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PREFACE

There seems to have been published, up to the present time, no English-

language volume in which an elementary introduction to the calculus of

variations is followed by extensive application of the subject to problems
of physics and theoretical engineering. The present volume is offered as

partial fulfillment of the need for such a book. Thus its chief purpose is

twofold :

(i) To provide for the senior or first-year graduate student in mathe-

matics, science, or engineering an introduction to the ideas and techniques
of the calculus of variations. (The material of the first seven chapters
with selected topics from the later chapters has been used several times

as the subject matter of a 10-week course in the Mathematics Department
at Stanford University.)

(ii) To illustrate the application of the calculus of variations in several

fields outside the realm of pure mathematics. (By far the greater

emphasis is placed upon this second aspect of the book's purpose.)
The range of topics considered may be determined at a glance in the

table of contents. Mention here of some of the more significant omis-

sions may be pertinent:

The vague, mechanical "d method" is avoided throughout. Thus,
while no advantage is taken of a sometimes convenient shorthand tactic,

there is eliminated a source of confusion which often grips the careful

student when confronted with its use.

No attempt is made to treat problems of sufficiency or existence: no
consideration is taken of the "second variation" or of the conditions of

Legendrc, Jacobi, and Weicrstrass. Besides being outside the scope of

the chief aim of this book, these matters are excellently treated in the

volumes of Bolza and Bliss listed in the Bibliography.

Expansion theorems for the eigenfunctions associated with certain

boundary-value problems are stated without proof. The proofs, beyond
the scope of this volume, can be constructed, in most instances, on the

basis of the theory of integral equations.

Space limitations prevent inclusion of such topics as perturbation

theory, heat flow, hydrodynamics, torsion and buckling of bars,

Schwingcr's treatment of atomic scattering, and others. However, the

reader who has mastered the essence of the material included should have

little difficulty in applying the calculus of variations to most of the

subjects which have been squeezed out.
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CHAPTER 1

INTRODUCTION

The definite integral

'-/"'('* 2)* >

is a well-defined quantity- a number when Xi and x% have definite

numerical values, when the integrand / is given as a function of the

arguments x, y, (dy/dx\ and when y is given as a Junction of x. The
"first" problem of the calculus of variations involves comparison of the

various values assumed by (1) when different choices of y as a function

of x are substituted into the integrand of (1). What is sought, specifi-

cally, is the particular function y = y(x) that gives to (1) its minimum

(or maximum) value. Explicit examples of this type of problem are given

.detailed treatment in Chap. 3. These include the problems of "the

shortest distance between two points on a given surface," "the curve of

quickest descent between two points," and "the surface of revolution of

minimum area."

Generalization of the first problem is effected in many directions. For

example, the integrand of (1) may be replaced by a function of several

dependent variables, with respect to which a minimum (or maximum) of

the definite integral is sought. Further, the functions with respect to

which the minimization (or maximization) is carried out may be required

to satisfy certain subsidiary conditions. Explicit examples of various

aspects of these generalizations are handled in Chaps. 3 and 4. An

important special case is the problem of "the maximum area bounded

by a closed curve of given perimeter."

Another line along which generalization is pursued is the replacement
of (1) by a multiple integral whose minimum (or maximum) is sought
with respect to one or more functions of the independent variables of

integration. Thus, for example, we seek to minimize the double integral

carried out over a fixed domain D of the xy plane, with respect to func-

tions w = w(x y y). Such problems are dealt with in the opening sections

of Chaps. 7 and 9.

l



CHAPTER 2

BACKGROUND PRELIMINARIES

2-1. Piecewise Continuity, Piecewise Differentiability

(a) Let x x<7 denote "x approaches x from the left" and x -> xJ

denote "x approaches #0 from the right.
" In this volume we consider

only those functions /(x) for which lim /(x) and lim /(x) both exist for
x *o~ x *zo +

all XQ interior to the interval (xi ^ x g x 2) in which f(x) is defined. At

the respective end points we require the existence of lim /(x) and lim f(x).
X*X^ X +X2~

If, for Xi < XQ < x 2 ,
lim f(x) lim /(x) /(x ), then/(x) is continuous
x >xo

' x>xo +

at x = XQ] otherwise f(x) exhibits a jump discontinuity at x = .TO . If

lim /(x) = /(xi), then/(x) is continuous at the left-hand end point x = x\\
x *xi +

otherwise /(x) exhibits a jump discontinuity at x = x\. An equivalent

statement holds for the right-hand end point x = x 2 .

A function is said to be piecewise continuous in an interval if it possesses

at most a finite number of jump discontinuities in the interval.

(6) A function is said to be differentiate at x = x if the limit as

x x of the ratio (A//Ax) =
{[/(x) /(x,,)]/(x x ) )

exists. If

lim (A//Ax) exists, the function is said to have a left-hand derivative at
x *XQ~

x = x
;
if lim (A//Ax) exists, the function is said to have a right-hand

a;-a-o+

derivative at x = x .

A function is said to be piecewise differentiable in Xi ^ x ^ x 2 if it

possesses a right- and left-hand derivative at every interior point of the

interval and if the two are equal at all but a finite number of points of

the interval. Further, the function must possess a right-hand derivative

at x = xi and a left-hand derivative at x = x 2 . Any point at which the

right- and left-hand derivatives are unequal we label "a point of dis-

continuity of the derivative/*

We eliminate consideration of any function whose derivative undergoes

infinitely many changes of sign in a finite interval. This elimination

precludes, incidentally, the appearance of any function of which the

derivative is discontinuous at a point although the right- and left-hand

derivatives are equal at the point.
4
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2-2. Partial and Total Differentiation

(o)Ifw =
f(x,y, . . . ,z),z

= x(r,, . . . ,0,2/
=

j/(r,

2 = (r,s, . . . ,0> then

du^tfteVfy.tfds
dr dx dr

~^
dydr

^ ~*~
dz dr

where r may successively be replaced by s, ...,.
(6) If u =

/(a;,?/, . . . ,2,0, x = z(0, y =
y(t), . . .

,
z = 2(0, then

. .

d< dZ dxdt dydt dz dt
^ }

(c) The quantity p(x,y) + q(x,y)y' where the prime indicates ordinary
differentiation with respect to x is the derivative (dg/dx) of some func-

tion g(x y y) if and only if (dp/dy) = (dq/dx). In this event p = (dg/dx),

q
= (dg/dy).

2-3. Differentiation of an Integral

(a) Jf

then

dl r// N r/ N dx% ft . dx \ [
Xi e

df ,

+
J,lM &^

provided (df/de) is a continuous function of c and of a: in #1 ^ a; g 0:2-

In case rci and x 2 are strictly constant (independent of c), the right-hand

member of (3) reduces to its final term.

(6) If the integrand / of a multiple integral / is a function of a parame-
ter c, as well as of the variables of integration, the derivative (d//de) is

computed by replacing/ by (df/de) as integrand function. It is assumed

that the region of integration is fixed (independent of e) and that (df/de)

is a continuous function of e and the variables of integration.

2-4. Integration by Parts

We repeatedly employ the rule for integration by parts

'5* <4>

in which it is required that / and g be everywhere continuous but merely

piecewise differentiable in x\ ^ x ^ # 2 .
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2-5. Euler's Theorem on Homogeneous Functions

A Ijtmction F(x,y, . . . ,z,u,v, . . . ,10) is said to be homogeneous, of

degree n, in the variables u, v, . . .
,
w if

,
for arbitrary h,

F(x,y, . . . ,z,hu,hv, ,M = hn
F(x,y, . . . ,z,u,v, . . . ,w). (5)

Any function for which (5) holds satisfies Euler's therorem:

' " +w
~dw

== nF (x >y >
' ' '

>
z

>
u

>
v

>
w)- (6j

2-6. Method of Undetermined Lagrange Multipliers

A necessary condition for a minimum (or maximum) of F(x,y, ...,)
with respect to variables x, y, . . .

,
z that satisfy

Gi (x,y, . . . ,z)
= d (i

=
1,2, . . . ,AT), (7)

where the d are given constants, is

dF* dF* dF*

AT

where F* = F + ) Xt<7i. The constants Xi, X 2 ,
. . .

, X^ introduced as

i = i

undetermined Lagrange multipliers are evaluated, together with the

minimizing (or maximizing) values of x, y, . . .
, z, by means of the set

of equations consisting of (7) and (8).

2-7. The Line Integral

(a) The line integral of the function f(x,y,z) from P\ to PI along the

finite curve C (assumed to consist of a finite number of smooth arcs) is

defined as follows:

We subdivide C into N arcs of lengths Asi, As2 ,
. . .

, As#. The func-

tion f(x,y,z) is evaluated at an arbitrary point (xk,yk,Zk) of the fcth subdivi-

sion and the product f(xk,yk,zk)ksk is formed, for each k =
1, 2, . . .

,
N.

N

We form the sum SN =
\f(xk,yk,Zk)Ask and proceed to refine the sub-

fc = i

division in such fashion that N increases without limit and the largest

As* approaches zero. If the limit of SN with respect to this unlimited

refinement exists (independently of the specific modes of subdivision),

it is by definition

limS* =
fc f(x,y,z)ds (9)

the line integral of / from PI to F 2 along C.
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Other forms of the line integral are

Jc f(x,y,z)dx, fc f(x,y,z)dy,
jc f(x,y,z)dz. (10)

In terms of the definition of (9) these are respectively equal to

fc ['<*"'> Ts\
ds

>

Since, however, the derivatives (dx/ds), (dy/ds), (dz/ds)- -computed with

respect to the curve C have algebraic signs that depend upon the direc-

tion (along C) assigned to the increase of s, the complete specification of

each of (10) requires a statement as to the direction (from PI to P 2 or

from P 2 to PI) in which the integration is carried out, i.e., the assignment
of the direction in which s is assumed to increase. (Thus, any one of the

integrals (10) carried out along C from PI to P 2 is the negative of the

same integral carried out along C from P 2 to PI.)

(6) To evaluate (9) we introduce the parametric equations x = x(t\

y =
y(t) y

z = z(t) of the arc C (where t increases in the direction of

increasing s) to form the definite integral

i (tl < , (11)

where t\ and fa are the values of t which denote the respective end points

of C. (The parameter / is in some cases conveniently chosen to be one

of the variables x, y, z, or even s.) The definite integral (11) provides

the evaluation of the line integral (9) ;
for the evaluation of the integrals

(10), the radical of (11) is replaced respectively by (dx/df), (dy/dt),

(dz/dt).

(c) An important example of a line integral is

taken counterclockwise about a simple closed curve C in the xy plane.

Here the parameter t is chosen so that the point [x(t),y(t)] traverses C
once in the counterclockwise sense as t increases from t\ to fa. The

integral (12) is equal to the area enclosed by C.

(d) Quite often involved in the integrand of a line integral taken about

a simple closed curve C in the xy plane is the normal derivative of a func-

tion w(x,y). The (outward) normal derivative is defined as

lim
u>(x,y)

-
w(x',y') = dw^

An-+o An dn
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where (x,y) lies on C, (x',y') lies interior to C on the normal drawn to C
at (x,y), and An is the distance from (x',y

f

) to (x,y).measured along the

normal.

A useful relation is

dw __ dw
d/y_ _ dw dx

(
.

dn dx ds dy ds

where (dy/ds) and (dx/ds) are computed with respect to C.

2-8. Determinants

(a) The general nth-order determinant

02n

0nl

(14)

is by definition a linear homogeneous function of the elements a fcl ,

0*2, . . .
, 0fcn of the /cth row, for each k =

1, 2, . . .
, n, such that it

is identically zero if two rows are identical and has the value 1 when

a,jk
= (k 7* j) and akk = 1 (fc

=
1,2, . . . ,n). In the special case

n =
2, the definition provides

for n =
3,

021 022 023

031 032 033

011
022 023 + 012

0210125

023 021

033 031
+ 013

0-21 022

031 032032 033

(6) A system of n simultaneous linear homogeneous equations

ajkXk = (j
=

1,2, ... ,n)

in the n unknowns Xi, #2, . . .
,
xn has a nontrivial solution whereby

not all the xk are equal to zero if and only if the determinant (14) of

the coefficients vanishes.

(c) The product of two nth-order determinants whose elements are

denoted respectively by a/* and bjk (j,k
=

1,2, . . . ,n, independently)

is the nth-order determinant whose elements are

Cjk + + Q,jnb

(j,k
=

1,2, ... ,n, independently).
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(d) If the elements of (14) are differentiable functions of a variable x,

the derivative of (14) with respect to x is the sum of n determinants,
the kill of which is formed by replacing each element of the fcth row of

(14) by its derivative with respect to x, for fc = 1, 2, . . .
,
n.

(e) A set of functions 0i(x,?/, ... ,2), </> 2 (x,i/, . . . ,z), . . .
, 4>*(x,y,

. . . ,z) is said to be linearly independent if no relation of the form

4l0i + ^ 2 </>2 + ' ' + A n <l>n
=

0,

where A\, A 2, . . .
, ^ln are constants, holds identically in or, y, . . .

,
z

unless A i
= ^4 2

= = A n = 0. Otherwise if such a relation holds

in which one or more of the A k differ from zero the functions are said to

be linearly dependent.

If the functions 0i(x), fa(x), . . .
, n (x) all satisfy the same nth-order

linear homogeneous differential equation, a necessary and sufficient con-

dition that they be linearly dependent is the identical vanishing of their

wronskian

w = (15)

where (fc)

(x) is the fcth derivative of with respect to x, for fc = 1,

2, . . .
,
n. (The prime replaces the superscript 1 in case fc = 1.)

(/) The functional determinant, or jacobian t
of MI, u%, . . .

