Functional analysis 2018 - Practical lecture
 Practical lecture 6.
 10th and 12th of April

\mathcal{L}^{p} Lebesgue spaces.

1. Prove that $\mathcal{L}^{2}(0,1) \subset \mathcal{L}^{1}(0,1)$. Given $f \in \mathcal{L}^{2}(0,1)$, how to estimate $\|f\|_{1}$ in terms of $\|f\|_{2}$? What about inclusions between the spaces $\mathcal{L}^{2}(0, \infty)$ and $\mathcal{L}^{1}(0, \infty)$?
2. For $x>0$, set $f_{\alpha}(x)=\frac{1}{x^{\alpha}}$ where $\alpha>0$ is a parameter. Depending on α, determine if
(a) $f_{\alpha} \in \mathcal{L}^{1}(0,1)$,
(b) $f_{\alpha} \in \mathcal{L}^{1}(1, \infty)$,
(c) $\quad f_{\alpha} \in \mathcal{L}^{1}(0, \infty)$.

As a function of α, compute $\left\|f_{\alpha}\right\|_{1}$ in each case.

\mathcal{L}^{2} Lebesgue spaces. Gram-Schmidt-orthogonalization, orthogonal polynomials.

3. Let $\left(f_{n}\right) \subset H$ be an orthonormal system. Show that $\left(f_{n}\right)$ is also a linearly independent system.
4. Demonstrate that $\{1, \sin (k x), k=1,2, \ldots\}$ is complete in $\mathcal{L}^{2}[0, \pi]$.
$\left[\mathrm{HF}_{1}\right] 5$. Demonstrate that $\{1, \cos (k x), k=1,2, \ldots\}$ is complete in $\mathcal{L}^{2}[0, \pi]$.
5. (Gram-Schmidt-orthogonalization) Let $\left(f_{n}, n \in \mathbb{N}\right)$ be a linearly independent system in $\mathcal{L}^{2}(X)$. We assume that $\left(\varphi_{1}, \ldots, \varphi_{n-1}\right)$ is an ON system in $\mathcal{L}^{2}(X)$. Let us denote

- $V_{n}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{n-1}\right\}$ (the vector space spanned by vectors $\varphi_{1}, \ldots, \varphi_{n-1}$)
- $\hat{f}_{n}=\sum_{k=1}^{n-1}\left\langle f_{n}, \varphi_{k}\right\rangle \varphi_{k}$ (the projection of f_{n} onto the subspace V_{n} spanned by vector $\varphi_{1}, \ldots, \varphi_{n-1}$)

Show that
(a) $\hat{f}_{n} \in V_{n}$
(b) $f_{n}-\hat{f}_{n} \perp V_{n}$
7. Consider functions $f_{k}(x)=x^{k}\left(k \in \mathbb{N}_{0}\right)$ in the $\mathcal{L}^{2}([-1,1])$ space. Compute the elements of Legendre polynomials $\left(P_{k}\right)_{k \in \mathbb{N}_{0}}$, i.e. apply the Gram-Schmidt-orthogonalization to the system of polynomials $\left(f_{k}\right)_{k \in \mathbb{N}_{0}}$.
(a) In case of $k=0$ and $k=1$.
$\left[\mathrm{HF}_{2}\right]$ (b) In case of $k=2$.
8. Let $\left(x_{n}\right) \subset H$ be a sequence in an arbitrary Hilbert space. Show that if $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ in H, than $\forall y \in H$ we have that

$$
\lim _{n \rightarrow \infty}\left\langle x_{n}, y\right\rangle=\left\langle x_{0}, y\right\rangle .
$$

9. Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be a complete system in a Hilbert space H. Show that completeness is equivalent with the following property: if for an $x \in H$ we have that $\left\langle x, e_{n}\right\rangle=0$ for all n, then $x=0$.
10. Verify that the explicit formula for the Legendre polynomials is:

$$
P_{n}(x)=c_{n} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left(x^{2}-1\right)^{n}, \text { where } c_{n}=\sqrt{\frac{2 n+1}{2}} \cdot \frac{1}{2^{n} \cdot n!} .
$$

Show that P_{n} is a polynomial of degree n. Show that $P_{n} \perp P_{m}$ for all $n \neq m$.
11. Let

$$
\begin{equation*}
\left(\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \cos (k x), \frac{1}{\sqrt{\pi}} \sin (k x), k=1,2, \ldots\right) \tag{1}
\end{equation*}
$$

be a system in $\mathcal{L}^{2}[-\pi, \pi]$. Show that this system is indeed orthonormal.
12. Let us consider the weighted $\mathcal{L}_{\varrho}^{2}[-1,1]$ space, where the weight function is defined as follows:

$$
\begin{equation*}
\varrho(x)=\frac{1}{\sqrt{1-x^{2}}} \tag{2}
\end{equation*}
$$

Show that the set of functions $\left\{T_{n}:[-1,1] \rightarrow \mathbb{R} \mid T_{n}(x)=\cos (n \operatorname{acos} x)\right\}$ forms an ON system in $\mathcal{L}_{\varrho}^{2}[-1,1]$. Show that $T_{n}(x)$ is a polynomial of degree n.
(These functions are called Chebyshev polynomials of the first kind.)

