Functional analysis 2018 - Practical lecture

 Practical lecture 7.

 Practical lecture 7.
 17th and 19th of April

System of orthonormal polynomials in $\mathcal{L}_{\varrho}^{2}(X)$.

1. We define the Chebyshev polynomials of the first kind: $T_{n}(x):=\cos (n \cdot \operatorname{arc} \cos x)(n=0,1,2, \ldots)$
(a) What is the domain of T_{n} ?
(b) Show that T_{n} is indeed a polynomials of degree n and compute its main coefficient.
(c) Derive the polynomial form of the first three Chebyshev polynomials $T_{1,2,3}$.
(d) Show that for all $n \geq 1$ the Chebyshev polynomials satisfy the following recursion:

$$
\begin{equation*}
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \tag{1}
\end{equation*}
$$

2. Show that the Chebyshev polynomials $\left(T_{n}\right)$ form an orthogonal system in $\mathcal{L}_{\varrho}^{2}(-1,1)$ with the weight function $\varrho(x)=\frac{1}{\sqrt{1-x^{2}}}$ and with the weighted inner product:

$$
\langle f, g\rangle_{2, \varrho}:=\int_{-1}^{1} f(x) g(x) \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x .
$$

3. Using the explicit (polynomial formula) of T_{0} and T_{1}, check that T_{0} and T_{1} are indeed orthogonal.
$\left[\mathrm{HF}_{1}\right]$ 4. Using the explicit (polynomial formula) of T_{0} and T_{2}, check that T_{0} and T_{2} are indeed orthogonal.
4. The Hermite polynomials define an orthogonal system of function in $\mathcal{L}_{\varrho}^{2}(\mathbb{R})$, where the weight function is $\varrho(x)=e^{-x^{2}}$.

$$
H_{n}(x)=(-1)^{n} e^{x^{2}}\left(e^{-x^{2}}\right)^{(n)} \quad(n=0,1,2,3, \ldots)
$$

(a) Check that functions H_{n} are indeed polynomials
(b) Compute explicit form of the first three Hermite polynomials.
(c) Compute the norm of H_{1}.
(d) Check that H_{0} and H_{1} are indeed orthogonal with respect to the weighted norm $\|\cdot\|_{\varrho}$.
(e) Check that H_{0} and H_{2} are indeed orthogonal with respect to the weighted norm $\|\cdot\|_{\varrho}$.
6. Following the orthogonalization of $\left\{1, x, x^{2}, \ldots\right\}$ on the weighted space $\mathcal{L}_{\varrho}^{2}\left(\mathbb{R}^{+}\right)$with the weight function $\varrho(x)=e^{-x}$, we obtain the orthogonal Laguerre polynomials

$$
L_{n}(x)=\frac{e^{x}}{n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(x^{n} e^{-x}\right) \quad(n=0,1,2,3, \ldots) .
$$

(a) Show that these are indeed polynomials.
(b) Show that L_{n} and $L_{m}(n \neq m)$ are indeed orthogonal with respect to the given weighted norm $\|\cdot\|_{\varrho}$.

Haar functions.

7. Draw the Haar functions $H_{2, k}(k=1,2,3,4)$, and check their orthogonality.
8. Check that $H_{1,1}$ is orthogonal to $H_{2, k}$.
[HF_{2}] 9. Give the formula of $H_{3, k}$ and draw it, where k be the number of your birth day modulo 8 plus 1 . Eg. April 21: $k=(21 \bmod 8)+1=5+1=6$.

Abstract linear operators

10. Show that for any linear operator $T: X \rightarrow Y$ we have that $T 0=0$, where X and Y are vector spaces above \mathbb{R} or \mathbb{C}.
11. Let X and Y be finite dimensional vector spaces. $T: X \rightarrow Y$ is a linear operator. Give a matrix representation of T.
12. Let $X=Y=\ell^{2}$ and T be the left-shift operator. Give an infinite dimensional matrix-vector product representation for T.
$\left[\mathrm{HF}_{3}\right]$ 13. Let $X=Y=\ell^{2}$ and S be the right-shift operator. Give an infinite dimensional matrix-vector product representation for S.

One possible application of orthogonal systems of functions:
Curve fitting, function approximation

With Chebyshev polynomials of order 6