,
UN with

respect to Xi, x 2 ,
r v is defined as

dXi

.
, "A / _ In r=

(fX'2

If Wi

i> 2/2,

. .
,
UN are differentiable functions of 1/1,

, I/AT are differentiable functions of xi, x 2 ,
.

and

, x.v ,
then

The change of coordinate variables x = x(u,v,w), y =
y(u,v,w),

z = z(u,v,w) is a one-to-one correspondence in any region of space in

which the jacobian [d(x,y,z)/d(u,v,w)] does not vanish. In two dimen-

sions a change of plane coordinate variables x =
x(u,v), y = y(u,v) is a
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one-to-one correspondence in any region of the xy plane in which the

jacobian [d(x,y)/d(u,v)} does not vanish.

A change of variables x x(u,v,w), y =
y(u,v,w), z = z(u,v,w) for the

evaluation of a triple integral is carried out according to the rule

]]]
F(x,y,z)dx dy dz

]]]
f(u,v,w)

d(u,v,w)
dudvdw, (16)

where / is the function F expressed in terms of w, v, w, and R is the

region R, but described by the variables u, v, w. A formula completely

analogous to (16) holds for the transformation of double integrals.

2-9. Formula for Surface Area

If z = z(x,y) is a single-valued continuously differentiable function of

x and y f
the area of a portion of the surface represented by this function

is given by

/ =

where the integration is carried out over the domain D of the xy plane
onto which the given portion of the surface projects.

2-10. Taylor's Theorem for Functions of Several Variables

If, in some neighborhood of (x ,y ,
. . . ,2 ), F(x,y, ... ,2) possesses

partial derivatives of order N with respect to all combinations of the vari-

ables x, y, ...
, z, we have the expansion, valid in that neighborhood,

4-

F(x,y, .-. . ,z)
= F(x ,Vo, . . . ,20) + f + 77

lY
ds/

tfr

where = x x
, 77

= y y^ . . .
, f = z z . Each "power" of

[ (d/dx) + rj(d/dy) + + f(d/dz)\ is formed according to the

laws of algebra, but with the coefficient of y . . . f
fc

interpreted as

(d
i ~H+ '"+k

/dx
i

dy
1

. . . dzk) multiplied by the proper numerical factor;

the subscript "0" implies the evaluation of the derivatives at x = x
,

y = yQj . . .
t

z = 2
;
and the subscript "0" implies the evaluation

of the Nth-order derivatives at x = x + 0, y =
3/0 + Oy, . . . ,

z . Zo + e? (0 < 9 < 1).
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2-11. The Surface Integral

(a) The surface integral of the function f(x,y,z) over the given finite

surface B (assumed to consist of a finite number of smooth portions
bounded by curves composed of a finite number of smooth arcs) is

defined as follows:

We subdivide B into N portions of area ASi, AS 2 ,
. . .

, AA$,V . The
function f(x yy,z) is evaluated at an arbitrary point (xk,yk ,Zk) of the fcth

subdivision, and we form the product f(xk,yk,Zk)&Sk for each k =
1, 2,

N

. . .
,
N. We form the sum 2^ = ^ f(xk,ykZk)&Sk and proceed to refine

fc-i

the subdivision in such fashion that N increases without limit and the

greatest distance between pairs of points of any subdivision approaches
zero. If the limit of 2 A* with respect to this unlimited refinement exists

(independently of the specific modes of subdivision), it is by definition

lim 2A- = f[f(x,y 9z)dS (17)

the surface integral of / over B.

(6) For the evaluation of (17) one introduces a set of surface coordi-

nates (v,w) such that one and only one pair of values of these variables

defines a single point on B through relations of the form x x(v,w),

y =
y(v,w), z =

z(v,w). With the introduction of these parametric

equations, the surface integral (17) is evaluated as the double integral

fff(x(v,w), y(v,w), z(v,w)) VEF - G 2 dv dw

carried out over the values of v and w that completely describe B, where

F

n _ **x dx
, dy dy dz dz

dv dw dv dw dv dw

(In case the curves v = constant meet the curves w = constant at right

angles, the quantity G vanishes identically.)

(c) Quite often involved in the integrand of a surface integral carried

out over a closed surface B is the normal derivative of a function U(x,y,z).

The (outward) normal derivative is defined as

U(x,y,z)
-

U(x',y',z') _ dU
nm---

*

An-o &n on

where (x,y,z) lies on B, (x',y',z') lies interior to B on the normal drawn
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to B at (x,y,z), and An is the distance from (x',y
f

,z
f

} to (x,y,z) measured

along the normal.

A useful relation is

dU dU . , . dU
(

. . dU
, , /10 ,= cos (n,x) + cos (n,y) + cos (n,z), (18)

where cos (n,x) is the cosine of the angle between the positive x direction

and the normal drawn outward from B at the point at which (dU/dn) is

computed. Cos (n,y) and cos (n,z) have corresponding meanings.
A second useful expression for the (outward) normal derivative is

**L = + ~^^ +
<fy ay

+
Tg "a^ n

;j /^ v~^ 1 v~s ~7 \~2
'

v 1 *^/

a?i>
2

where u(x,y,z)
= constant is the equation of the surface B. The plus

sign is chosen if (du/dri) > i.e., if u(x,y,z) increases along the normal

drawn outward from J5; the minus sign is chosen if (du/dn) < 0.

2-12. Gradient, Laplacian

(a) The gradient of the function 0(x,T/,), denoted by V<, is defined

as the vector whose cartesian components are respectively (d<l>/dx),

(d</>/dy), (d<t>/dz). The magnitude |V<| of V< -the square root of the

sum of the squares of the three components -is the normal derivative

(d<t>/dn), where the positive normal direction is perpendicular to the sur-

face <t>(x,y,z)
= constant, in the direction of increasing <.

(6) The scalar product of two vectors, defined as the product of the

respective magnitudes of the vectors multiplied by the cosine of the

angle between their directions, is equal to the sum of the products of

their respective cartesian components. In particular, if two vectors

have the same direction, the scalar product of the two is the product of

their magnitudes.

(c) The laplacian of a function <l>(x,y,z) is defined as

If
<f> depends only on x and y, the final term of (20) drops out. In this

case V 2
< is said to denote the two-dimensional laplacian.

2-13. Green's Theorem (Two Dimensions)

We consider a domain D of the xy plane bounded by a simple closed

curve C that consists of a finite number of smooth arcs. The line inte-
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grals which appear are carried out along C in the sense that an observer

walking forward along C in the direction of integration constantly has

D on his (or her) left.

(a) If P(x,y) and Q(x,y) are everywhere continuous in D and piecewise

continuous along (7, and if D may be subdivided into a finite number of

subdomairis in each of which the first partial derivatives of P and Q are

continuous, then

(b) By writing P =
rjG, Q =

rjF in (21), we obtain the two-dimensional

analogue of integration by parts

(22)

(c) By writing 77
=

^, G = (dj/dx), F = (dj/dy) in (22), we obtain,

with the aid of (13) of 2-7 (d),

+ ir) d* dV+ !+-**, (23)f dx dy dy)
J

J c
Y dn ^ '

D D

with the definition (20) of the (two-dimensional) laplacian.

An important special case of (23) is achieved by sotting \f/
=

<t>.

(d) By interchanging <t> and ^ in (23) and by subtracting the result

from (23), we obtain the Green's formula

dy = -
<f> ds. (24)

(e) By setting Q =
0, P = [G(dii/dx)

-
i>(dG/dx)] in (21), we obtain

// g ** -
//,g ** + I (0 g

-
, g) *. (25)

Z) D

Further, the use of P =
0, Q =

[G(drj/dy)
-

v(dG/dy)] in (21) provides
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By setting P = $[G(drj/dy)
-

rj(dG/dy)], Q = %[G(drj/dx)
-

i(dG/dx)] in

(21), we obtain, finally,

2-14. Green's Theorem (Three Dimensions)

We consider a region R bounded by the surface B which consists of a

finite number of smooth sections. (It may happen that B consists of

two or more unconnected portions, as in the case of a "hollow" region.)

(a) We let U(x,y,z), V(x,y,z), W(x,y,z) be continuous in R and suppose
that B may be subdivided into a finite number of portions on each of

which C7, F, W are continuous. Further, we assume that R may be

subdivided into a finite number of subregions in each of which the first

partial derivatives of [7, F, W are continuous. Then

[FtfdU . dV
,

dW\ , . , f[. TT , v , T7 , .

JJJ \dx
+

~dy
+

~dz)
y =

JJ
[

C S^ + C S (n?2/)

+ W cos (n,z)]dS, (28)

where cos (n,#), cos (n,y), cos (n,z) have the meanings assigned in 2-1 l(c).

(6) By writing U =
r;F, F =

>?G, IF = i?# in (28), we obtain the three-

dimensional analogue of integration by parts

R

+ // n[F cos (n,x) + G cos (n,y) + ff cos (n,z)]dS. (29)

(c) By writing 17
=

^, F = (d*/dx), G = (d0/dy), # == (d0/a^) in

(29), and with the aid of (18) of 2-1 l(c), we obtain

d8, (30)

with the definition (20) of the laplacian.
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An important special case of (30) is obtained by writing ^ = <.

(d) By setting ^ = 1 in (30), we obtain

dS. (31)

(e) In case R includes all of space, and if
\f/ approaches zero with suf-

ficient rapidity at distances far from the origin of coordinates, (30)

becomes, if <
=

^,

* * - - + + *+* (32)

where the integrals are carried out over all of space.



CHAPTER 3

INTRODUCTORY PROBLEMS
j

3-1. A Basic Lemma

(a) In the work of this and succeeding chapters we employ repeatedly
one or another form of the following basic, lemma:

// Xi and x z ( > Xi) are fixed constants and G(x) is a particular continuous

function for x\ ^ x ^ x*, and if

{** *l(x)G(x)dx =
(1)

for every choice of the continuously differentiate function r](x) for which

l(xi) =
rj(x 2 )

=
0, (2)

we conclude that

G(x) identically in Xi ^ x g z 2 . (3)

Proof of the foregoing lemma rests upon demonstration of the existence

of at least one suitable function TJ(X) for which (1) is violated when G(x) is

such that (3) does not hold:

We therefore suppose that (3) does not hold that, namely, there is a

particular value x f
of x\x\ < x' < x*) for which G(x') ^ 0; for the sake

of definiteness, we suppose G(x
f

) > 0. Since G(x) is continuous, there

must be an interval surrounding x 7

-say x[ ^ x ^ x 2 in which G(x) >
everywhere. But (1) cannot then hold for every permissible choice of

y(x). For example, we consider the function defined by

10

for Xi ^ x ^ x(,

(x
- x()\x

-
x',Y for x( ^ x g x'2 , (4)

for 0/2 ^ x ^ x z
'j

for this particular 17 (which satisfies (2) and is continuously differentiate,

clearly) the integral of (1) becomes

*'

n(x)G(x)dx = I**' (x
- x\Y(x -

x(YG(x)dx. (5)
i JX\

Since G(x) > in x{ ^ x ^ x^ the right-hand member of (5) is definitely

positive a violation of the hypothesis (1). A similar contradiction is

reached if we assume G(x') < 0. The lemma is hereby proved.
16
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(6) In some applications the basic lemma of (a) is required in a more
restrictive form. It is required, for example, that an integral of the form

(1) vanish for every continuously fawce-differentiable rj(x) for which (2)

holds. To prove the necessity of (3) we again suppose G(x) > in

x{ ^ x ^ 2 ,
but we choose for rj(x) the function equal to (x o^)

3

(#2 #)
3 in x[ ^ x ^ #2 an<l zero in the remainder of x\ ^ x ^ x 2 .

The details are left for exercise 1 (a) at the end of this chapter.

Similarly, the basic lemma of (a) holds if we require that rj(x) possess

continuous derivatives up to and including any given order [see exercise

1(6)1.

(c) If D is a domain of the xy plane, the vanishing of the double integral

l(x,y)G(x,y)dx dy (6)

for every continuously differentiate rj that vanishes on the boundary C
of D necessitates the identical vanishing of Gr

(x,7/), assumed continuous,
in /). The proof of this extension of the basic lemma, in essence the

same as the proof given in (a) above, is left for end-chapter exercise l(c).

Further, this two-dimensional form of the lemma still holds if we require

that r)(x,y) possess continuous partial derivatives up to and including any
given order [see exercise l(d)].

The extension of the basic lemma to integrals of any given multiplicity

is obvious [see exercise l(c)].

3-2.^ Statement and Formulation of Several Problems

The problems handled first in this chapter possess an intimate con-

nection which enables us to treat them all as special cases of one general

problem whose solution follows in 3-3. For this reason we state briefly

and formulate four problems in this section, with the aim of making
evident their common character.

(a) We first concern ourselves with the question: What plane curve

connecting two given points has the smallest arc length? As a first

approach to an answer we fix our attention upon two points (#1,2/1) and

(#2,2/2) in the xy plane, witto#i < x z ,
and a smooth curve of the form

y =
2/0*0 [y(xi)

=
2/1, 2/fo) =

2/2] (7)

connecting them. The length of the arc (7) is given by
~

7~2 dx, (8)

where y'
= y'(x) denotes the derivative (dy/dx). The problem thus

becomes one of choosing the function y(x) in such fashion that the inte-
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gral (8) has the smallest possible value. In 3-9 below, the restriction (7)

that y be a single-valued function of x is removed. This is done by con-

sidering arcs in the parametric form x =
x(t), y =

y(t), where t is the

parameter of the curve.

