Practical lecture 1.

14th and 16th of February

Preliminary concepts. Metric spaces. Normed spaces.

1. Let M be an arbitrary set and $x, y \in M$ be two arbitrary elements of M

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 1, & \text{if } x \neq y. \end{cases}$$

Show that (M, d) is a metric space. This metric space is called the discrete metric space.

- 2. Let us consider the *n*-dimensional Euclidean vector space \mathbb{R}^n . Show that $d(x, y) := \#\{j : x_j \neq y_j\}$ is a metric over \mathbb{R}^n . Practically, this metric d(x, y) gives the number of coordinates, in which the two vectors $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ differ from each other.
- 3. Show that the following functions $\|\cdot\|_{1,2,\infty}$: $\mathbb{R}^n \to \mathbb{R}$ are norms on the Euclidean vector space \mathbb{R}^n .

(a)
$$||x||_1 := \sum_{i=1}^n |x_i|,$$
 (b) $||x||_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2},$ (c) $||x||_\infty := \max_{i=1,\dots,n} \{|x_i|\}.$

Give the formula of the corresponding metric generated from each norm.

- 4. Let $x = (1, 1, ..., 1) \in \mathbb{R}^n$. Compute the length of x using the different norm definitions of Exercise 3.
- [HF₁] 5. If a is a strictly positive real valued parameter, is it true that $||x|| := \max\{|2x_1 x_2|, |ax_1|\}$ is a norm on \mathbb{R}^2 ?
 - 6. If we consider the 2-dimensional Euclidean space \mathbb{R}^2 , draw the "unit ball"¹ $B_1(0) := \{x \in \mathbb{R}^2 : \|x\|_i < 1\}$ considering each norm $\|\cdot\|_{i=1,2,\infty}$ of Exercise 3.
- $[HF_2]$ 7. Draw the "unit ball" of \mathbb{R}^2 if the norm is defined as presented in $[HF_1]$.
 - 8. Is it true that
 - (a) the normed space is also a metric space
 - (b) for every metric considered on a vector space there exists a norm such that the metric can be defined by this norm.
 - 9. It is given a bounded closed interval $I = [a, b] \subset \mathbb{R}$. Let $X = \{f : [a, b] \to \mathbb{R}, \text{ is continuous } \}$ be the set of continuous functions.
 - (a) Show that X is a vector space.
 - (b) Show that the functions above are norm on the vector space X:

$$||f||_{\infty} := \max_{x \in [a,b]} |f(x)|, \qquad ||f||_2 := \left(\int_a^b |f^2(x)| \, \mathrm{d}x\right)^{\frac{1}{2}}$$

- (*1) Can we give a metric space, in which there exists to points x, y such that for some 0 < r < R we have that $B_R(x) \subsetneq B_r(y)$?
- (*2) Prove that in $\mathbb{R}^n \lim_{p \to \infty} \|x\|_p = \|x\|_{\infty}$, $\forall x \in \mathbb{R}^n$.

¹or "unit circle"