## FUNCTIONAL ANALYSIS 2018 - PRACTICAL LECTURE Practical lecture 7.

 $17\mathrm{th}$  and  $19\mathrm{th}$  of April

### System of orthonormal polynomials in $\mathcal{L}^2_{\rho}(X)$ .

- 1. We define the Chebyshev polynomials of the first kind:  $T_n(x) := \cos(n \cdot \arccos x)$  (n = 0, 1, 2, ...)
  - (a) What is the domain of  $T_n$ ?
  - (b) Show that  $T_n$  is indeed a polynomials of degree n and compute its main coefficient.
  - (c) Derive the polynomial form of the first three Chebyshev polynomials  $T_{1,2,3}$ .
  - (d) Show that for all  $n \ge 1$  the Chebyshev polynomials satisfy the following recursion:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
(1)

2. Show that the Chebyshev polynomials  $(T_n)$  form an orthogonal system in  $\mathcal{L}^2_{\varrho}(-1,1)$  with the weight function  $\varrho(x) = \frac{1}{\sqrt{1-x^2}}$  and with the weighted inner product:

$$\langle f,g \rangle_{2,\varrho} := \int_{-1}^{1} f(x)g(x) \frac{1}{\sqrt{1-x^2}} \,\mathrm{d}x.$$

- 3. Using the explicit (polynomial formula) of  $T_0$  and  $T_1$ , check that  $T_0$  and  $T_1$  are indeed orthogonal.
- $[HF_1]$  4. Using the explicit (polynomial formula) of  $T_0$  and  $T_2$ , check that  $T_0$  and  $T_2$  are indeed orthogonal.
  - 5. The Hermite polynomials define an orthogonal system of function in  $\mathcal{L}^2_{\varrho}(\mathbb{R})$ , where the weight function is  $\varrho(x) = e^{-x^2}$ .

$$H_n(x) = (-1)^n e^{x^2} \left( e^{-x^2} \right)^{(n)} \qquad (n = 0, 1, 2, 3, \ldots)$$

- (a) Check that functions  $H_n$  are indeed polynomials
- (b) Compute explicit form of the first three Hermite polynomials.
- (c) Compute the norm of  $H_1$ .
- (d) Check that  $H_0$  and  $H_1$  are indeed orthogonal with respect to the weighted norm  $\|\cdot\|_{\rho}$ .
- (e) Check that  $H_0$  and  $H_2$  are indeed orthogonal with respect to the weighted norm  $\|\cdot\|_{\rho}$ .
- 6. Following the orthogonalization of  $\{1, x, x^2, ...\}$  on the weighted space  $\mathcal{L}^2_{\varrho}(\mathbb{R}^+)$  with the weight function  $\varrho(x) = e^{-x}$ , we obtain the orthogonal Laguerre polynomials

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} \left( x^n e^{-x} \right) \qquad (n = 0, 1, 2, 3, \ldots)$$

- (a) Show that these are indeed polynomials.
- (b) Show that  $L_n$  and  $L_m$   $(n \neq m)$  are indeed orthogonal with respect to the given weighted norm  $\|\cdot\|_{\rho}$ .

#### Haar functions.

- 7. Draw the Haar functions  $H_{2,k}$  (k = 1, 2, 3, 4), and check their orthogonality.
- 8. Check that  $H_{1,1}$  is orthogonal to  $H_{2,k}$ .
- [HF<sub>2</sub>] 9. Give the formula of  $H_{3,k}$  and draw it, where k be the number of your birth day modulo 8 plus 1. Eg. April 21:  $k = (21 \mod 8) + 1 = 5 + 1 = 6$ .

#### Abstract linear operators

- 10. Show that for any linear operator  $T: X \to Y$  we have that T0 = 0, where X and Y are vector spaces above  $\mathbb{R}$  or  $\mathbb{C}$ .
- 11. Let X and Y be finite dimensional vector spaces.  $T: X \to Y$  is a linear operator. Give a matrix representation of T.
- 12. Let  $X = Y = \ell^2$  and T be the left-shift operator. Give an infinite dimensional matrix-vector product representation for T.
- [HF<sub>3</sub>] 13. Let  $X = Y = \ell^2$  and S be the right-shift operator. Give an infinite dimensional matrix-vector product representation for S.

# One possible application of orthogonal systems of functions: Curve fitting, function approximation