(6) A less trivial problem than the one posed in (a) resides in the

question: Given two points on the surface of a sphere, what is the arc,

lying on the surface and connecting the two points, which has the shortest

possible length? We immediately generalize the problem as follows:

Given two points on the surface

g(x,y,z)
-

0, (9)

what is the equation of the arc lying on (9) and connecting these points,

which, of all such connecting arcs, has the shortest length?
To formulate the more general problem, we express the equation of

the given surface (9) in parametric form, with parameters u and v :

x =
x(u,v), y =

y(u,v), z = z(u,v). (10)

In terms of the differentials of u and v, the square of the differential of

arc length may be written

(ds)
2 = (dxY + (dyY +

= P(u,v)(du)* + 2Q(u,v)du dv + R(u,v)(dv)*, (11)

where, by direct computation from (10), we have

d*

du

Q = fa dx dy
>

dy dz dz
V dudv^ du dv

^
du dv

U ;

(In case the curves u = constant are orthogonal to the curves v = con-

stant on the surface (9), the quantity Q is identically zero.)

If the given fixed points on the surface are (^1,^1) and (^2,^2), with

Uz > HI, and we limit our consideration to arcs whose equations are

expressible in the form

v = v(u) [v(ui)
=

vi, v(u2)
= v 2], (14)

the length of the arc is given, according to (11), by

+ 2Q(u,v)v' + R(u 9v)v^ du, (15)

where v' = v'(u) designates the derivative (dv/du). Our problem, then,

is to find the function v(u) that renders the integral (15) a minimum.
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and c is the parameter of the family. Thus, for each function 77(0:), we
have a single one-parameter family of the form (18); with 77(2) given,

each value of c designates a single member of that one-parameter-

family. The condition (19) ensures that Y(XI) =
y(xi) =

2/1 and

Y(XZ) =
2/0*^)

=
2/2! that is, all the comparison functions possess the

required end-point values of the functions with respect to which the

minimization is carried out. By suitable choice of 77 (oO and it is possi-

ble to represent any different!able function having the required end-point
values by an expression of the form (18). The essential importance of

the form (18) lies in the fact that no matter which family Y(x) we hap-

pen to deal with no matter, that is, which function 77 (x) is chosen

the minimizing function y(x) is a member of that family for the choice

of parameter value e = 0.

Geometrically, the discussion of the preceding paragraph deals with

one-parameter families of curves y = Y(x) connecting the points (0:1,2/1)

and (0:2,2/2). The minimizing arc y

y =
?/0*0 is a member of each family

for e = 0. The vertical deviation of

any curve y = Y(x) from the actual

minimizing arc is given by 677(0:).

(See Fig. 3-1.) For any permissi-

ble choice of 77(0:) it is possible to

choose a range of values of c say
e < < c -which renders the

product |er7(.r)| arbitrarily small for

all o: between xi and z 2 . The region
-

of the plane covered by the curves

y Y(x) for which \y(x) Y(x)\ is

belqw any assigned positive number is said to constitute a "neighborhood"
of the minimizing arc ?/

=
2/0*0-

Replacing y and y
r

in (17) respectively by Y(x) and Y'(x), we form

the integral

FIG. 3-1.

=
f"f(x,Y,Y')dx, (20)

where, for a given function 77(0:), this integral is clearly a function of the

parameter c. The argument Y' is given, through (18), by

Y'(x) = y'(x) (21)

We thus see, with the aid of (18), that the setting of e equal to zero is

equivalent to replacing Y and Y r

respectively by y and y'. Thus the

integral (20) is a minimum with respect to e for the value c = 0, accord-
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ing to our designation that y(x) is the actual minimizing function. This

fact holds no matter what is the choice of i)(x).

The problem at hand is reduced in this way to an ordinary minimum

problem of the differential calculus with respect to the single variable .

But, unlike most ordinary minimum problems, we know in advance the

value of the variable for which the minimum is achieved namely, = 0.

Thus we know that the necessary condition for a minimum, the vanish-

ing of the first derivative of / with respect to
,
must hold for = 0;

that is,

/'(O) = 0. (22)

Using the rule given in 2-3 (a) for the derivative of an integral with

respect to a parameter, we obtain

.
.

,OQ ,

a7* + W>* dx (23)

from (20), with the aid of (18) and (21). Since setting e equal to zero is

equivalent to replacing (Y,Y') by (y,y
f

), we have, according to (22)

and (23),

Integrating by parts the second term of this integral, we obtain 1

~*
because of the restriction (19). Since (24) must hold for all i), we may
use the basic lemma of 3-1 (a) to conclude that

JJ-T^W)- ' (25)

This equation the so-called Euler-Lagrange differential equation is in

general of second order. Its solution for any given problem of the type

We use the designation throughout this work as follows:

This must be distinguished from the notation

0(x)
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enunciated in 3-2 supplies the twice-differentiable minimizing function of

the integral of the problem, provided the minimum exists.

(c) It is to be noted in the procedure of (6) above that the condition

7'(0)
= is not a sufficient condition for a minimum of 7(e) for e = 0.

In fact the relation /'(O) = might even indicate a maximum of 7(c) for

= 0. In all the problems considered in 3-2, however, it is simple to

convince oneself that no maximum exists for the integrals involved. The
distance along a smooth arc connecting fixed points can be made as large

as we please; such is the case also for the time of descent down a curve

and for the area of the surface of revolution generated by a smooth arc

between fixed points. Yet the relation /'(O)
= may also indicate the

existence of what corresponds in the ordinary differential calculus to a

horizontal inflection at c = 0. That is, we may have a situation in

which for at least some choice of the function rj(x) introduced in (18)

the difference [/(c) /(O)] may change sign as passes through zero,

although the curve of 7(e) plotted as a function of c possesses a hori-

zontal tangent at 6 = for every choice of ij(x). As pointed out in (a)

above, detailed investigation as to which of the three situations mini-

mum, maximum, or
"
stationary

"
value prevails is in general beyond

the scope of our study. There are, however, a few specific cases in which

it is demonstrable in an elementary fashion that /'(O)
=

definitely

implies a minimum for e = 0, and these are handled in conjunction with

specific problems or are left for the exercises.

There are many problems that arise in our study wherein we have no

concern as to whether the condition /'(O)
= implies a maximum, mini-

mum, or stationary value of 7(e) at c = 0. We therefore find it useful

to apply the term extremum to the value 7(0) for all three situations.

The function y(x) which renders the integral 7 an extremum is accord-

ingly called the extremizing function. Thus a function y(x) which satis-

fies the Euler-Lagrange equation (25) and the imposed end-point con-

ditions is by definition the extremizing function for the integral upon
whose integrand / the equation (25) is generated.

Even in those cases for which an extremum is an actual minimum, it is

not necessarily an absolute minimum. It is recalled from the ordinary

differential calculus that a minimum characterized by the vanishing of

the first derivative is merely a relative minimum with respect to values

of the independent variable,in a neighborhood of the value for which the

first derivative vanishes. Thus, if 7(0) is a minimum achieved through
the function y(x) which renders 7'(0)

=
0, it must be a minimum only

relative to values of in the neighborhood of zero. In terms of the

neighborhood of the arc y = y(x) defined in (6) above, the function y(x)

minimizes the integral 7 if and only if there exists a neighborhood of
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y = y(x) such that every arc y = Y(x) ^ y(x) satisfying the required

end-point conditions and lying entirely within the neighborhood, renders

the value of 7 larger than 7(0). Thus, even though 7(0) is a minimum
for which 7'(0) =

0, there may be functions Y(x) for which y = Y(x)

lies outside the neighborhood described which render the integral 7 even

smaller than 7(0). Although this fact plays no role in our study, it is

mentioned here to point out a limitation of the theory as here developed.
This limitation is of particular significance in the minimum-surface-of-

revolution problem posed in 3-2 (d) and considered further in 3-7 (b)

below.

3-4. First Integrals of the Euler-Lagrange Equation. A Degenerate
Case

[a) A particularly simple Euler-Lagrange equation results if the inte-

grand function / is explicitly independent of the dependent variable y.

For then we have that (df/dy) vanishes identically, and (25) of 3-3(6)

becomes

dx \dy'
or

an arbitrary constant. Thus the quest for the extremizing function is

reduced to the solution of an equation involving y
f and x only, a first-

order differential equation.

If, further, jQs explicitly independent of the independent variable x, as

well as being independent of y, the partial derivative (df/dy') is a func-

tion of y' alone, so that the solution of (26) is simply y
f = C2 ,

where the

constant 2 is some function of d. Thus the extremizing functions for

cases in which the integrand / depends explicitly on y' alone are neces-

sarily linear functions of x. This fact immediately affords the solution

of the shortest-distance-in-the-plane problem of 3-2 (a) a straight line!

(b) We have the readily verifiable identity.- .--.
dx\ dy' dx\dy' dx dy

which suggests an obvious first integral of the Euler-Lagrange equation
in the special case that / is explicitly independent of the independent
variable x. For since (djjdx) = in'this event, we see that the Euler-
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Lagrange equation (25) implies the vanishing of the first member of

(27) namely,

(28)

or

'

an arbitrary constant (not necessarily the same as C\ in (a) above).

Thus the extremizing function may be obtained as the solution of a

first-order differential equation involving y and y
f

only.

(c) If the integrand function / of

is explicitly the total derivative with respect to x of some function of

x and y, then surely the integral / is independent of the particular choice

of the function 2/(x), so long as the prescribed end-point values y(x\) = y\

and 7/(z 2 )
=

2/2 are achieved. For if / =
(dg/dx), I is equal to the differ-

ence of the prescribed values of g(x,y) at the end points namely,

[#(#2,2/2) g(x \,y\)}- It is interesting to see what form the Euler-

Lagrange equation assumes in this event.

We have in this case

f _ dg _ dg ,

eto
,

;
"

dx
"

dx
^

dy
y '

so that the Euler-Lagrange equation (25) reads

* >g + d *
g

v' -
d

(
dy dx

^
dy

2 y dx \dy

But evaluation of the total derivative of (dg/dy) with respect to x shows

that this last equation is identically satisfied since

dy dx dx dy

This result suggests the question: What is the most general case in

which the Euler-Lagrange equation is identically satisfied? To discover

the answer we expand (25) of 3-3(6) as

_ _
dy dxdy' dydy' dy"

~
'

Since the first three terms on the left contain at the highest the first

derivative of y> the identical satisfaction of (29) requires the coefficient
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(d
2
f/dy'

2
) of y" to vanish identically. But this is equivalent to stating

that / must be a linear function of y
r

;
that is,

/ = P(x,y) + q(x,y)y'. (30)

Forming the Euler-Lagrange equation (25) for this particular /, we have

^ + ^ v>--^ = ^P--.5^ == ()

dy dy
y dx dy dx

for all x and y. But this, according to 2-2 (c), is precisely the condition

that (30) be the total derivative (dg/dx) of some function g(x,y).

Thus we have that a necessary and sufficient condition for an Euler-

Lagrange equation to be identically satisfied is that the integrand func-

tion be explicitly the derivative (dg/dx) of some function g(x,y). Implicit

in this result lies another fact of some significance: A necessary and suf-

ficient condition that the addition of a term to the integrand of a given

integral leave unaltered the corresponding Euler-Lagrange equation is

that the additional term be the derivative (dg/dx) of some function g(x y y).

This follows from the first result because of the linearity of the Euler-

Lagrange equation with respect to the integrand function /.

3-5, Geodesies

(a) We return to the problem posed above in 3-2(6) for the arc of

minimum length connecting two points ou a given surface. Such an arc

is termed a geodesic for the surface. The special case for the plane,

presented in 3-2(a), is solved in 3-4(a) above. According to (15) of

3-2(6) the integrand function for the problem is

/= VP + ZQv' + Rv'\ (31)

where F, Q, and R are three given functions of the surface coordinates

u and v; it is assumed that the minimizing arc has the form v = v(u).

According to (25) of 3-3(6) with u and v here playing the respective

roles of x and y v must satisfy the Euler-Lagrange equation which

reads, through (31),

dP_ /dO[ , / 2 <W?
dv
^ dv^ V

dv d Q + Rv'_ d ("
d^ \

In the special case where P, Q, and R are explicitly functions of u alone,

this last result becomes

Q + Rv r

= c
VP~+ Wv' + Rv' 2

l> (32)
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an arbitrary constant. In the event Q =
0, which is the case if the sur-

face curves u = constant are orthogonal to the curves v = constant,
v can be expressed directly in terms of u as an integral namely,

v-C [V = Ci I

J
,- C\R

(33)

as we obtain from (32) with the facts that v' = (dv/du) and that P and
R are given functions of u alone. The constant of integration in (33)

and Ci are determined so that (33) passes through the given fixed end

points.

(b) Still supposing that Q =
0, but now that P and R are explicit func-

tions of v alone, we are in a position to use the result of 3-4(6), which is

applicable in the case where /is explicitly independent of the independent
variable. From (28) of 3-4(6) and (31) of 3-5(o) with Q = we obtain

-7- _______ - ^P + Rv'*
\/P + tfr'

2

whence, since v' = (dv/du),

- C,
/ -T^W (34)

(c) As a particular case we consider the geodesic connecting two points

on a sphere. The parameters u, v most convenient for describing posi-

tion on the sphere surface are the colatitude v and the longitude u, with

x = a sin v cos u, y = a sin v sin u, z = a cos v, (35)

where a is the radius of the sphere. It is directly verifiable that v is the

angle between the positive z axis and the line drawn from the sphere

center to the designated point, that u is the angle between the xz plane

(x > 0) and the half plane bounded by the z axis and containing the

designated point, and that x 2 + y
2 + z* a 2

.

From (12) and (13) of 3-2(6) the parametric equations (35) of the

sphere give

P = a 2 sin 2
v, R = a 2

, Q = 0.

We are thus able to use the result (34) of (6) above to obtain

esc 2 v dvn f dv fu = Ci /
_.__ = /

J \/a
2 sin 4 v - C\ sin 2 v J 'CO

2 -
1]
- cot 2 v

8=8 - sin- 1
. __ == + C2 ,

Peter Polcz
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whence it follows that

/ . x-v x / n \ # COS V n
(sin C2)a sin v cos w (cos C^)a sm t; sin u -- =^= = 0.

