FUNCTIONAL ANALYSIS 2018 - PRACTICAL LECTURE Practical lecture 3. 27th of February and 1st of March

Open and closed sets, compact sets in metric space

- 1. (a) Set $E \subset M$ is closed if and only if for all convergent sequence $(x_n) \subset E$ we have that $\lim x_n \in E$.
 - (b) Set $E \subset M$ is compact if and only if from every sequence $(x_n) \subset E$ we can chose a convergent subsequence (x_{n_k}) such that $\lim x_{n_k} \in E$.
- 2. Let (M, d) be a metric space. Prove that $E \subset M$ is closed only if $M \setminus E$ is open.
- 3. Prove that the union of an arbitrary number of open sets is open.
- 4. Prove that the intersection of an arbitrary number of closed sets is closed.
- 5. Prove that the intersection of a finite number of open sets is open.
- 6. Prove that in every metric space (M, d) $B_r(x_0)$ is open.
- 7. Prove that in a discrete metric space every set is both open and closed.
- 8. What are the compact sets in a discrete metric space? Give examples for compact and not compact sets.
- 9. Prove that a compact set is closed.
- 10. Prove that a compact set is bounded.
- 11. Prove that a subset $A \subset M$ in a metric space (M, d) is compact if and only if A is sequentially compact.
- 12. Prove that in ℓ^{∞} the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^{\infty} : \|x\|_{\infty} \leq 1\}$ is not compact, however, it is closed and bounded.

[HF₁] 13. Prove that in ℓ^1 the closed unit sphere $\overline{B}_1(0) := \{x \in \ell^1 : \|x\|_1 \le 1\}$ is not compact.

Separable metric spaces

- 14. Let $X = \mathbb{R}$.
 - (a) Prove that x is separable with the Euclidean norm.
 - (b) Prove that x is not separable with the discrete metrics.
- 15. Let $X = \mathbb{R}^2$.
 - (a) Prove that x is separable with the Euclidean norm.
 - (b) Prove that x is not separable with the discrete metrics.

[HF₂] 16. Prove that ℓ^{∞} is not separable.

Complete metric spaces. Banach-spaces. Hilbert spaces.

- 17. Prove that $(C[0,1], \|\cdot\|_{\infty})$ normed space is complete.
- 18. Prove that $(C[0,1], \|\cdot\|_2)$ normed space is incomplete.
- 19. What are the convergent sequences in discrete metric space. Is this space complete?

[HF₃] 20. Prove that the normed space $(C[0,1], \|\cdot\|_1)$ is incomplete

$$||f||_1 = \int_0^1 |f(x)| \mathrm{d}x.$$

- 21. Consider $(C[a, b], \|\cdot\|_{\infty})$ normed space. Show that if a given sequence $(f_n) \subset C[a, b]$ is a Cauchy sequence, than there exists $f_0 \in C[a, b], f_0(x) = \lim_{n \to \infty} f_n(x)$ s.t. (f_n) is uniformly convergent to f_0 .
- 22. Consider the followings functions in $C^{2}[-1, 1]$:

$$f_n(x) = \operatorname{sgn}(x) \cdot \sqrt[n]{|x|}.$$
(1)

Prove that (f_n) is a Cauchy sequence and is not convergent in $C^2[-1,1]$.