FUNCTIONAL ANALYSIS 2018 - PRACTICAL LECTURE Practical lecture 4. 6 of March and 8 of March

Introduction of the Lebesgue-measure. Cantor-set.

- 1. Let \mathcal{R} be a ring. Show that $A, B \in \mathcal{R}$ implies $A \cap B \in \mathcal{R}$.
- 2. Let \mathcal{R} be a σ -ring, then $A_n \in \mathcal{R}$ for every $n \in \mathbb{N}$ implies $\bigcap_{n=1}^{\infty} A_n \in \mathcal{R}$.
- 3. During the construction of the Lebesgue measure, on the ring \mathcal{E} we defined function m. Show that
 - (a) $m: \mathcal{E} \to \mathbb{R}^+$ is σ -additive,
 - (b) \mathcal{E} is not a σ -algebra.
- 4. Show that if $E \in \mathcal{E}$ then $m^*(E) = m(E)$.
- 5. Show that if $A \subset \mathbb{R}$ is measurable, then A^c is also measurable.
- 6. Show that $A = \mathbb{Q}$ has zero measure.

[HF₁] 7. Given a set $A = \left\{ \frac{p}{2^k} \mid k \in \mathbb{N}, 1 \le p \le 2^k - 1 \right\}$. Show that A is measurable and compute m(A).

- [HF₂] 8. (Monotonicity) Let $A \subset B \subset \mathbb{R}$ two measurable sets. Prove that $m(A) \leq m(B)$.
 - 9. (Non-degeneracy) Let E be a non-empty open set. Show that $m(E) \neq 0$ (namely m(E) > 0).
 - 10. Let $A = \{x \in [0,1], x \notin \mathbb{Q}\}$. Show that a A is measurable and compute m(A).
 - +1 Show, that there is a set $E \subset \mathbb{R}$, that is not Lebesgue-measurable.
 - 11. Prove that the Cantor set is in \mathcal{M} and that is has a Lebesgue-measure 0.
 - 12. Show that the Cantor set is not countable.

[HF₃] 13. Show that $x = \frac{1}{4}$ is an element of the Cantor set.

(*4) Let us denote the Cantor set by C. Show that $C - C := \{c_1 - c_2 \mid c_1, c_2 \in C\} = [-1, 1].$

Lebesgue measurable functions.

14. Let \mathcal{M} be the σ -ring of Lebesgue-measurable sets. Then following are equivalent statements:

- (a) $\{x \in \mathbb{R} \mid f(x) < a\}$ is measurable for all $a \in \mathbb{R}$. (We defined the measurability of f by this property.)
- (b) $\{x \in \mathbb{R} \mid f(x) \leq a\}$ is measurable for all $a \in \mathbb{R}$.
- (c) $\{x \in \mathbb{R} \mid f(x) > a\}$ is measurable for all $a \in \mathbb{R}$.
- (d) $\{x \in \mathbb{R} \mid f(x) \ge a\}$ is measurable for all $a \in \mathbb{R}$.
- 15. Show that if f is measurable, then $\{x \in \mathbb{R} \mid f(x) = a\}$ is measurable for all $a \in \mathbb{R}$.
- 16. Prove that every continuous function is measurable.
- 17. Assume that f and g are both measurable. Then show that
 - (a) $(f \lor g)(x) := \max\{f(x), g(x)\}$ is also measurable function.
 - (b) the set $\{x \in \mathbb{R} \mid f(x) > g(x)\}$ is measurable.
 - (c) the set $\{x \in \mathbb{R} \mid f(x) = g(x)\}$ is measurable.
- 18. (a) Show that if f is measurable, then |f| is also measurable.
 - (b) Show that the converse is not true: give an example where |f| is measurable and f is not measurable.