'

With the use of (35) we see that the sphere geodesic lies on the plane

x sin C, - cos C, -
2 -

0,

which passes through the center of the sphere. Hence the familiar

result: The shortest arc connecting two points on the surface of a sphere

is the intersection of the sphere with the plane containing the given points

and the center of the sphere the so-called great-circle arc.

(d) To obtain the geodesic on a general surface of revolution we con-

sider the surface

y
2 + * 2 =

[<7(*)]
2

(36)

generated by revolving the curve y =
g(x), with g ^ 0, about the x axis.

A convenient parametric representation of this surface is

x =
u, y = g(u) cos v, z = g(u) sin v, (37)

which is readily verified to satisfy (36). From (12) and (13) of 3-2(ft)

equations (37) give directly

P = i + fo'Ml
2

,
R = [0()]

2
, Q = o.

The result (33) of (a) above is therefore applicable; from it we obtain

ffM V [0(w)]
2 -

C?

In 4-5(c) the general geodesic problem is again considered, but from a

point of view somewhat different from that taken in the present chapter.

3-6. The Brachistochrone

(a) With the results of 3-4 we are in a position to solve the brachis-

tochrone problem formulated in 3-2(c). The integrand

-
2/0

(38)

of the integral (16) of 3-2 (c) giving the time of descent is explicitly inde-

pendent of the independent variable x. We may therefore write down

immediately a first integral of the Euler-Lagrange equation namely,
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y'(df/dy')
- / = Ci according to the result of 3-4(6). From (38) we

thus obtain

V(y -
2/0) (i + 2/'

2
)

Solving this last result for i/'
= (dy/dx), we integrate both sides of the

resulting expression to obtain, on writing for the arbitrary constant

-
2/o dy

\/2a -
(y
-

t/ )

To evaluate this integral we substitute

Q

y 2/o
= 2a sin 2

^; (40)

with this (39) becomes

x = 2a \ sin 2 ~ dS = a(0
- sin 0) + x

, (41)

where x is the constant of integration.

(b) Rewriting (40) and combining it with (41), we have

x =
.TO + a(0

- sin 0), y =
t/ + a(l cos 0) (42)

for the parametric equations of the required curve of most rapid descent.

These are recognized to be the equations of the cycloid generated by the

motion of a fixed point on the circumference of a circle of radius a which

rolls on the positive side of the given line y = yQ . It can be shown 1 that

by adjustment of the arbitrary constants a and XQ it is always possible to

construct one and only one cycloid (42) of which one arch contains the

two points between which the brachistochrone is required to extend.

Moreover, this arc renders the time of descent an absolute minimum as

compared with all other connecting arcs. (The constant t/ is not arbi-

trary, but is given, according to 3-2(c), by

2/o
= yi

-
^ (43)

where ?/i is the ordinate of the starting point (xi,j/0, Vi the prescribed

initial speed, and g the constant acceleration due to gravity.)

The techniques we employ here to solve the brachistochrone problem
were not available to Johann Bernoulli in 1696. The method which is

essentially the one devised by Bernoulli to solve the problem is developed
below in Chap. 5.

1 See Bliss (1), p. 55.
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3-7. Minimum Surface of Revolution

(a) In the problem of "the minimum surface of revolution" given in

3-2(d) the integrand function

/ = y Vl + 2/'
2

(44)

is explicitly independent of x, so that we may use (28) of 3-4(6) to obtain

a first integral of the Euler-Lagrange equation. With (44) equation (28)

becomes

from which we obtain directly

x = _ Cl I
-

J v
== - -Ci cosh"' + C 2 ;vV -

c\

or

y = b cosh 7 > (45)

where we write C\ =
6, C2 =

a; 6 is positive.

The curve represented by (45) is called a catenary; the corresponding
surface of revolution about the x axis is called a catcnoid of revolution.

In the problem at hand we are required to adjust the arbitrary constants

a and 6 so that the catenary passes through the given end points (1,2/1)

and (2,2/2). The possibility of fulfilling this requirement is discussed

directly below:

(6) We choose a one-parameter family of catenaries from among (45)

characterized by the fact that every member passes through the left-hand

end point (1,2/1). Thus for this one-parameter family the constants a

and 6 are related by the condition

2/i
= 6 cosh -i-r > (46)

which we obtain by substituting (1,2/1) for (x,y) in (45). Our problem is

to discover which, if any, of this litter of catenaries passes through the

second end point (2,1/2). In Fig. 3-2 there are plotted several of the

curves (45) through (1,2/1) With this figure as reference we make a few

assertions without proof:

Every member of the family defined by (45) and (46) is tangent to

the dotted curve OE, the envelope of the family No member of the

family passes through any point B that is separated from (1,2/1) by the
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FIG. 3-2.

envelope. One and only one member passes through any given point F
on the envelope, which is its point of tangency. Through any point G,

not separated from (#1,2/1) by the

envelope, there pass exactly two

members of the family.

The assertions of the above para-

graph reflect, as do those that follow,

on the limitations of the theory as

developed in our study. If, for ex-

ample, the point (0*2,2/2) is at B, no

member of (45) fits the required end-

point conditions and we conclude that

the minimum surface area is not

generated by any curve of the form

y = y(x), where y(x) is twice differ-

entiable. It can be shown,
1 in this

event, that the minimum area is generated by the broken line whose

three segments are

x = Xi (0 g y ^ 2/i)> y =
(xi ^ x g z 2), x = x 2 (0 ^ y ^ 2/2).

This is the so-called Goldschmidt discontinuous solution.

But even when there is a unique catenary connecting the given end

points when (0*2,2/2) lies on the envelope OE it turns out that this

catenary does not render the surface area a minimum. Once again, the

minimum is afforded by the Goldschmidt solution. The catenary does

not even provide a relative minimum in the sense of 3-3(c).

In the case in which two catenaries of the family (45) fit the required

end-point conditions if (0*2,2/2) is not separated from (#1,2/1) by the enve-

lope OE a relative minimum of the surface area is supplied by the upper

catenary of the pair, but no minimum area is generated by the catenary
whose point of tangency with OE lies in the interval (#1 < x < # 2).

Although the criterion cannot be stated in simple terms, we may assert

further that, if (#2,2/2) is sufficiently far above (or to the left of) the enve-

lope, the upper catenary generates a surface area that is an absolute

minimum. Otherwise it provides merely a relative minimum, and the

absolute minimum is supplied by the Goldschmidt solution. In every

case the Goldschmidt solution by which the surface area generated is

clearly ir(y\ + yl) affords a relative minimum.

(c) It is obvious that the information given in (6) above is by no means

supplied by the limited theory here developed. Nevertheless, since the

1 See Bliss (1) for a detailed discussion of this problem, with proofs carrying beyond
the scope of the present study.
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principal aim of this work is to study the role of the calculus of vari-

ations as a branch of applied mathematics, we must be content, quite

often, to bypass such sophisticated problems as those of existence, singu-

lar solutions, and the like.

3-8. Several Dependent Variables

(a) We now proceed to derive the differential equations that must be

satisfied by the twice-differentiable functions x(i), y(t), . . .
, z(t) that

extremize the integral

(47)

with respect to those functions x, y, . . .
,
z which achieve prescribed

values at the fixed limits of integration t\ and fa, where t\ < fa. The

superior dot indicates ordinary differentiation with respect to the inde-

pendent variable t.

We denote the set of actual extremizing functions by x(t\ y(t), . . .
,

z(t) and proceed to form the one-parameter family of comparison functions

X(t) =
x(() + {(0, Y(t) -

y(t)

Z(t) =
z(t) + f(0, (48)

where
, 17, . . .

, f are arbitrary differentiate functions for which

*(i) =
f (fc)

=
iK*i)

=
rj(fa)

= - - = f (fa)
=

f(t 2 )
=

(49)

and is the parameter of the family. The condition (49) assures us that

every member of each comparison family satisfies the required prescribed

end-point conditions. We see, moreover, that no matter what the choice

of
, TJ, . . .

, f ,
the set of extremizing functions x(t\ y(t\ . . .

, z(t) is

a member of each comparison family for the parameter value c = 0.

Thus if we form the integral

(50)

by replacing x, y, . . .
, z, etc., in (47) by X, Y, . . .

, Z, etc., respec-

tively, we have that 7(0) is the extremum value sought. We therefore

conclude that

/'(O)
= 0. (51)

It follows from (48) that

X = x + 4 Y = y + 77, . . .
,

Z = z + ef . (52)
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Using the rule given in 2-3 (a), we form the derivative (dl/dt) of the

integral (50):

(53)

where we use (48) and (52) to derive the sequence of substitutions

(dX/dt) = {,..., (dZ/de) =
f. It is dear from (48) and (52) that

setting = is equivalent to replacing X, F, . . .
, Z, Jf

, F, . . .
,
Z

by .r, y, . . .
, z, f

, y, . . .
, z, respectively. Thus, because of (51), we

obtain from (53), on setting e = 0,

(54)

This last relation must hold for all choices of the functions (),

f(0. In particular, it holds for the special choice in which

ry,
. . .

, f arc identically zero, but for which (/.) is still arbitrary, con-

sistent with (49). With this selection of
, 17, . . .

, f we integrate by

parts the second term of the second member of (54) to obtain, since

*(i) =
*(fe)

=
0,

Since (55) holds for all
,
we conclude by applying the basic lemma of

3-1 (a) that

*

Through similar treatment of the successive pairs of terms of the second

member of (54) we derive like equations, with x replaced by r/, . . .
,

z.

Joining these equations with (56), we have

(57)

_ - n -.-a -
dx dt \dx)

~ U>
dy dt \dy)

~
U> ' * '

'
dz dt \dz

for the system of simultaneous Euler-Lagrange equations which must be

satisfied by the functions x(t) y y(t), . . .
, z(t) which render the integral

(47) an extremum.
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(6) The readily verified identity

_ -

dx dt\dx/ _dy dt\dy

_ _-Z
dz dt\dzj\ dt

suggests an important first integral of the system (57) in the special case

in which the integrand function / is explicitly independent of the inde-

pendent variable t. For in this case we have (df/dt) = 0; with (57)

this implies that the right-hand member of (58) vanishes. Thus we have

a first integral

of the system (57) whenever (df/dt) = 0; C\ is an arbitrary constant.

Other first integrals may be obtained directly from (57) in case / is

explicitly independent of any of the dependent variables x, y, . . .
,

z.

If, for example, (df/dx) =
0, the first of (57) implies directly that

(df/dx) = constant, etc.

3-9. Parametric Representation

(a) The results of 3-8 are directly applicable to problems of the type
introduced in 3-2 and solved in 3-5 to 3-7 when these are generalized so

as to include parametric relationships x =
x(t), y y(t) between the

variables x and y, rather than have the solutions restricted to relation-

ships in which one of the variables is a single-valued function of the

other, as, for example, y =
y(x). In some problems the requirement of

single-valuedness is excessively restrictive; for it turns out that the Euler-

Lagrange equation derived under the assumption that the extremizing
function is single-valued may have for the solution which satisfies the

given end-point conditions a relationship in which the dependent variable

is not a single-valued function of the independent variable. One cannot,

without further justification, accept such a solution as valid.

We proceed to show, however, that the extremizing relationship

between a pair of variables x and y is the same, whether the solution is

derived under the assumption that y is a single-valued function of x or

that. a more general parametric representation is required to express the

relationship between x and y. We do this by showing that the solution

of the Euler-Lagrange equation derived on the basis of the assumption
of the single-valuedness of y as a function of x satisfies also the system of
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Euler-Lagrange equations derived on the basis of the parametric relation-

ship between x and y.

Under the assumption that y is a single-valued function of x, the inte-

gral to be extremized is given as

"
f(x,y,y')dx, (60)

where y is required to have the values y\ and y* at x = x\ and x = x 2 .

If instead we use the parametric representation x =
x(t), y =

y(t), where

x(tj)
=

?j, y(tj)
=

yj forj =
1,2, the integral (GO) is transformed through

the relationships

where the superior dot indicates differentiation with respect to t:

7 =
l*f(x,y^idt.

(62)

The Eulcr-Lagrange equation corresponding to (60) is, according to

3-3(6),

T - (63)dx '

According to 3-8(a) the system of Euler-Lagrange equations associated

with (62) is, if we write

g(x,y,x,y) = f(x,y,y')x (y
f =

|j,
(64)

dg _ d
(dg\ _ dg _ d

fdg\ _ Q (

.

dx It \dx)
~

>

ty It \d~y)

"
' (65)

From (64) we obtain

d9- dl *9-t-t*Li
to

~
to X> to

~ } X
dy' x 2

With the aid of the second relation of (61) and the identity (27) of 3-4(6)

we thus have

We further obtain from (64)

*0_* ^-iJ^i-J^,
d^

~
dy

X
' dy~

X
dy'x~ dy''
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whence, according to the second of (61), we have

.

dt\dy dx\dy'

Combining this last result with the first of (68), and (67) with the

first of (66), we obtain the pair of equations

* _ _d /V\ = _,, ["# _ <L (9f\\
dx dt\dx)

y
[dy cteW/J'

dj. - 1 (*y\ = + \
dl_ - (*!

dy dt\dy) ^[dy dx\dy'

From this result we conclude that any relationship, single-valued or not,

that satisfies the Euler-Lagrange equation (63) derived on the basis of

an assumed single-valued solution y = y (x)-satisfies also the system

(65), whose derivation requires no assumption of single-valuedness of y

as a function of x. We are therefore justified in accepting as a valid

extremizing relationship any solution of the single Euler-Lagrange equa-
tion (63) ;

the single-valuedness assumption employed in its derivation is

shown to be unessential.

(b) Underlying the result demonstrated in (a) above is the assumed

possibility of representing the quantity to be extremized in the two dif-

ferent forms (60) and (62). It is of course only to those problems in

which the dual representation is possible that the result is applicable.

