FUNCTIONAL ANALYSIS 2018 - PRACTICAL LECTURE Practical lecture 4. 6th and 8th of March

Open and closed sets, compact sets in metric space. (Material for the previous week)

- 1. Given a metric space (M, d). Prove that both \emptyset and M are open.
- 2. Prove that in a discrete metric space every set is both open and closed.
- 3. What are the compact sets in a discrete metric space? Give examples for compact and not compact sets.

Introduction to Lebesgue-measure. Cantor-set.

- 4. Let \mathcal{R} be a ring. Show that $A, B \in \mathcal{R}$ implies $A \cap B \in \mathcal{R}$.
- 5. Show that if \mathcal{R} is a σ -ring, than for every $A_n \in \mathcal{R}$, $n \in \mathbb{N}$ we have that $\bigcap_{n=1}^{\infty} A_n \in \mathcal{R}$.
- 6. During the construction of the Lebesgue measure on the ring of simple intervals \mathcal{E} , we defined function m. Show that $m : \mathcal{E} \to \mathbb{R}^+$ is σ -additive, and that \mathcal{E} is not a σ -algebra.
- 7. Show that measure m^* is the same as m if we restrict the measurable sets to \mathcal{E} .
- 8. Show that $A = \mathbb{Q}$ has zero measure.
- [HF₁] 9. Given a set $A = \left\{ \frac{p}{2^k} \mid k \in \mathbb{N}, 1 \le p \le 2^k 1 \right\}$. Prove that A is measurable and determine its measure.
- [HF₂] 10. (Monotonicity of measure) Let $A \subset B \subset \mathbb{R}$ two measurable sets. Prove that $m(A) \leq m(B)$.
 - 11. (Not degenerated) Let E be a non-empty open set. Than, show that $m(E) \neq 0$ (namely m(E) > 0).
 - 12. Let $A = \{x \in [0,1], x \in \mathbb{R} \setminus \mathbb{Q}\}$. Show that a A is measurable and compute m(A).
 - 13. Show that the Cantor set has Lebesgue measure zero.
 - 14. Show that the elements of the Cantor set are not countable.
 - 15. Show that $x = \frac{1}{4}$ is an element of the Cantor set.
 - (*4) Let us denote the Cantor set by C, than $C C := \{c_1 c_2 \mid c_1, c_2 \in C\} = [-1, 1].$
 - 16. Show that if $A \subset \mathcal{M}$ is measurable, than A^c is also measurable.

Lebesgue measurable functions.

- 17. Let \mathcal{M} be the σ -ring of the measurable functions.Lebesgue-mérték. We call function $f: \mathbb{R} \to \overline{\mathbb{R}}$ measurable if
 - (a) for all $a \in \mathbb{R}$ the level set $\{x \in \mathbb{R} \mid f(x) < a\} \in \mathcal{M}$ is measurable.

Show that the following definitions for the measurability of f are equivalent with (a):

- (b) for all $a \in \mathbb{R}$ the level set $\{x \in \mathbb{R} \mid f(x) \leq a\} \in \mathcal{M}$ is measurable.
- (c) for all $a \in \mathbb{R}$ the level set $\{x \in \mathbb{R} \mid f(x) > a\} \in \mathcal{M}$ is measurable.
- (d) for all $a \in \mathbb{R}$ the level set $\{x \in \mathbb{R} \mid f(x) \ge a\} \in \mathcal{M}$ is measurable.
- 18. Show that if f is measurable, than for all $a \in \mathbb{R}$ the level set $\{x \in \mathbb{R} \mid f(x) = a\} \in \mathcal{M}$ is measurable.
- 19. Show that if f is continuous, than f is measurable.

- 20. Show that if f and g are both measurable, than function $(f \lor g)(x) := \max\{f(x), g(x)\}$ is also measurable.
- 21. Show that if f is measurable, than |f| is also measurable. Is this statement true in the other direction?
- 22. Show that if f and g are both measurable, than the sets $\{x \in \mathbb{R} \mid f(x) > g(x)\}$ and $\{x \in \mathbb{R} \mid f(x) = g(x)\}$ are measurable.