FUNCTIONAL ANALYSIS 2018 - PRACTICAL LECTURE Practical lecture 2. 20th and 22th of February

Metric spaces. Normed spaces. Inner product space.

- 1. Is it true that
 - (a) the normed space is also a metric space
 - (b) for every metric considered on a vector space there exists a norm such that the metric can be defined by this norm.
- 2. It is given a bounded closed interval $I = [a, b] \subset \mathbb{R}$. Let $X = \{f : [a, b] \to \mathbb{R}, \text{ is continuous } \}$ be the set of continuous functions.
 - (a) Show that X is a vector space.
 - (b) Show that the functions above are norm on the vector space X:

$$||f||_{\infty} := \max_{x \in [a,b]} |f(x)|, \qquad ||f||_2 := \left(\int_a^b |f^2(x)| \, \mathrm{d}x\right)^{\frac{1}{2}}.$$

- 3. Check whether from any inner-product space we can construct a normed space by the introduction of the norm $||x|| := \langle x, x \rangle^{\frac{1}{2}}$.
- 4. There are given two metric spaces (M, d_M) and (N, d_N) and a function $f : M \to N$. In the image space (N) we consider discrete metrics d_N . Show that, in this case, the function is continuous if and only if it is constant.
- (*1) Can we give a metric space, in which there exists to points x, y such that for some 0 < r < R we have that $B_R(x) \subsetneq B_r(y)$?
- (*2) Prove that in $\mathbb{R}^n \lim_{p \to \infty} \|x\|_p = \|x\|_{\infty}$, $\forall x \in \mathbb{R}^n$.

Sequence spaces. C[a, b]. Complete metric spaces, Banach spaces, Hilbert spaces.

- 1. Let $x_n = \frac{1}{n}$, $y_n = (-1)^n + \frac{1}{n}$, $z_n = (1 + \frac{1}{n})^n$, $v_n = \frac{1}{2^n}$. To which sequence space belong these sequences $x = (x_n)$, $y = (y_n)$, $z = (z_n)$ and a $v = (v_n)$? What is their norm?
- 2. To which of the following sequence spaces: c, c_0, ℓ^1, ℓ^2 , belongs the sequence $x = (x_n)_{n \in \mathbb{N}}$, where

(a)
$$x \equiv 1$$
 (b) $x_n = (-1)^n \frac{1}{n}$, (c) $x_n = \frac{1}{n^2}$ (1)

And what will be its norm in the given space.

- 3. Show that $\ell^1 \subset \ell^3$ and that $\ell^1 \neq \ell^3$. How is ℓ^∞ related to ℓ^1 and ℓ^3 ?
- 4. Show that the following rule is satisfied in any inner product space $(V, \langle \cdot, \cdot \rangle)$:

$$\forall x, y \in V$$
: if $\langle x, y \rangle = 0$ than $||x + y||^2 = ||x||^2 + ||y||^2$ (2)

5. Let $(X, \|\cdot\|)$ be a normed space. Supposed that the norm can be derived from an inner product. Show that, in this case, the so-called parallelogram rule is satisfied for every $x, y \in X$

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$
(3)

(*3) Prove the inverse of the previous proposition, namely if the parallelogram rule is satisfied for every $x, y \in X$ than the norm of $(X, \|\cdot\|)$ can be derived from an inner product.

- 6. What is the "distance" between the functions f(x) = x and $g(x) = \sqrt{x}$ in the functions space C[0, 1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
- [HF₁] 7. What is the "distance" between the functions f(x) = x and $g(x) = x^2$ in the functions space C[0, 1] with the supremum-norm $\|\cdot\|_{\infty}$ and the 2-norm $\|\cdot\|_2$, respectively?
 - 8. Show that the followings norms cannot be originated from an innerp product:
 - (a) $\left(\mathbb{R}^2, \left\|\cdot\right\|_{\infty}\right)$
 - $[HF_2]$ (b) $(\mathbb{R}^2, \|\cdot\|_1)$
 - 9. Show that the norm of $(C[0,1], \|\cdot\|_{\infty})$ cannot be originated from an innerp product.
 - 10. Consider the normed space $(C[0,1], \|\cdot\|_{\infty})$. Show that, if $f_n, f \in C[0,1]$ than $f_n \to f$ in the sense of the ∞ -norm $\|\cdot\|_{\infty}$ if and only if f_n tends uniformly to f on [0,1]. HU: Vagyis a normabeli konvergencia azonos az egyenletes konvergenciával.

Nyílt és zárt halmazok, kompakt halmazok metrikus térben.

- 11. Let (M, d) be a metric space. Show that $E \subset M$ is closed only if, $M \setminus E$ is open.
- 12. Show that union of any open sets is an open set.
- $[HF_3]$ 13. Show that the intersection of any closed set is a closed set.
 - 14. Show that the intersection of some (finite number of) open sets is an open set.