The problems enumerated in 3-2 are all of this class, as we may readily

verify. There are, however, other types of problems to which the result

is not applicable, but in these there arises no question of the sort that

leads to the investigation carried out in (a).

3-10. Undetermined End Points

Two simple generalizations of the brachistochrone problem, for exam-

ple, indicate a necessity for extending the theory of this chapter to include

hitherto neglected problems involving undetermined end points:

(i) What is the arc of quickest descent from a fixed point to a given
vertical line?

(ii) What is the arc of quickest descent from a fixed point to a given
curve?

The first of these questions involves the extremization of an integral

whose limits of integration are prescribed, but the extremization must be

carried out with respect to functions not prescribed at the upper limit.

The general case for such problems is handled in (a) below. In the

second of the above problems, we are given neither the upper limit of



3-10] INTRODUCTORY PROBLEMS 37

the integral to be extremized nor the upper-limit end-point value of the

functions with respect to which extremization is effected; we are, how-

ever, provided with a relationship between these two undetermined

quantities namely, the equation of the curve (supposed to lie in a

vertical plane) on which the descent is to end. The general case is

treated in (c) below.

(a) We seek to extremize the integral

'

f(x,y,y')dx,

with a*! and J 2 given, with respect to functions that attain the value y\

for x =
Ji, but for which no value is prescribed at x 22. In the

manner of 3-3(/>) we suppose that the twice-differentiable y(x) is the

actual extremizing function and set up the one-parameter family

Y(x) = y(x) + 677(2) (69)

of comparison functions. The differentiate function 77(2) is arbitrary to

within the condition

77(0-1)
=

0, (70)

and e is the parameter of the family defined by 77; for the value e = 0,

y(x) is a member of every family (69). Thus the integral

/() = f(x,Y,Y')dx (71)

where, according to (69),

Y' =
y' + en' (72)

is an extremum for c = 0. Thus we have 7'(0) = for all choices of 77.

After differentiating (71) with respect to e according to (3) of 2-3 (a),

we set equal to zeroequivalent, by (69) and (72), to replacing (F, F')

by (//,?/') to obtain

with the use of (dF/de) =
77 and (dY'/de) =

77'. Integrating by parts

the second term of (73), we get for (73) with the aid of (70)

7 '

(0)
= w

where 772 is written for 77(22).

Since (74) must hold for all choices of 77(2) consistent with (70), it must

in particular hold for those 77 for which 77(22)
=

772
= 0. For such 17(2)
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the second member of (74) reduces to the integral alone; by application

of the basic lemma of 3-1 (a) we conclude

-Q (75}~
' (75)

With this result, and for general ri(x) once again, the second member of

(74) reduces to its first term. Now, by choosing rj(xz)
=

r/ 2
=

1, the

vanishing for all r; of the term remaining requires fulfillment of the end-

point condition

dy'

= 0. (76)

From (75) we see that the differential equation is determined by the

integrand function/, and not at all by the end-point conditions; for (75)

is precisely the Euler-Lagrange equation derived in 3-3(6) under the con-

dition of fixed end points. The two constants of integration obtained in

the solution of (75), a second-order equation, are determined by the end-

point conditions y(xi) =
t/i and (76) provided, of course, a solution of

the problem exists.

The case in which the left-hand end point is free is left for the end-

chapter exercises. The result is the condition (76) applied at x x\

namely,

dy'

= 0. (77)

(b) Application of the result (76) to the problem of the curve of quickest

descent from a fixed point to the vertical line x = x^ gives, for the inte-

grand function (38) of 3-6 (a),

- =0 for x =
2 .

That is, the tangent to the cycloid giving the quickest descent must be

horizontal at the intersection with the line x =
2 . The construction is

always possible.

It is to be pointed out that the result (77) for the case in which the

left-hand end point is free is not applicable to the problem of quickest

descent from a vertical line to a fixed point. For (77), as well as (76),

is derived under the assumption that the integrand function / is not

explicitly a function of the value of y at the free end point; but as we

see from (38) and (43) of 3-6, the brachistochrone integrand function

/ depends explicitly upon y\. The problem of most rapid descent from

a given curve to a fixed point is handled separately in 3-1 1 below.
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(c) We seek to extremize the integral

/ =
f" f(x,y,y')dx (78)

with respect to functions which attain the value y\ for x = x\ and which

satisfy the given relation

g(*,y)
= o (79)

at the upper limit of integration, as yet undetermined. To this end we
set up the one-parameter family of comparison functions

Y(x) = y(x) + ,(*), (80)

where y(x) is the actual extremizing function, and TJ(Z) is arbitrary to

within differentiability and

0, (81)

which ensures that all the comparison arcs pass through the prescribed

point (xi,yi). The point of intersection of a comparison arc y = Y(x)

with the given curve (79) is denoted by (.Y 2,1
7
2 ). For the special case

e = the actual extremizing arc (A' 2,F 2 ) is denoted by (x 2 ,t/ 2). We
thus have, with (80),

F 2 ) =0, F2
= y(Xi) + tn(X 2). (82)

Since these relations hold for all *, we have that the total derivative of

(/(X 2,F 2) with respect to c must vanish. From (82) we therefore obtain,

on noting that .Y 2 is a function of e alone for any given TJ(X),

n =
d'x\

dg dg \ Y . dX2 . , y .
, t( v ^^2]

W* [
y (X *}

~fc
+ v(Al) + C7? (A2) ~dT J*

We set e = 0, whence A" 2 ,
F 2 and (dXt/dt) become respectively # 2 , t/ 2 and

(dX 2/rf) ; solving (83), with e = 0, for the latter quantity, we obtain

cdt )* (dg/dx,) + (dg/dy,)y't
(84)

where we write tjj
=

it(xt) and y't
=

y'(x-t). The result (84) is employed

directly below.

We form the integral

/() -
f*

t

f(x,Y,Y')dx
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by replacing # 2 , y, y' in (78) by Xi, F, F', respectively, where

Y' =
y'(x) + erj'Or),

according to (80). Thus since X 2 , F, Y' reduce to the respective extrem-

izing quantities x 2 , y, y' for e = 0, we have that /(O) is an extremum,
so that /'(O)

= 0. Using the rule (3) given in 2-3(a), we form the

derivative

//
/ \ a -A- 2

'w = --.

since (dF/de) =
17 and (d Y'/dt) V. Setting* = and then integrating

by parts the second term of the integral on the right, we obtain, with the

use of (81),

/'(O)
= / W*,"

With the aid of (84) this becomes

-/!

dy'

for all choices of 77 consistent with (81). Repeating the line of argument
carried out in (a) above with application of the basic lemma of 3-1 (a),

we conclude that y =
y(x) satisfies the Euler-Lagrange equation (75)

and, in addition to the left-hand end-point requirement y(xi) = y^ the

right-hand end-point condition

?
fl

= o. (85)

A similar result for x = x\ is to be obtained if the left-hand end point is

required to lie on a given curve h(x,y)
= 0. In this case (dg/dx^) and

(dg/dy*) are replaced by (dh/dxi) and (dh/dyi), respectively, in the end-

point condition.

(d) For the curve of quickest descent from a fixed point to a given

curve g(x,y) = application of the end-point condition (85) to the inte-

grand (38) for the brachistochrone gives the result
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Since the slope of g(x 1y)
= at (#2,2/2) is given by the negative of the

coefficient of 2/2, and since 2/2 is the slope of the extremizing curve at

(#2,2/2), this relation implies the orthogonality of the two curves at the

point of intersection.

3-11. Brachistochrone from a Given Curve to a Fixed Point

The solution to the problem of the arc of most rapid descent from a

given curve

h(x,y) = (86)

to a fixed point (#2,2/2) is furnished by the function y(x) which extremizes

the integral

/ =
f" f(yi,y,y')dx (87)

with respect to functions which attain the value r/ 2 for x = #o and which

satisfy the given relation (80) at the lower limit of integration, as yet
undetermined. The function / is given by

\/y -
2/0

,,2

2/o
=

0i
-

(88)

according to (38) and (43) of 3-0, where r\ and g are known constants.

To solve this problem we set up the one-parameter family of compari-
son functions

Y(x) = y(x) + !?(#), (89)

where y(x] is the actual extremizing function, and rj(x) is arbitrary to

within differentiability and

(# 2 )
=

0, (90)

so that every comparison arc passes through (#2,2/2). The point of inter-

section of a comparison arc y )'(#) with the given curve (80) is denoted

by (A'i,Fi), and is denoted by (x\<y\) when = 0- that is, for the actual

extremizing arc y = y(x). We thus have, with (89),

h(X l,Y l ) =0, Y! = y(X l ) + en(Xi), (91)

for all . Taking the total derivative of h(Xi,Yi) =
0, we obtain from

(91), in the manner used to reach (84) of 3-10(c),

___ _ =
dt ) (dh/dn) + (dh/dyjy'i \ dt ) (dh/dxj + (dh/dyjy?

(92)
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o, (dK,/efc) forwhere we write TH = T?(ZI), y{
=

2/'(zi), and

(dJ^Afc), (dFi/d*) when = 0.

The special dependence of the integrand function (88) on y and y\ pro-
vides another formula useful directly below namely,

--.
dyi

~
dy

This may be verified directly from (88) or be recognized as an immediate

consequence of the fact that y and y\ appear in / in the combination

(y
-

2/i) only.

We set up the integral

=
f*'f(Yi,Y 9 Y')dx (94)

by replacing xi, t/i, y, y' in (87) by Xi, Y
if Y, Y', respectively, where

Y' =
y'(x) + rj'(x), according to (89). Since Xi, YI, Y, Y' reduce to

the corresponding extremizing quantities for =
0, we have that (94) is

an extremum for =
0, so that /'(O) = 0> Using the rule (3) of 2-3 (a),

we differentiate (94) with respect to
,
then set c = 0, to obtain

~
* + ^7 n' \dx

dx

"\df _ d/d/
\Ty Tx\dy'

in which the final form is arrived at through integration by parts and

subsequent use of (90). With the help of both equations of (92) we are

led to the result

dh

dh

<>

Since (95) holds for &11 rj(x) which satisfy (90), it holds in particular

for those y(x) which also satisfy rii
=

17(0:1)
= 0. For such rj(x) the left-

hand member of (95) reduces to the second integral alone, and we may
apply the basic lemma of 3-1 (a) to conclude

-
dy dx \dy'

(96)
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With this result, and for arbitrary 77 once again, (95) reduces to the term

proportional to r^; thus by choosing TJ(#) so that 771
=

1, we obtain the

condition

dh dh
i' **

(97)
dh^

dh , dy'

dx\ dy\
1

dx\ dy\

Because of (93) and (96) the integral of (97) is readily evaluated as

/ ~ir~ dx ^ i T dx ^ / ~j \ -. i (tx == ~
T -.

Jxi dy\ Jxi dy Jxi dx\dy j &y *i. dy *,

With the use of this result, (97) becomes, at length,

~- = 0. (98)

But since / is explicitly independent of x, we may use the result (28) of

3-4(6), whereby (96) implies

-

With the aid of (99) and (88) equation (98) finally reads

where 7/2
=

y'(xz) is the slope of the extremizing curve at the right-hand

end point (0*2,2/2). Since the left-hand member of (100) is the slope of

h(x,y) = at the left-hand end point (xi,?/i), this final result expresses

the interesting fact that the tangent to the brachistochrone at the right-

hand end point is perpendicular to the tangent to the given curve

h(x,y) = at the left-hand end point! (The brachistochrone is again a

cycloid, inasmuch as the extremizing function must satisfy the same differ-

ential equation (96) as in the fixed-end-point case handled above in 3-6.)

EXERCISES

1. (a) Carry through the details of the proof of the basic lemma of 3-1 (a) in which

TJ(O;) is assumed to be twice continuously difTerentiable in x\ ^ x ^ x 2 .

(6) Extend the proof of the basic lemma to the case in which rj(x) is required to

possess a continuous derivative of fcth order in addition to satisfying (2). HINT: If

O(x) > in x{ : x ^ ,, let TJ [(x x^(xt x)]
k+l in this subinterval, with 170

in the remainder of x\ ^ x ^ x.
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(c) Prove that G(x,y) = identically in D is necessary for the vanishing of (6) for all

continuously differentiate *i(x,y) that vanish on C, provided G(x,y) is continuous in D.

HINT: If G(x,y) > in x( ^ x ^ x'2 , y[ ^ y ^ y'2 ,
let 17

= everywhere in D outside

this rectangle; in the rectangle let ij
= [(x x()(x x'

2 )(y y{)(y y'2 )]
2

.

(d) Extend part (c) to the case in which t] is required to have continuous partial

derivatives of all orders up to and including the fcth. HINT: See part (b) above.

(e) Extend the basic lemma to integrals of multiplicity m, with -n required to satisfy

differentiability conditions of the type required in part (d).

2. (a) Regarding the left-hand member of the obvious inequality

f" \g(x) + th(x)Y dx^O
JXl

as a quadratic function of f, where t is arbitrary, prove the (Schwartz's) inequality

/X2

f X2 ( f Xt } 2

h*dx
/ g

z dx ^ { / gh <lx\ , (101)
i Jxi ( Jxi J

where the equality sign holds if and only if y(x) = Ah(x), where A is some constant.

(6) Given that y(x\) =
?/i, y(x*) y-2 and that p(x) is a known function, use (101)

to prove that the absolute minimum of

p*y'*dx (102)

is

(2/2 y\}^

f** (dxl )'
(103)

Jxi

and that this minimum is attained if and only if

where A is an arbitrary constant. HINT: /

'

?/' dx - y z ?/i.
Jxi

(c) Show that (104) is a first integral of the Euler-Lagrange equation associated with

the integral (102). Thus it is shown that the extremum of (102) is an absolute mini-

mum. Verify that (103) is the value of (102) when (104) is substituted.

