FUNCTIONAL ANALYSIS 2018 - PRACTICAL LECTURE Practical lecture 6.

 $10\mathrm{th}$ and $12\mathrm{th}$ of April

\mathcal{L}^p Lebesgue spaces.

- 1. Prove that $\mathcal{L}^2(0,1) \subset \mathcal{L}^1(0,1)$. Given $f \in \mathcal{L}^2(0,1)$, how to estimate $||f||_1$ in terms of $||f||_2$? What about inclusions between the spaces $\mathcal{L}^2(0,\infty)$ and $\mathcal{L}^1(0,\infty)$?
- 2. For x > 0, set $f_{\alpha}(x) = \frac{1}{x^{\alpha}}$ where $\alpha > 0$ is a parameter. Depending on α , determine if

(a)
$$f_{\alpha} \in \mathcal{L}^1(0,1)$$
, (b) $f_{\alpha} \in \mathcal{L}^1(1,\infty)$, (c) $f_{\alpha} \in \mathcal{L}^1(0,\infty)$

As a function of α , compute $||f_{\alpha}||_1$ in each case.

\mathcal{L}^2 Lebesgue spaces. Gram-Schmidt-orthogonalization, orthogonal polynomials.

- 3. Let $(f_n) \subset H$ be an orthonormal system. Show that (f_n) is also a linearly independent system.
- 4. Demonstrate that $\{1, \sin(kx), k = 1, 2, ...\}$ is complete in $\mathcal{L}^2[0, \pi]$.

[HF₁] 5. Demonstrate that $\{1, \cos(kx), k = 1, 2, ...\}$ is complete in $\mathcal{L}^2[0, \pi]$.

- 6. (Gram-Schmidt-orthogonalization) Let $(f_n, n \in \mathbb{N})$ be a linearly independent system in $\mathcal{L}^2(X)$. We assume that $(\varphi_1, ..., \varphi_{n-1})$ is an ON system in $\mathcal{L}^2(X)$. Let us denote
 - $V_n = \operatorname{span}\{\varphi_1, ..., \varphi_{n-1}\}$ (the vector space spanned by vectors $\varphi_1, ..., \varphi_{n-1}$)

•
$$\hat{f}_n = \sum_{k=1}^{n-1} \langle f_n, \varphi_k \rangle \varphi_k$$
 (the projection of f_n onto the subspace V_n spanned by vector $\varphi_1, ..., \varphi_{n-1}$)

Show that

(a)
$$f_n \in V_n$$

- (b) $f_n \hat{f}_n \perp V_n$
- 7. Consider functions $f_k(x) = x^k$ $(k \in \mathbb{N}_0)$ in the $\mathcal{L}^2([-1, 1])$ space. Compute the elements of Legendre polynomials $(P_k)_{k \in \mathbb{N}_0}$, i.e. apply the Gram-Schmidt-orthogonalization to the system of polynomials $(f_k)_{k \in \mathbb{N}_0}$.
 - (a) In case of k = 0 and k = 1.

[HF₂] (b) In case of k = 2.

8. Let $(x_n) \subset H$ be a sequence in an arbitrary Hilbert space. Show that if $\lim_{n \to \infty} x_n = x_0$ in H, than $\forall y \in H$ we have that

$$\lim_{n \to \infty} \left\langle x_n, y \right\rangle = \left\langle x_0, y \right\rangle.$$

- 9. Let $(e_n)_{n \in \mathbb{N}}$ be a complete system in a Hilbert space H. Show that completeness is equivalent with the following property: if for an $x \in H$ we have that $\langle x, e_n \rangle = 0$ for all n, then x = 0.
- 10. Verify that the explicit formula for the Legendre polynomials is:

$$P_n(x) = c_n \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n$$
, where $c_n = \sqrt{\frac{2n+1}{2}} \cdot \frac{1}{2^n \cdot n!}$

Show that P_n is a polynomial of degree *n*. Show that $P_n \perp P_m$ for all $n \neq m$.

11. Let

$$\left(\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos(kx), \frac{1}{\sqrt{\pi}}\sin(kx), k = 1, 2, ...\right)$$
(1)

be a system in $\mathcal{L}^2[-\pi,\pi]$. Show that this system is indeed orthonormal.

12. Let us consider the weighted $\mathcal{L}^2_{\rho}[-1,1]$ space, where the weight function is defined as follows:

$$\varrho(x) = \frac{1}{\sqrt{1 - x^2}}\tag{2}$$

Show that the set of functions $\{T_n : [-1,1] \to \mathbb{R} \mid T_n(x) = \cos(n \cos x)\}$ forms an ON system in $\mathcal{L}^2_{\varrho}[-1,1]$. Show that $T_n(x)$ is a polynomial of degree n.

(These functions are called Chebyshev polynomials of the first kind.)