- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

- 1. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0,1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- 2. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.