3. (a) Show that, if y satisfies the Euler-Lagrange equation associated with tho.

integral

/ -
I**
W* + q*y*)dx, (105)

where p(x) and q(x) are known functions, 7 has the value (p^yy')
JXl

(6) Show that, if y satisfies the Euler-Lagrange equation associated with (105),

and if z(x) is an arbitrary differentiate function for which

- *(*,) -
0, (106)

then
'~

1

(pV*
/

+q*yz)dx -0.



INTRODUCTORY PROBLEMS 45

Hence show that by replacing y in (105) by the function (y -f z), where the condition

(106) ensures that y and (y -j- z) have the same end-point values, the value of / is

increased by the nonnegative amount

Thus it is shown that the extremizing function y renders (105) an absolute minimum
with respect to differentiate functions assuming the required end-point values y\

and 7/2.

4. (a) Given

f"f(y,y')dx,
(107)

reverse the roles of dependent and independent variables in order to rewrite (107) in

the form

7 =
fjj

0(y >
x

'

)dy * (108)

where x' = (dx
!

'dy).

(b) Write down the obvious first integral of the Kuler-Lagrange equation associated

with (108), according to 3-4 (a). Rewrite this first integral in terms of / and with x

once again as independent variable, in order to achieve the result (28) of 3-4(6).

This method of deriving (28) should meet the objection often raised against pulling
the identity (27) out of thin air. HINT: This derivation is implicit in the work of

3-9 (a), up to and including the second of equations (66).

6. Show that the family of geodesies on the paraboloid of revolution

x ~
u, y = V M cos r, z \/u sin v

has the form

u - C2 = w(l + 4C 2
) sin 2

|p
- 2C log A-[2 Vn - C* + \/4u + 1]|, (109)

where C and k are arbitrary constants. Although i is in general not a single-valued

function of u here, the validity of (109) rests upon the result of 3-9(a).

6. (a) Prove that any geodesic on one nappe of the right circular cone

x * = &'(//' 4- 22) (110)

has the following property: If the nappe is cut from the vertex along a generator and
the surface of the cone is made to lie flat on a plane surface, the geodesic becomes a

straight line. HINT: Show first that, if the cone is described in terms of the param-
eters r, B in the form

br r cos ($ \/l + & 2
) r sin (9 \/l + b 2

)
- - -"-- ----~- - -

which satisfies (110), the variables r and represent ordinary polar coordinates on the

flattened surface of the cone, with the origin at the vertex. Identify the geodesic

r r(0) as the equation of a straight line in polar coordinates.

(6) Prove the analogous property for geodesies on a right circular cylinder.

(c) Prove the same for an arbitrary cylindrical surface.
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7. (a) Derive the differential equation satisfied by the four-times-differentiable

function y(x) which extremizes the integral

-
f*'f(x,y,y',y")dxJxi

under the condition that both y and y' are prescribed at x\ and XL

(b) Show that, if neither y nor y' is prescribed at either end point, the conditions

dy"
'

dy' dx \dy"

must be met at x = x\ and x = x*.

(c) Generalize the result of (a) by supposing

/ - f(x,y,y
f

,
. . . ,y

(l

where 7/
(n) designates the nth derivative of y(x).

8. (a) Show that, if we define

')dx

as in 3-3(6), we have

f*'f(x,Y')

Thus we conclude that, if (df/dy) = and

~^ ^ for xi g x ^ s2, (111)

the extremum 7(0) is surely a minimum if a minimizing function of the single-valued

form y = y(x), with y twice differentiable, exists. (The inequality (111) is meant to

exclude the identical vanishing of (d*f/dy'*) in the interval.)

(b) Show that the function / for the geodesic on a surface of revolution in 3-5 (d)

satisfies the conditions of (a).

9. Show that, if y\ ==
7/2, no catenary of the family (45) passes through (x\ t y\) and

(x2,2/ 2) if

cosh p 27/i

where p is the negative root of

p sinh p cosh p - 0. (113)

HINT: First show that a = \(x\ -f x 2 ) when y\ =
7/2 and let p = [(x\ a)/b]. Next

show that equality of the two members of (112) is required for a catenary to pass

through both end points. Hence, if the maximum of the left-hand member of (112)

is less than the right-hand member, there is no p for which equality can obtain. Show
that the maximizing p is the negative root of (113).

Approximately, (112) reads (z 2 x\) > 1.327/1.

10. Use Euler's theorem on homogeneous functions (2-5) to prove that the first

integral (59) reduces to an identity, with C\ 0, when / is homogeneous in

ac, y, . . . , z of the first degree.

11. (a) Show, in 3-10 (a), that, if neither end-point value is prescribed, both (76)

and (77) must be fulfilled.

(6) Generalize the result of (a) to the case of several dependent variables.
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12. Derive the result of 3-10 (a) as a special case of the result of 3-10 (c) by choosing

g(x,y)
= x x z . NOTE: The notation (dg/dx 2 ) is an abbreviation for (Bg/dx)

evaluated at x =
Xt, y =

t/2 and similarly for (dg/dy^).

13. (a) Show that, if

/ - p(x,y) Vl + y'*,

the condition (85) requires the orthogonality of the extremizing arc and the given

curve g(x,y) =
0, for all p(x,y).

(b) From (a) it follows, with the result of 3-4(a), that the arc which extremizes

the length from a fixed point to a given plane curve is a normal drawn from the fixed

point to the curve. Using the methods of elementary differential calculus, demon-

strate the role played, in determining whether the normal represents a minimum or

maximum distance, by the position of the center of curvature of the given curve at the

point to which the normal is drawn. In what case is the distance neither a minimum
nor maximum?

14. (a) A brachistochrone is required to be constructed from a given curve

h(x,y) = Q to a second given curve g(x,y) 0. What relationship must the two

given curves bear to one another at the respective points of intersection with the

brachistochrone?

(6) A brachistochrone extends from the line y = x + 4 to the parabola i/
1 x.

Show that the point of intersection of the brachistochrone with the pa'rabola is (J,i).



CHAPTER 4

ISOPERIMETRIC PROBLEMS

We consider in this chapter a class of problems in which the functions

eligible for the extremization of a given definite integral are required to

conform with certain restrictions that are added to the usual continuity

requirements and possible end-point conditions. In the case of greatest

importance for application and extension in chapters following, the addi-

tional restrictions reside in the prescription of the values of certain aux-

iliary definite integrals. We call problems in which such conditions are

involved isoperimctric, after the best known problem of the class that

of finding the closed curve of given perimeter for which the area is a

maximum. Further, we briefly treat cases in which the additional restric-

tions are expressed through ordinary finite equations or through differ-

ential equations.

4-1. The Simple Isoperimetric Problem

(a) We seek to derive the differential equation which must, be satisfied

by the function which renders the integral

/ =
[" f(x,y,y')dx (1)

an extremum with respect to continuously differentiablo functions

y = y(x) for which fhe second integral

J = g(x,y,y')dx (2)
J XI

possesses a given prescribed value, and with y(xi) =
y\, y(x z )

=
i/ 2 both

prescribed. The given functions / and g are twice differentiate with

respect to their arguments.
In essence we follow the procedure of 3-3 (b) by letting y(x) denote the

actual extremizing function and introducing a family Y(x) of
" com-

parison'* functions with respect to which we carry out the extremization.

We cannot, however, express Y(x) as merely a one-parameter family of

functions because any change of value of the single parameter would in

general alter the value of J, whose constancy must be maintained as pre-

scribed. For this reason we introduce the two-parameter family

Y(x) = y(x) + nn(o?) + rt,(x), (3)

48

Peter Polcz
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in which iji(x) and rjz(x) are arbitrary differentiable functions for which

rji(xi)
=

iji(x 2)
= =

rj 2 (zi)
=

if 2(s 2). (4)

The condition (4) ensures that

Y(XI) =
y(xi)

=
t/i and 7(x 2 )

= y(x 2 )
=

2/2,

as prescribed, for all values of the parameters e\ and 2 .

We replace y by F(x), given by (3), in both (1) and (2) so as to form

respectively

'(.) =
f"f(x,Y,Y')dx (5)

and

/(!,*) =
f" g(x,Y,Y')dx. (6)

Clearly, the parameters i and 2 are not independent; because J is to be

maintained at a constant value, it is clear from (G) that there is a func-

tional relation between them- namely,

/(ci,c 2)
= constant (prescribed). (7)

Since y(x) is assumed to be the actual extremizing function, we have,
because of (3), that (5) is an extremum with respect to values of ei, e 2

which satisfy (7), when 1
=

2
= for arbitrary choice of the func-

tions T?! and 7? 2 consistent with (4). (It should be noted that the definition

of y(x) implies that (7) is satisfied for ti = e 2 = 0.)

(b) The procedure of (a) above reduces our simple isoperimetric prob-
lem to the elementary task of determining the conditions which must be

fulfilled in order that the ordinary function 7(i,e 2 ) of two variables ei, 2

be an extremum under the restriction (7). To solve this problem we use

the method of Lagrange multipliers described in 2-6. We thus introduce

the function of *i, 2

/* = /(i, 2) + X,/(e 1 ,62 )
= f*(x,Y,Y')dx, (8)

where, according to (1) and (2),

/* = / + *0. (9)

The constant X is the undetermined multiplier whose value remains to

be determined by the conditions of each individual problem to which the

method is applied. Thus, according to 2-6 and (a) above, we must have

dll ^! = o when 6i = 6 2
= 0. (10)

Peter Polcz
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From (8), with the aid of (3), it follows that

a/* _ (" (a/*
SY 9 ar'l _ [ fa/

^ ~
A, (aT a7

+
ar' a^f

rfx ~
JX1 ja

*
af*.

ar * + ar
0'
=

1,2). (11)

Setting i
=

2
=

0, so that, according to (3), (Y,Y') is replaced by (y,y
r

),

we thus have that

0/

because of (10). (The symbol |o indicates the setting of ei = 2
=

0.)

Integrating by parts the second term of the integrand of (12), we obtain,

with the aid of (4),

JN -

Because of the arbitrary character of the functions rji(x) and 772(2) the

two relations embodied in (13) are essentially one. At any rate we apply
the basic lemma of 3-1 (a) to either and so obtain the differential equation

dy dx \W
~

( '

as the Euler-Lagrange equation which must be satisfied by the function

y(x) which extremizes (1) under the restriction that (2) be maintained

at a prescribed value.

Solution of the second-order equation (14) yields a function y(x) that

involves three undetermined quantities: two constants of integration and,

because of (9), the Lagrange multiplier \. If the solution of a given iso-

perimetric problem of the type under discussion exists, these quanti-

ties are fixed by fitting y = y(x) to the required end-point conditions

y(xi) =
2/1 and y(x%) = y* and by giving to the integral J of (2) its

prescribed value.

4-2. Dkect Extensions

Since the methods embodied in the paragraphs following are essentially

identical with those employed in 4-1 and in various sections of Chap. 3,

each result is stated with only a bare outline of the mode of derivation.

Many of the details are called for in exercises at the end of this chapter.

(a) In a somewhat more general isoperimetric problem than that which

is treated in the preceding section, we seek to extremize the integral

{" f(x,y,y')dx (15)
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with respect to continuously differentiable functions y(x) for which the

N integrals

gk(x,y,y')dx (fc
=

1,2, . . . ,N) (16)

possess given prescribed values, and with y(x\)
=

t/i, y(x%)
=

y* both

prescribed. By introducing an (N + l)-parameter family of compari-
son functions Y(x) and subsequent application of the method of Lagrange

multipliers as in 4-1(6), we should directly reach the conclusion that the

extremizing function y(x) must satisfy the Euler-Lagrange equation (14)

of 4-1(6), where here

N

/*=/ +

the constants Xi, \2, . . .
, X,v are the undetermined multipliers whose

values we may ascertain through the specific conditions imposed in any
given problem. The details are left for exercise 3(a) at the end of this

chapter.

(b) A combination of the argument carried out in 4-1 with that of

3-10 (a) yields the conditions which must be satisfied by the extremizing
function when one or both of the end-point values is left unspecified in

an isoperimetric problem. If neither end-point value is prescribed for

the functions eligible for the extremization of (15), with the condition

(10), we must have

~-f = for x = Xi and x = x 2 ; (18)

/* is given by (17). If one, but not the other, end-point value of y is

prescribed, the actual extremizing function is such that (18) is satisfied

at the other end point.

(c) Application of the analysis of 3-10(e) to the isoperimetric problem
in which one end point of every arc y = y(x) eligible for the extremization

is required to lie on the curve h(x,y) = yields the condition

dy' (dh/dx) + y'(dh/dy)

that must be satisfied by the extremizing function at the end point in

question. Again, /* is given by (17) of (a) above.

(d) We may combine the argument of (a) above with that of 3-8(a)

to arrive at the system of differential equations which must be satisfied
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by the functions which extremize the integral
1

(20)

with respect to continuously differentiable functions x(t), y(t), . . .
, 2(0

for which the N integrals

Jk =
f*gk(x,y,

. . . ,z,A,y, . . . ,z,t)dt (k =
1,2, . . . ,#) (21)

possess given prescribed values; it is further supposed that the eligible

functions x, y, . . .
,
z achieve prescribed values at t = t\ and t = fa.

The required equations are

dx dt\dx
'

By di\dy'

u> l J
a^ dt\dz

where/* is given by the expression (17), but in which /, #1, 2 ,
. . .

, (/fl-

are the functions which appear in the integrands of (20) and (21).

(e) The methods and results of 3-4(a,6) and 3-8(6) are directly appli-

cable to isoperimetric problems:

(i) If /* is explicitly independent of the dependent variable y, a first

integral of the Euler-Lagrange equation (14) is

where Ci is an arbitrary constant.

