y) = \min(|x_1 - y_1|, |x_2 - y_2|),$

N3. Verify that the following $\|\cdot\|$ defines a norm in \mathbb{R}^2 $(a, b \in \mathbb{R}$ are fixed parameters):

$$||x|| = \sqrt{\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2}}, \quad x = (x_1, x_2) \epsilon \mathbb{R}^2.$$

Sketch the open unit ball in \mathbb{R}^2 with respect to this norm, when

a)
$$a = 2, b = 1,$$

b) $a = 3, b = \frac{1}{3}.$

N4. (Test exercise in 2015.) Let V be the space of 3×2 matrices. Verify that the following formula defines a norm in this linear space:

$$||A|| := \max_{i=1,2,3} (|a_{i1}| + |a_{i2}|), \qquad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \epsilon \mathbb{R}^{3 \times 2}.$$

/

N5. (Test exercise in 2015.) Let V be the space of 2×4 matrices. Verify that the following formula defines a norm in this linear space:

$$||A|| := \max_{i=1,2,3,4} (|a_{1i}| + |a_{2i}|), \qquad A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix} \epsilon \mathbb{R}^{2 \times 4}.$$

N6. (Exam exercice from 2016) Do these functions define norms on \mathbb{R}^2 ? Verify.

$$||(x,y)||_a = \left| |x| + 5 |y| \right|, \qquad ||(x,y)||_b = \left| |x| - 5 |y| \right|, \qquad (x,y) \in \mathbb{R}^2.$$

If it is a norm, some more questions:

- a) What is the induced metric?
- b) Sketch the open unit ball in \mathbb{R}^2 with respect to this norm.
- N7. Consider the linear space of continuously differentiable functions defined on [0,1], denoted by $C^1[0,1]$ terét. Which of the following formulas give norme on this vector space?
 - a) $N_1(f) = \max_{x \in [0,1]} |f(x)|,$ b) $N_2(f) = \max_{x \in [0,1]} |f'(x)|,$ c) $N_3(f) = \max_{x \in [0,1]} |f(x)| + \max_{x \in [0,1]} |f'(x)|,$ d) $N_4(f) = |f(0)| + \max_{x \in [0,1]} |f'(x)|.$
- N8. (Test exercise in 2014.) In ℓ^1 let us consider sequences that have only finite number of nonzero element. Verify that they form a dense subset in ℓ^1 -ben.
 - (+ Is a similar statement true in ℓ^{∞} ?)
- N9. (Test exercise in 2012.) Consider the following sequence space:

$$H = \{(x_n) \mid \sum_{n=1}^{\infty} x_n^2 (1+n^2) < \infty\}.$$

- a) Show that it is az inner product on $H: \langle x, y \rangle_H := \sum_{n=1}^{\infty} x_n y_n (1+n^2).$
- b) Verify that $H \subset \ell^2$.
- c) Verify for the induced norm: $||x||_H \ge ||x||_2$, ha $x \in H$.
- N10. Recall the definition of the sequence spaces $c, c_0, \ell_1, \ell_2, \ell_\infty$ and consider the sequences $x = (x_n), n = 1, 2, ...$ (denoted also by $\{x_n\}_{n=1}^{\infty}$ or $\mathbf{x} = (x_1, x_2, ...)$ or $\mathbf{x} = (x_1, x_2, ..., x_n, ...)$ etc.)

(a)
$$x_n = (-1)^n$$
, (b) $x_n = \frac{1}{\sqrt{nn}}$, (c) $x_n = (-1)^n \frac{1}{2^n}$, (d) $x_n = \frac{\sqrt[n]{2}}{n^2}$, $n = 1, 2, ...$

Do they belong to $c, c_0, \ell_1, \ell_2, \ell_{\infty}$ or not?

N11. Compute the norms of the sequences

(a)
$$x_n = 1$$
, (b) $x_n = \frac{1}{n}$, (c) $x_n = (-1)^n \frac{1}{n}$, (d) $x_n = \frac{1}{n^2}$, $n = 1, 2, ...$

in the sequence spaces c, c_0, ℓ_1, ℓ_2 , and ℓ_{∞} .

- N12. Point out that the standard $\|\cdot\|_{\infty}$ norm on dbR^n cannot be induced by a scalar product.
- N13. Point out that the standard $||\cdot||_{\infty}$ norm on the sequence space ℓ^{∞} cannot be induced by a scalar product.
- N14. Set f(x) = x and $g(x) = x^2$ whenever $x \in [0,1]$. Compute the distance between functions f and g with respect to the
 - (a) maximum-norm on C[0,1], (b) the L_1 -norm on C[0,1], (c) the L_2 -norm on C[0,1]

Toplogy in metric spaces

T1. (N, d_N) is a metric space, $A \subset N$ is an open set. $a \in A$ is an arbitrary point. Show that $A \setminus \{a\}$ is an open set.

