Functional analysis 2018 - Practical Lecture
 Practical lecture 4.
 6 of March and 8 of March

Introduction of the Lebesgue-measure. Cantor-set.

1. Let \mathcal{R} be a ring. Show that $A, B \in \mathcal{R}$ implies $A \cap B \in \mathcal{R}$.
2. Let \mathcal{R} be a σ-ring, then $A_{n} \in \mathcal{R}$ for every $n \in \mathbb{N}$ implies $\bigcap_{n=1}^{\infty} A_{n} \in \mathcal{R}$.
3. During the construction of the Lebesgue measure, on the ring \mathcal{E} we defined function m. Show that
(a) $m: \mathcal{E} \rightarrow \mathbb{R}^{+}$is σ-additive,
(b) \mathcal{E} is not a σ-algebra.
4. Show that if $E \in \mathcal{E}$ then $m^{*}(E)=m(E)$.
5. Show that if $A \subset \mathbb{R}$ is measurable, then A^{c} is also measurable.
6. Show that $A=\mathbb{Q}$ has zero measure.
$\left[\mathrm{HF}_{1}\right]$ 7. Given a set $A=\left\{\left.\frac{p}{2^{k}} \right\rvert\, k \in \mathbb{N}, 1 \leq p \leq 2^{k}-1\right\}$. Show that A is measurable and compute $m(A)$.
$\left[\mathrm{HF}_{2}\right]$ 8. (Monotonicity) Let $A \subset B \subset \mathbb{R}$ two measurable sets. Prove that $m(A) \leq m(B)$.
7. (Non-degeneracy) Let E be a non-empty open set. Show that $m(E) \neq 0$ (namely $m(E)>0$).
8. Let $A=\{x \in[0,1], x \notin \mathbb{Q}\}$. Show that a A is measurable and compute $m(A)$.
+1 Show, that there is a set $E \subset \mathbb{R}$, that is not Lebesgue-measurable.
9. Prove that the Cantor set is in \mathcal{M} and that is has a Lebesgue-measure 0 .
10. Show that the Cantor set is not countable.
[HF_{3}] 13. Show that $x=\frac{1}{4}$ is an element of the Cantor set.
(*4) Let us denote the Cantor set by C. Show that $C-C:=\left\{c_{1}-c_{2} \mid c_{1}, c_{2} \in C\right\}=[-1,1]$.

Lebesgue measurable functions.

14. Let \mathcal{M} be the σ-ring of Lebesgue-measurable sets. Then following are equivalent statements:
(a) $\{x \in \mathbb{R} \mid f(x)<a\}$ is measurable for all $a \in \mathbb{R}$. (We defined the measurability of f by this property.)
(b) $\{x \in \mathbb{R} \mid f(x) \leq a\}$ is measurable for all $a \in \mathbb{R}$.
(c) $\{x \in \mathbb{R} \mid f(x)>a\}$ is measurable for all $a \in \mathbb{R}$.
(d) $\{x \in \mathbb{R} \mid f(x) \geq a\}$ is measurable for all $a \in \mathbb{R}$.
15. Show that if f is measurable, then $\{x \in \mathbb{R} \mid f(x)=a\}$ is measurable for all $a \in \mathbb{R}$.
16. Prove that every continuous function is measurable.
17. Assume that f and g are both measurable. Then show that
(a) $(f \vee g)(x):=\max \{f(x), g(x)\}$ is also measurable function.
(b) the set $\{x \in \mathbb{R} \mid f(x)>g(x)\}$ is measurable.
(c) the set $\{x \in \mathbb{R} \mid f(x)=g(x)\}$ is measurable.
18. (a) Show that if f is measurable, then $|f|$ is also measurable.
(b) Show that the converse is not true: give an example where $|f|$ is measurable and f is not measurable.