(ii) If/* is explicitly independent of the independent variable x, a first

integral of the Euler-Lagrange equation (14) is

y
'*i>-

f
* = Ci ' (24)

with Ci an arbitrary constant (not necessarily the same as Ci in (23)).

(iii) If /* is explicitly independent of the independent variable t, a first

integral of the system of equations (22) is

where Ci is an arbitrary constant.

1 As in 3-8, the superior dot denotes differentiation with respect to the independent
variable t.
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(/) The argument and results of 3-9 are directly applicable to the iso-

perimetric problems of (a), (6), (c) above (and therefore to the special

case of 4-1); that is, although the derivation of (14) is based upon the

tacit assumption that the extremizing function y(x) is a single-valued

function of x, we may accept as valid any solution of (14) satisfying

the pertinent set of end-point conditions -in which the single-valuedness

requirement is violated. (The remarks of 3-9(fr) must of course be taken

into account.)
^/'

4-3. Problem of the Maximum Enclosed Area

(a) The original isoperimetric problem may be stated as follows: We
consider the aggregate P of all closed non-self-intersecting plane curves

for which the total length has the given value L. Of these we seek one

for which the enclosed area is the greatest.

With the means at our disposal it is necessary that we make the restric-

tive assumption that the parametric representation

x =
x(t), y =

y(t) (26)

of any member of the aggregate P is such that the functions (26) are

continuously differentiate with respect to t. But without loss of gener-

ality we may suppose that the representation (26) describes any given
curve of P in the counterclockwise sense as / increases from t\ to / 2 ;

since

the curve is closed, we have x(t\)
=

.r(/->)
= .r and y(ti)

=
t/(f 2 )

=
2/o.

It is no essential restriction to suppose that t\, /o, #o, 2/o have respectively

the same values for every member of P.

According to 2-7 (r) the area enclosed by a given member of P as

described by (26) is the integral

/ = *
/,"

(xy
- y*W, (27)

where x =
(dx/dt), y =

(dy/dt). The total length of the curve, given by

J = ["V&^jpdi, (28)

has the same value L for every member of P. We seek the particular

functions for which (27) is an extremum (maximum, in the present case)

with respect to functions x(f), y(t) which bestow upon (28) the given

value L and for which x(ti)
=

x(t>2 )
= x

, y(t\)
=

y(t*)
=

2/o.

From 4-2(d) we have that the maximizing functions must satisfy the

system of equations (22) namely,

a/* d /a/*\ _ df _d
te dt \TxJ- '

Ty di
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where, according to (17), (20), (21), together with (27) and (28),

/* = iGtf -y*) + \ V^HT2
. (30)

Direct substitution of (30) into (29) yields

I*- <*/_ ! + _ M\ -o
2
y

dt( 2
V+

V*fT?*)~
'

2 e

from which we obtain, by direct integration with respect to
,

\x ~ . \y ~
y
-

/^T-r-2
=

Ci, * + -7", = c 2 , (si)V # + 2r V * + 2/

with (7i and (7 2 arbitrary constants.

With the introduction 1 of (dy/dx) = (y/x) both of (31) may be inte-

grated in a conventional manner. We achieve the same result, however,

by solving for (y d) and (x C
Y

2 ), then squaring and adding the

equations obtained:

(x
- C2 )

2 + (y
- CO 2 = X 2

. (32)

Thus we have the well-known result that the closed curve of given

perimeter for which the enclosed area is a maximum is a circle. 2 Since

the location of the circle is immaterial, the constants of integration C2

and Ci the coordinates of the center, according to (32) remain arbi-

trary. Also, since X 2
is the square of the radius, we have X 2 = (L/27r)

2
,

where L is the given perimeter.

(b) A problem closely related to the original isoporimetric problem is

the following: We consider the aggregate P 1

of all non-self-intersecting

plane arcs for which the total length has the given value L' and whose

end points lie on the x axis. Of these we seek one for which the area

enclosed by it and the x axis is the greatest.

For the sake of simplicity we let y = y(x) represent any member of

the aggregate
3 P' and make the restrictive assumption that y(x\ is

continuously differentiate. Without loss of generality we may suppose
that the left-hand end point is fixed at the given point (x\fl) ;

the right-

hand end point (o: 2,0) is unspecified.

1 See end-chapter exercise 5.

2 In view of the restriction that x(f) and y(t) be continuously differentiable for all

functions eligible for the maximization, our result, strictly, should read
"

. . . that

the closed smooth curve. ..."
8 The choice of this type of representation is justified in 4-2 (f).
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The area enclosed by any member of P f and the x axis is given by

I =
f"ydx; (33)

the total length, equal to the fixed value L' for every member of P',

is given by

(34)

We seek the equation of the particular arc for which (33) is an extremum

(a maximum) with respect to arcs y = y(x) whose left-hand end points
coincide at (2*1,0), whose right-hand end points lie on the curve y =

0,

and which give to (34) the prescribed value U.
To this end we apply the Euler-Lagrange equation (14) of 4-1(6) to

the integrand

/* = y + x VrTT"2
(35)

derived from (33) and (34). We thus obtain

whence, by direct integration,

-*L^ = * - c,
\/l + y'

2

From this it follows that

_(jr-r,)dar* -

and therefore that

or

(x
- d) 2 + (y

- C 2 )
2 = X 2

.
. (36)

To derive the condition which must be satisfied at x = x% we apply
the end-point relation (19) of 4-2(c) to the integrand (35), with y =
as the curve h(x,y) = 0. With this we obtain

3, + xVLjT = atx = X2
.

\/\+yn V

or since y = at x = Zj and since X = is ruled out by (30), we have

1

77f5
= at* = * 2 .

(37)



56 CALCULUS OF VARIATIONS [4-4

The fulfillment of (37), clearly, is possible only if the maximizing arc

possesses a vertical tangent at x = x^. This fact, combined with (36),

directly implies that the required arc is a semicircle of radius (L'/w).

4-4. Shape of a Hanging Rope

We may apply the result of 4-1(6) to the problem of determining the

shape of a perfectly flexible rope of uniform density that hangs at rest

with its end points fixed. The basis for this application resides in the

physical principle which states that a mechanical system in stable equi-

librium is characterized by a minimum of potential energy consistent with

its constraints.

With the trivial assumption that the rope hangs in a vertical plane
we let y = y(x) be a representative member of the aggregate P of all

possible configurations (in the vertical plane determined by the fixed end

points of the rope) that may be assumed by the rope, consistent with

the facts that its end points are fixed and its total length has the given
value L. The coordinate x is measured horizontally in the vertical plane,

and y is the upward distance from a fixed horizontal reference plane.

(According to 4-2(/) the designation y = y(x) is not excessively restric-

tive in the event y is not a single-valued function of x in the equilibrium

configuration.) Thus, if 0- denotes the constant mass per unit length of

the rope, the potential energy (relative to y = 0) of an element of length
ds at (x,y) is given by gya ds, where g is the constant acceleration due to

gravity. Accordingly, the total potential energy of the rope in the arbi-

trary configuration y = y(x) is given by

(38)

where (x\,yi), (2,2/2) are the respective fixed end points of the rope

(xi < X*).

According to the minimum-energy principle the equilibrium configu-

ration is supplied by the particular relation y = y(x) for which (38) is a

minimum with respect to functions y(x) for which y(x\) =
y\, y(x*) =

t/ 2 ,

and for which the total arc length

(39)

has the prescribed value L. We may therefore apply the Euler-Lagrange

equation (14) of 4-1(6) to the integrand function

/* = *w Vi + y'
2 + x Vi + y'

2
(40)

formed from (38) and (39). Since /* is explicitly independent of the
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independent variable x, however, we may use 4-2(e,ii) and so substitute

(40) into (24) of that section:

(*gy + M ( ,

y
'*

,

- Vi + y'*}
= c

lt

\v i + y /

whence 1

X Ci , <jg(x a) /J1X
y = cosh -^- '

(41)

where a is an arbitrary constant of integration.

Thus, according to (41), the shape of a hanging rope is that of a cate-

nary with vertical axis. By specifying that the catenary pass through

(a*i,2/i) and (x^y 2) and that the arc included between these points have
the length L we may assign values to the constants Ci, a, X which appear
in (41). The construction is always possible (although the actual com-

putation of Ci, a, X may involve serious numerical difficulties).

Because a rope (or chain) hangs in the shape of a hyperbolic cosine

this curve has been given the name catenary. (The Latin for chain is

catena.)

4-5. Restrictions Imposed through Finite or Differential Equations

(a) To the problem of 3-8, the extremization of a given integral with

respect to several integrand functions, we add a set of restrictions which

must be satisfied by the functions eligible for the extremization. These

restrictions consist of a set of finite or differential equations or a combi-

nation of both, with the total number of equations less than the number
of integrand functions. Specifically, we proceed to derive the system of

differential equations which must be satisfied by the set of functions

which extremize the integral

(42)

with respect to the k continuously differentiate functions x, y, . . .
,
z

which achieve prescribed values at t = t\ and t = 2 and which satisfy

the N given (consistent and independent) equations

Gf (x,y, . . . ,*,*,*/, . . . ,i,t)
=

(j
= 1A ,N < k). (43)

(If a given Gj is explicitly independent of the derivatives x, y, . . . z,

the corresponding equation Gj = is a finite, rather than a differential,

equation.)

1 The details are left for the reader; compare 3-7(a).



58 CALCULUS OF VARIATIONS [4-5

As in 3-8(a), we denote the actual extremizing functions by x(0,

y(t), . . .
, z(t] and introduce the one-parameter family of comparison

functions

X(t) = x(0 + fc(0, Y(t)

Z(t) = 2(0 + cfe(0, (44)

where 1, 2, . . .
, & are differentiable functions for which '-*

fe(fc)
-

&(**) =0 (t
=

1,2, ... ,*), (45)

and which are otherwise arbitrary to within consistency with the set of con-

straints formed by replacing (x,r/, . . . ,z) by the comparison functions

(X,F, . . . ,Z)in(43)-

Gj(X,Y, . . . ,Z,X,Y, . . . ,Z,t)
=

(j
=

1,2, ... ,N). (46)

We replace, further, (x,y, ... ,2) by (X,Y t
. . . ,Z) in the integrand of

(42) and so form the integral

,Y, . . . ,Z,X,Y, . . . ,Z,t)dt. (47)

Because of the designation of x(t), y(f), . . .
, z(t) as the actual extrem-

izing functions, it follows from (44) that /(e) is an extremum for = 0;

that is,

/'(O) =
0, (48)

for any permissible choice of 1, 2 ,
. . .

, t.

In the manner of 3-8(o) we form the derivative /'() of (47) with the

aid of (44) from which we derive (dX/de) =
1, (dX/dt) =

^i, etc.

to obtain

f
;.,

Setting = that is, replacing (X,F, . . . ,Z) by
according to (44) we obtain, with (48),

We cannot, however, continue from this point as in 3-8 (a) because of

the mutual dependence of the functions 1, 2 ,
. . .

, k as embodied in

(46). To obtain an explicit expression of this dependence we note that
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the N equations (46) are satisfied identically
1 for all

,
so that each may

be differentiated with respect to as follows:

a =
1,2, . . . ,#).

(Here we again make use of (44) to evaluate (dX/de), etc.) In particular
for e = we have

dGj dGj , dGj dGjr , d(jy d#y > n
d7 * l +

a*
* l +

dy
^ + ^ j2 + ' ' ' +

dz
* +

ai'
*
*

0'= 1,2, ... ,7V), (50)

since setting = means replacing (X,F, . . . ,Z) by (x,t/, . . . ,2),

according to (44).

Multiplying the jth equation of the system (50) by the unspecified

function uj(t), for all j =
1, 2, . . . , N, we add the left-hand members

(all equal to zero for any choices of the M>) to the integrand of (49) and
so obtain

-L.

i y

V
2,

, ,
af , , af, ,

af
t , ,

dF .

,

dF
* 1 +

a
ft + ^' + ^*1+

' ' ' + a^ +
=

0, (51)

where we define
N

F = / + Mj-(0<2,. (52)

Integrating by parts the second, fourth, . . .
,
2fcth terms of (51), we

get, with the aid of (45),

a "* <>

Because of the set (50) of N equations among them, we cannot regard

the k functions {i, 2 ,
. . .

, * as being free for arbitrary choice. In

1 It is sufficient that they be satisfied identically in e only for a neighborhood about

-0.
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fact there is some subset of N( < k) of these functions whose assignment
is restricted by the assignment of the remaining (k N). For the sake

of definiteness we suppose that i,. 2 ,
. . .

, &r are the functions of the

set whose dependence upon the choices of the arbitrary (to within (45))

N+I, &v+2, . . .
, * is governed by (50).

* At this point we assign the

unspecified functions MI (), M2(0, -
, MAT (t) to be any set of N functions

which make vanish (for all t between t\ and < 2 ) the coefficients of
1,

2 ,
. . .

,
N in the integrand of (53). That is, if we let ?/i, u 2y . . .

,
UN

denote the first N functions of the list x, y, . . .
, z, the functions

are chosen so as to satisfy

Jtl

With the choice of all the M; so fixed (53) reads as follows:

9F d( d

(55)

where UN+I, UN+*, . . .
,
uk = z denote the final (k N) functions of the

list x,y,...,z. Since the functions fcv+i, {#+2, . . .
, ^ are, to within

(45), completely arbitrary, we may employ the device used in 3-8(a) to

conclude, on the basis of the lemma of 3-1 (a), that each of the coefficients

of &r+ 1, #+2, . . .
, & in the integrand of (55) must vanish individually.

We have, that is,

Thus, on combining (56) with (54) and noting that u\, u^ . . .
, ?/* con-

stitute the complete list x, ?/,..., 2, we reach the conclusion that the

k extremizing functions x(t), y(t) y
. . .

