Functional analysis 2018 - Practical lecture

Practical lecture 1.

14th and 16th of February

Preliminary concepts. Metric spaces. Normed spaces.

1. Let M be an arbitrary set and $x, y \in M$ be two arbitrary elements of M

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 1, & \text { if } x \neq y\end{cases}
$$

Show that (M, d) is a metric space. This metric space is called the discrete metric space.
2. Let us consider the n-dimensional Euclidean vector space \mathbb{R}^{n}. Show that $d(x, y):=\#\left\{j: x_{j} \neq y_{j}\right\}$ is a metric over \mathbb{R}^{n}. Practically, this metric $d(x, y)$ gives the number of coordinates, in which the two vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ differ from each other.
3. Show that the following functions $\|\cdot\|_{1,2, \infty}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are norms on the Euclidean vector space \mathbb{R}^{n}.
(a) $\|x\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right|$,
(b) $\quad\|x\|_{2}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}$,
(c) $\|x\|_{\infty}:=\max _{i=1, \ldots, n}\left\{\left|x_{i}\right|\right\}$.

Give the formula of the corresponding metric generated from each norm.
4. Let $x=(1,1, \ldots, 1) \in \mathbb{R}^{n}$. Compute the length of x using the different norm definitions of Exercise 3.
$\left[\mathrm{HF}_{1}\right] 5$. If a is a strictly positive real valued parameter, is it true that $\|x\|:=\max \left\{\left|2 x_{1}-x_{2}\right|,\left|a x_{1}\right|\right\}$ is a norm on \mathbb{R}^{2} ?
6. If we consider the 2-dimensional Euclidean space \mathbb{R}^{2}, draw the ,,unit ball" ${ }^{1} B_{1}(0):=\left\{x \in \mathbb{R}^{2}:\|x\|_{i}<1\right\}$ considering each norm $\|\cdot\|_{i=1,2, \infty}$ of Exercise 3.
$\left[\mathrm{HF}_{2}\right]$ 7. Draw the „unit ball" of \mathbb{R}^{2} if the norm is defined as presented in $\left[\mathrm{HF}_{1}\right]$.
8. Is it true that
(a) the normed space is also a metric space
(b) for every metric considered on a vector space there exists a norm such that the metric can be defined by this norm.
9. It is given a bounded closed interval $I=[a, b] \subset \mathbb{R}$. Let $X=\{f:[a, b] \rightarrow \mathbb{R}$, is continuous $\}$ be the set of continuous functions.
(a) Show that X is a vector space.
(b) Show that the functions above are norm on the vector space X :

$$
\|f\|_{\infty}:=\max _{x \in[a, b]}|f(x)|, \quad \quad\|f\|_{2}:=\left(\int_{a}^{b}\left|f^{2}(x)\right| \mathrm{d} x\right)^{\frac{1}{2}}
$$

(*1) Can we give a metric space, in which there exists to points x, y such that for some $0<r<R$ we have that $B_{R}(x) \subsetneq B_{r}(y)$?
(*2) Prove that in $\mathbb{R}^{n} \lim _{p \rightarrow \infty}\|x\|_{p}=\|x\|_{\infty}, \quad \forall x \in \mathbb{R}^{n}$.

[^0]
[^0]: ${ }^{1}$ or „unit circle"

