Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.

Functional analysis 2018, homework test 1.

1. What is the "distance" between the functions $f(x)=x$ and $g(x)=x^{2}$ in the functions space $C[0,1]$ with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_{2}$, respectively?
2. Prove that in ℓ^{1} the closed unit sphere $\bar{B}_{1}(0):=\left\{x \in \ell^{1}:\|x\|_{1} \leq 1\right\}$ is not compact.