- T2. Let $f_n, f \in C[a, b]$. Show that if $f_n \to f$ in $\|\cdot\|_{\max}$ norm, then $f_n \to f$ in $\|\cdot\|_1$ norm too. Is the converse statement true?
- T3. (N, d_N) is a metric space, $K \subset N$ has finite number of elements. Verify that K is compact.
- T4. (+) Let (X, d) be a compact metric space, and let $\{U_i : i \in I\}$ be an open cover of X. Verify that $\exists r > 0$, such that $\forall x \in X$ we have $B_r(x) \subset U_i$ for some *i*.
- T5. (+) $X = (0,1) \cup \{2\}$ with the usual metric d(x,y) = |x-y|. Which of the following sets are open or closed in this metric space: (0,1), $(0,1) \cup \{2\}$, $\{2\}$, $\left(0, \frac{1}{2}\right]$?
- T6. (Test exercise in 2016.) Let $E \subset \mathbb{R}$, $E \neq \emptyset$, such that m(E) = 0.

a) Verify that int $(E) = \emptyset$).

- b) Is it possible, that E is open? If yes, give an example.
- c) Is it possible, that E is closed? If yes, give an example.
- T7. Let $S = \{\mathbf{x} = (x_1, x_2, \dots, x_n, \dots) \epsilon \ell_2 \mid x_n = 0 \text{ for each } n > N = N(\mathbf{x})\}$. Is S a linear subspace of ℓ_2 ? Is it a closed subspace? Is it a complete subspace? Is it a dense subspace? Is S a Hilbert space? Can You construct a sequence in S without convergent subsequences? (A natural basis in S will do.)
- T8. Prove that countable subsets of \mathbb{R} are of measure zero.
- T9. Recall that $C[0,1] = (C[0,1], ||\cdot||_{max})$ is complete. Consider now (a) $(C[0,1], ||\cdot||_2)$ and (b) $(C[0,1], ||\cdot||_1)$, the spaces of continuous real functions defined on the interval [0,1] and equipped with the norms

(a)
$$||f||_1 = \int_0^1 |f(x)| \, dx$$
 and (b) $||f||_2 = \sqrt{\int_0^1 |f(x)|^2 \, dx}$, $f \in C[0,1]$,

respectively. Prove that none of them is complete.

T10. Consider the sequence space ℓ^{∞} and prove that its unit sphere $S_1 = \{x \in \ell^{\infty} : ||x||_{\infty} \leq 1\}$ is closed but not compact. Is there a countable dense set in ℓ^{∞} ?

Lebesgue-measure. Measurable functions.

M1. Let us consider the following set with the usual metric d(x, y) = |x-y|:

$$H = \{ x = \frac{j}{2^k} : k \in \mathbb{N}, \quad 1 \le j \le 2^k \}.$$

- a) Is it open? Is it closed? Is it compact?Ez a halmaz nyílt? Zárt? Kompakt?
- b) Is H Lebesgue-measurable? If yes, compute it's measure.
- M2. Let $E \subset \mathbb{R}$ be a null-set. Show that it has no interior point.
- M3. Define $H = \{x = \frac{p}{q}\sqrt{2} : p < q \in \mathbb{N}\}$. Is it measurable? If yes, compute it's measure.
- M4. Let $E \subset \mathbb{R}$ be a set of measure zero. Is it possible that E contains an interval?
- M5. $C \subset [0,1]$ is the Cantor set. Let us define:

$$C^{(2k)} := \{ 2k \cdot x : x \in C \}, \qquad k = 1, 2, \dots$$

and finally

$$C^{(\infty)} := \bigcup_{k=1}^{\infty} C^{(2k)}.$$

Is $C^{(\infty)}$ measurable? If yes, compute it's measure.

M6. Prove that the measurability of function |f| is a consequence of the measurability of function f. Is also the reverse implication true?

M7. Check the following properties of characteristic functions:

(a)
$$\chi_A \cdot \chi_B = \chi_{A \cap B}$$
, (b) $\chi_A + \chi_B - \chi_{A \cap B} = \chi_{A \cup B}$, (c) $|\chi_A - \chi_B| = \chi_{A \triangle B}$, $\forall A, B \subset \mathbb{R}^n$.

- Is it true or not:
- 1. A metric space is automatically a normed space.
- 2. ℓ_1 is a proper subspace of ℓ_2 .
- 3. Dimension of ℓ_2 is 2.
- 4. Equipped with the Euclidean metric, $X = \mathbb{R}^2$ is separable.
- 5. Equipped with the discrete metric d_{discr} , $X = \mathbb{R}^2$ is not separable.