FUNCTIONAL ANALYSIS 2018 - PRACTICAL LECTURE Practical lecture 5.

20th and 22th of March

Lebesgue integral.

1. Prove the following properties of the characteristic function:

$$\chi_A \cdot \chi_B = \chi_{A \cap B}, \qquad \chi_A + \chi_B - \chi_{A \cap B} = \chi_{A \cup B}, \qquad |\chi_A - \chi_B| = \chi_{A \triangle B} \tag{1}$$

- 2. Show that the equality of two functions f and g for almost any x is an equivalence relation.
- 3. Show that if f and g are continuous functions and f = g almost everywhere, then f = g (everywhere).
- 4. Let $f:[a,b] \to \mathbb{R}$ be a bounded measurable function. Show that f Lebesgue-integrable.
- 5. Show that if f = g almost everywhere, then for every measurable set $A \in \mathcal{M}$ we have that $d \int_A f dm = \int_A g dm$.
- [HF₁] 6. Show that if $m(E) < \infty$ and $a \le f(x) \le b$, then $a \cdot m(E) \le \int_E f dm \le b \cdot m(E)$.
 - 7. Show that if $f \in \mathcal{L}$, then $|f| \in \mathcal{L}$ and $\left| \int_E f dm \right| \leq \int_E |f| dm$
 - 8. Show that in case of a Lebesgue integral this statement is also true conversely, namely, if $|f| \in \mathcal{L}$ and f are measurable, then $f \in \mathcal{L}$.
 - (*5) Let $f:[0,1] \to \mathbb{R}$ be the following function (see Figure 1.):

$$f(x) = \begin{cases} 0 & x \in C \\ n & x \in C_{n-1} \backslash C_n \text{ (if it's skipped in the nth step)} \end{cases}$$

where $C_0 = [0,1]$, $C_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$, etc.. Compute the Lebesgue integral of this unusual function. Is this function Riemann-integrable?

(*6) Let $f : X \to \mathbb{R}$ measurable. Let us define the following function $F : X \to \mathbb{R}$, $F(t) = m(\{x \mid f(x) < t\})$. Show that F is monotonically increasing, left-continuous and

$$\lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to +\infty} F(x) = m(X)$$

(We call F a distribution function for f.)

(*7) Let $f : R \to \mathbb{R}$ be a measurable function. Show that $\int_A f dm = 0, \forall A \subseteq R$ implies that f(x) = 0 for almost every x.

Figure 1. Function f(x) of exercise (*5) can be approximated by the following sequence:

$$f_n(x) = \begin{cases} 0 & x \in C_n \\ k & x \in C_{k-1} \setminus C_k, \ k = \overline{1, n} \end{cases}$$

$$f_n \to f. \text{ This plot illustrates } f_6(x).$$

\mathcal{L}^p Lebesgue spaces.

- 9. Point out that the Dirichlet function $f_D(x) = 1$ if $x \in \mathbb{Q}$ and 0 if $x \notin \mathbb{Q}$ is measurable (in the sense of Lebesgue but not in the sense of Riemann). Determine $\int_{\mathbb{R}} f_D \, \mathrm{d}m$ and $\|f_D\|_{\infty}$.
- [HF₂] 10. Consider an $f \in \mathcal{L}^{\infty}(\mathbb{R})$. Prove that $|f(x)| \leq ||f||_{\infty}$ a.e.
 - 11. For x > 0, define $f(x) = \sin(x)$ and $g(x) = \sqrt{x}$. Do we have

(a)
$$f \in \mathcal{L}^1(0,\infty)$$
, (b) $f \in \mathcal{L}^1(0,\pi)$, (c) $g \in \mathcal{L}^1(0,1)$, (d) $g \in \mathcal{L}^1(1,\infty)$

What if – with a slight abuse of notation – \mathcal{L}^1 is replaced by \mathcal{L}^2 or \mathcal{L}^{∞} ?

- 12. Prove that $\mathcal{L}^2(0,1) \subset \mathcal{L}^1(0,1)$. Given $f \in \mathcal{L}^2(0,1)$, how to estimate $||f||_1$ in terms of $||f||_2$. What about inclusions between the spaces $\mathcal{L}^2(0,\infty)$ and $\mathcal{L}^1(0,\infty)$.
- 13. For x > 0, set $f_{\alpha}(x) = \frac{1}{x^{\alpha}}$ where $\alpha > 0$ is a parameter. Depending on α , determine if

(a)
$$f_{\alpha} \in \mathcal{L}^{1}(0,1)$$
, (b) $f_{\alpha} \in \mathcal{L}^{1}(1,\infty)$, (c) $f_{\alpha} \in \mathcal{L}^{1}(0,\infty)$.

As a function of α , compute $||f_{\alpha}||_1$ in each case.

Any nonnegative measurable function $f: E \to \mathbb{R}$ can be approximated by a nonnegative step function:

$$s(x) = \sum_{k=1}^{n} \frac{nk}{2^n} \cdot \mathcal{X}_{E_k}, \text{ where } E_k = \left\{ x \in E \mid \frac{nk}{2^n} \le f(x) < \frac{n(k+1)}{2^n} \right\}, \ k = \overline{0, n-1}$$

$$\text{furthermore: } E_n = \left\{ x \in E \mid n \le f(x) \right\}$$

$$(2)$$