Functional analysis 2018 - Practical lecture
 Practical lecture 5.
 20th and 22th of March

Lebesgue integral.

1. Prove the following properties of the characteristic function:

$$
\begin{equation*}
\chi_{A} \cdot \chi_{B}=\chi_{A \cap B}, \quad \chi_{A}+\chi_{B}-\chi_{A \cap B}=\chi_{A \cup B}, \quad\left|\chi_{A}-\chi_{B}\right|=\chi_{A \triangle B} \tag{1}
\end{equation*}
$$

2. Show that the equality of two functions f and g for almost any x is an equivalence relation.
3. Show that if f and g are continuous functions and $f=g$ almost everywhere, then $f=g$ (everywhere).
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded measurable function. Show that f Lebesgue-integrable.
5. Show that if $f=g$ almost everywhere, then for every measurable set $A \in \mathcal{M}$ we have thatcd $\int_{A} f \mathrm{~d} m=$ $\int_{A} g \mathrm{~d} m$.
$\left[\mathrm{HF}_{1}\right]$ 6. Show that if $m(E)<\infty$ and $a \leq f(x) \leq b$, then $a \cdot m(E) \leq \int_{E} f \mathrm{~d} m \leq b \cdot m(E)$.
6. Show that if $f \in \mathcal{L}$, then $|f| \in \mathcal{L}$ and $\left|\int_{E} f \mathrm{~d} m\right| \leq \int_{E}|f| \mathrm{d} m$
7. Show that in case of a Lebesgue integral this statement is also true conversely, namely, if $|f| \in \mathcal{L}$ and f are measurable, then $f \in \mathcal{L}$.
$(* 5)$ Let $f:[0,1] \rightarrow \mathbb{R}$ be the following function (see Figure 1.):

$$
f(x)= \begin{cases}0 & x \in C \\ n & x \in C_{n-1} \backslash C_{n}(\text { if it's skipped in the } n \text {th step })\end{cases}
$$

where $C_{0}=[0,1], C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$, etc.. Compute the Lebesgue integral of this unusual function. Is this function Riemann-integrable?
$(* 6)$ Let $f: X \rightarrow \mathbb{R}$ measurable. Let us define the following function $F: X \rightarrow \mathbb{R}, F(t)=m(\{x \mid f(x)<t\})$. Show that F is monotonically increasing, left-continuous and

$$
\lim _{x \rightarrow-\infty} F(x)=0, \quad \lim _{x \rightarrow+\infty} F(x)=m(X)
$$

(We call F a distribution function for f.)
(*7) Let $f: R \rightarrow \mathbb{R}$ be a measurable function. Show that $\int_{A} f \mathrm{~d} m=$ $0, \forall A \subseteq R$ implies that $f(x)=0$ for almost every x.

Figure 1. Function $f(x)$ of exercise (${ }^{*} 5$) can be approximated by the following sequence:

$$
f_{n}(x)= \begin{cases}0 & x \in C_{n} \\ k & x \in C_{k-1} \backslash C_{k}, k=\overline{1, n}\end{cases}
$$

$f_{n} \rightarrow f$. This plot illustrates $f_{6}(x)$.

\mathcal{L}^{p} Lebesgue spaces.

9. Point out that the Dirichlet function $f_{D}(x)=1$ if $x \in \mathbb{Q}$ and 0 if $x \notin \mathbb{Q}$ is measurable (in the sense of Lebesgue but not in the sense of Riemann). Determine $\int_{\mathbb{R}} f_{D} \mathrm{~d} m$ and $\left\|f_{D}\right\|_{\infty}$.
$\left[\mathrm{HF}_{2}\right]$ 10. Consider an $f \in \mathcal{L}^{\infty}(\mathbb{R})$. Prove that $|f(x)| \leq\|f\|_{\infty}$ a.e.
10. For $x>0$, define $f(x)=\sin (x)$ and $g(x)=\sqrt{x}$. Do we have
(a) $f \in \mathcal{L}^{1}(0, \infty)$,
(b) $f \in \mathcal{L}^{1}(0, \pi)$,
(c) $g \in \mathcal{L}^{1}(0,1)$,
(d) $g \in \mathcal{L}^{1}(1, \infty)$.

What if - with a slight abuse of notation $-\mathcal{L}^{1}$ is replaced by \mathcal{L}^{2} or \mathcal{L}^{∞} ?
12. Prove that $\mathcal{L}^{2}(0,1) \subset \mathcal{L}^{1}(0,1)$. Given $f \in \mathcal{L}^{2}(0,1)$, how to estimate $\|f\|_{1}$ in terms of $\|f\|_{2}$. What about inclusions between the spaces $\mathcal{L}^{2}(0, \infty)$ and $\mathcal{L}^{1}(0, \infty)$.
13. For $x>0$, set $f_{\alpha}(x)=\frac{1}{x^{\alpha}}$ where $\alpha>0$ is a parameter. Depending on α, determine if
(a) $f_{\alpha} \in \mathcal{L}^{1}(0,1)$,
(b) $f_{\alpha} \in \mathcal{L}^{1}(1, \infty)$,
(c) $f_{\alpha} \in \mathcal{L}^{1}(0, \infty)$.

As a function of α, compute $\left\|f_{\alpha}\right\|_{1}$ in each case.

$n=3, \int s \mathrm{~d} m=10.754, \int f \mathrm{~d} m=12.5237$

$n=5, \int s \mathrm{~d} m=12.1274, \int f \mathrm{~d} m=12.5237$

Any nonnegative measurable function $f: E \rightarrow \mathbb{R}$ can be approximated by a nonnegative step function:

$$
\begin{equation*}
s(x)=\sum_{k=1}^{n} \frac{n k}{2^{n}} \cdot \mathcal{X}_{E_{k}}, \text { where } E_{k}=\left\{x \in E \left\lvert\, \frac{n k}{2^{n}} \leq f(x)<\frac{n(k+1)}{2^{n}}\right.\right\}, k=\overline{0, n-1} \tag{2}
\end{equation*}
$$

$$
\text { furthermore: } E_{n}=\{x \in E \mid n \leq f(x)\}
$$