, z(t) satisfy the system of A*

Euler-Lagrange differential equations

!\jji st / HJ?\ ZiW ft I aWOF a I c/f \ o" (j> / or

dx dt \dx )
'

dy dt \dy

d (dF
s--iUiJ-' (57)

where F is given by (52).

1

Although actually some other subset of N functions of the set 1, 2, ...,*
may constitute the dependent set, the above choice of enumeration can always be

achieved by a proper permutation of the letters x, y, . . .
,
z. The final result is in

no way dependent upon our specific choice.
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We must, actually, consider the system of (N + k) equations, con-

sisting of the combination of (43) and (57), as being required for the

determination of the (N + k) unknown functions x, y, . . .
, 2, MI,

M2, .
, MAT.

(6) As a first application of the result of (a) above we consider (with
certain obvious changes in notation) the problem presented in exercise

7(a), Chap. 3; that is, we seek the differential equation satisfied by the

function which extremizes

/ =
f'J f(y,y,y,t)dt (58)

with respect to twice-difTerentiable functions y(t) for which y and y are

prescribed at t = t\ and t = 2 . (By y is meant, of course, the second

derivative of y with respect to t.) To bring this problem within the

scope of (a) we rewrite (58) as

/ =
f(y,z,z,t)dt (59)

and accordingly affix the condition which plays the role of (43) with

AT = 1

z - y = 0. (60)

(Thus the second function z is prescribed at t = t\ and t = 2.)

In accordance with (52) we employ (59) and (60) to form

F =/(y,M,0 + M(0(*-y). (61)

With (61) the system of differential equations (57) here reads

df
4. ^ _ o V + u - d

(df\ -
dj
+

dt
~

u> ^ + "
Jt\d~z)

~ u "

Eliminating the function /z between the two equations and then elimi-

nating z by means of (60), we obtain the single differential equation

a/ d
(df\

d*
(df\ _

*
-

di\3y)
+

dfi\ej)
-

(62)

which must be satisfied by the function y(t) which extremizes (58).

(c) The special case of (a) above in which the equations (43) are all

finite equations is directly applicable to the geodesic problem considered

in 3-5. The distance between two given points in space, as measured

along the smooth arc x =
x(t), y =

y(t), z =
z(t) connecting them, is

given by the integral

V& + y
2 + ** dt

} (63)
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where t\ and tz are the values of t which respectively designate the given

points. If the arc is required to lie in the surface

G(x,y,z) =
0, (64)

we may thus state the general geodesic problem as follows: We seek the

functions which extremize the integral (63) with respect to continuously

differentiable functions x, y, z which satisfy (64) and which are prescribed

at t = ti and t = t%.

To solve this problem under the jurisdiction of (a) we use (63) and

(64) to form, according to (52), the function

F = V* 2 + y
2 + * 2 + n(l)G(x,y,z). (65)

With (65) the Euler-Lagrange equations (57) read

dG d (x\ dG d (y\ dG d

"to~a\j/ ' M ^~^\7y
=

' M
5T

-
a

where, for sake of brevity, we write

____ d Q

/ = V* 2 + y
2 + & =

^- (67)

[The final form of (67) is employed in exercise 10 at the end of this

chapter.] The function jx(0 is eliminated from (66) to give the pair of

equations

<L(*\ ^(y\ (*
dt\f) _dt\J2 _dl\f

^7v
~

-w^t xr>
' (68)

O(JT O(j oij

dx dy dz

which, together with the equation of the given surface (64), determine

the equations of the required geodesic arc.

(d) Application of (68) to the problem of the geodesic on the sphere

(solved by other means in 3-5(c)) involves writing

x 2 + y
2 + * 2 - a2 = (69)

for (64) ;
a is the radius of the given sphere. Thus we have

(90/dx) -
2x, (BG/dy) =

2y, (dG/dz) =
2z,

so that equations (68) read, in slightly expanded form,

fx~ xf __ fy
-

yf _ ft
-

zf
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Equality of the first two members of (70), together with that of the last

two, yields the pair of equations

yx -
xy = / = zy

-
yz

yx
-

xy f zy
-

yz

or, if we ignore the middle member,

<l
/ -x d

, . .,

(yx
-

xy) (zy
-

yz)

yx xy zy
-

yz

Integrating, we obtain

log (yx
-

xy) = log (zy
-

yz) + log d,
or

yx -
xy = (\(zy

-
yz);

whence

x + (\z _ y

x + (\z
"

y

A second integration thus yields

log (x + (\z) = log y + log T 2

or

r - C*j + (\z =

the equation of a plane through the center of the sphere (origin of

coordinates) whose intersection with the sphere (69) is the great circle

arrived at in 3-f>(r).

Although integrating the differential equations (08) presents a simple
task in the special case (09), the integration problem is in general quite

difficult. The major advantage of the method of (c) above is that it

leads quite directly to an important theoretical result from the stand-

point of differential geometry. This result is given explicitly under

exercise 10 at the end of this chapter.

EXERCISES

1. Suppose that, in the solution of a specific isoperimetric problem, computation of

the Lagrange multiplier yields the result X = 0. What is the significance of this

result?

2. (a) Demonstrate the following reciprocity relationship for the simple isoperi-

metric problem: The particular function which renders / an extremum with respect to

functions which give J a prescribed value also renders J an extremum with respect to

functions which give 7 a prescribed value. (The relationship does not, however,

apply to the special circumstance referred to in exercise 1.)
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(b) Use part (a), together with the result of 4-3 (a), to establish the result: Of all

simple closed curves enclosing a given area, the least perimeter is possessed by the

circle.

3. (a) Carry out in detail the procedure outlined in 4-2 (a) in order to achieve the

result stated there. Why is it necessary to introduce an (N + l)-parameter family of

comparison functions?

(6) Bring the problems of 4-2 (6,c) to a point where the results of 3-10 may be

directly shown to apply as stated.

(c) Carry out the details of the argument required to achieve the stated result of

4. Why do we not apply equation (25) to the problem of 4-3 (a)? HINT: Compare
exercise 10, Chap. 3.

6. Carry out the integration of the equations (31) by direct means with the aid of

the suggestion given in 4-3 (a) directly below (31).

6. Work out the problem of 4-3(6) by using (24) of 4-2 (c} rather than (14) of 4-1 (b).

7. (a) A rope of given length L hangs in equilibrium between two fixed points

(xi,yi) and (x 2,yz) in such fashion that the distribution of its mass 1\I is uniform with

respect to the horizontal] that is, (dM/dx) =
,
a given constant, in the equilibrium

configuration. Show, by means of methods developed in the foregoing chapter,

that the shape of the hanging rope must be parabolic. HINT: A certain quick,

thoughtless attack upon the problem yields a circular shape; this is of course wrong!
A second, swindling approach makes use of equation (24) of 4-2(r) to obtain a parabolic

shape, but this is likewise wrong. A thoughtful approach takes into account the

precise nature of the comparison of the potential energy of the rope's equilibrium

configuration with other configurations consistent with the constraints; this leads to

the required answer

Ci(y -C,) = J(* - <?2 )
2

. (71)

(b) Although the result (71) is apparently devoid of any dependence upon a

Lagrange multiplier since Ci, C2 , Ca are introduced directly as integration constants

show that

Ci - C3 + X, (72)

where X is the Lagrange multiplier introduced to fulfill the requirement that the length

of the rope be the same in all its comparison configurations. HINT: Prove and use the

fact that (ds/dx) = 1 at x = C2 , y = C 3 .

What relation between C\ and C2 replaces (72) if we require that the total mass,

rather than the length, of the rope be kept constant and so introduce the multiplier X'?

ANSWER: C\ a(Cz -j- X').

8. (a) Work out the problem of 4-5(6) by rewriting the integrand of (50) &sf(y,y,z,t).

ANSWER: Result (62) unchanged.

(6) Generalize the method of 4-5(6) so as to solve exercise 7(c), Chap. 3. ANSWER:

.

dt \dy dt* \dy c- nV '

where y(w) = (d
n
y/dt

n
).

(c) Derive the condition which must be satisfied at an end point (t
= t\ or t =

t*)

at which any one of the functions x, y, . . .
,
z introduced at the start of 4-5 is not

required to have a prescribed value. ANSWER: If, for example, x(t) is not prescribed

at t = ti (or t - J 2), we have (dF/dx) - at t - ti (or t = tt).



ISOPERIMETRIC PROBLEMS 65

(d) Apply the result of part (c) to exercise 7(6), Chap. 3 as an extension of the

method of 4-5(6).

9. (a) Derive the differential equation which must be satisfied by the function

which extremizes the integral

/ -
[

Xt

f(x,y,y',y")dx
JXi

with respect to twice-differentiable functions y y(x) for which

J =
Jxi

g(x,y,y',y")dx

possesses a given prescribed value, and with y and y' both prescribed at x = x\ and
x =

x-i.

(i) Use the method of 4-1 to show, first, that

-

where /* = / -f X(7, and ?/ is arbitrary to within consistency with the end-point
conditions.

(ii) Combine the method of 4-2(</) with that of 4-5(6) to achieve the required result.

(6) Show that leaving y unspecified at either end point leads to the condition

-()-
at that end point.

(r) Show that leaving y' unspecified at either end point leads to the condition

-

at that end point.

[The results (7,3), (74), (75) are required below in Chap. 10.]

10. Use the final form of (67) to show that (68) implies

dG/dx
~

dG/dy

In the language of differential geometry this result demonstrates that the principal

normal to any point of a geodesic arc lies along the normal to the survace G(x,y,z)

at that point.

11. (a) It is required to extremize

(*,y,y')dx + F(w)

with respect to functions y(x) and values of the quantity w for which

J = [
T

*g(x,y,y')dx -f G(w)
Jji

has a prescribed value, with y prescril>ed at x\ and x 2 ;
F and G are given differentiate

functions of w. Show that the required extremum is achieved if
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where /* =* / + \g and F* =* F 4- A<7. HINT: Introduce, in addition to the two-

parameter family (3) of 4-1 (a), the variable W = w + m 4- 272, where 71 and 72 are

arbitrary constants, and so form 7(ei,c2) and J(ci,e2). Etc.

(6) Apply part (a) to the following problem: A perfectly flexible uniform rope of

length L hangs in (unstable) equilibrium, with one end fixed at (zi,?/i), so that it passes

over a frictionless pin at (0:2,2/2). It is clear from the first of (76) and 4-4 that the

portion of the rope extended between the two given points hangs in the form of the

catenary (41). What is the position of the free end of the rope? ANSWER:



CHAPTER 5

GEOMETRICAL OPTICS: FERMAT'S PRINCIPLE

The brachistochrone problem (3-2,6) was first solved by Johann Ber-

noulli through application of the laws of geometrical (or ray) optics.

His method of solution has its basis in the principle of Fermat, which

states that the time elapsed in the passage of liaht between two fixed points is

an extremum with respect to possible paths connecting the points. In this

chapter we accept Fermat 's principle as the fundamental characterization

of geometrical optics and so develop the ideas underlying the Bernoulli

solution.

In what follows we consider only those light paths which lie in a

plane 2 =
0, for the sake of definiteness.

5-1. Law of Refraction (SnelPs Law)

(a) Fermat's principle clearly implies that the light path between two

points in an (optically) homogeneous medium is a straight line con-

necting the points. For since the velocity of light is the same at all

points of such a medium, 1 the extremum (minimum) of time is equiva-

lent to the extremum (minimum) of path length. Thus, in studying the

passage of light between points in two contiguous homogeneous media,
we need to consider as possible paths only those which consist of a pair

of connected straight-line segments, with the point of connection at the

common boundary of the media.

We apply Format's principle to the passage of light from the point

(xi,iji) in a homogeneous medium M i to the point (x^l/z) in a homogeneous
medium M which is separated from Mi by the linef y =

?/o (xi < o* 2).

The respective light velocities in the two media are HI and ?/ 2 (see Fig.

5-1). If we designate the point of intersection of an arbitrary two-seg-

ment path with y =
?/ as (-r,// ), the time of light passage along the path

would be

Ul

1 In fact the constancy of velocity defines the "optically homogeneous medium."

t Actually, a plane separates the two media. Since we confine our attention to the

plane z 0, however, it is more convenient to speak of a line as separating them.

67
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According to Fermat's principle, therefore, the actual light path is char-

acterized by the value of x for which

dT
dx

or

x x\ X

-
x)

2

sin <i sin

=
0,

(1)

where $1 is the angle between the normal to the interface ij
=

7/0 and the

path in MI, and < 2 is the corresponding angle in M 2 . The relation (1) is

Fio. 5-1. FKJ. 5-2.

known as Snell's law of the refraction of light at the interface of two

homogeneous media. Experimentally, it is established beyond all doubt.

(b) We consider now a set of N contiguous parallel-faced homogeneous
media MI, M^ . . .

,
MN (in order of position), where the interfaces are

lines of constant y (see Fig. 5-2) ;
the light velocity in Mj is denoted by

Uj (j =1,2, . . . ,N). Since the interfaces are parallel, the angle <,

which a given light ray makes with the normal to one boundary of Mj
is equal to the angle it makes with the normal to the opposite boundary
of Mj (j

=
1,2, . . . ,N). Thus the Snell's-law relation (1) may be

applied to the successive interfaces as follows :

sn sn sn
U 2

or

sn
Uj

(j - 1,2, . . . ,N), (2)
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where K is a constant for any given light path. (The value of K is

determined by the orientation of the path segment within any one of

the Mj within MI, for example.)

(c) Next we consider a single optically inhomogeneous medium M in

which the light velocity is a single-valued continuous function of the y

coordinate; i.e., we have

u = u(y).

(The medium is assumed optically isotropic: The velocity at any point is

independent of the direction of the light path through the point.) To
arrive at the law which describes the configuration of a light ray con-

necting any two points of such a medium, we first approximate M by a

sequence of parallel-faced homogeneous media Af i, M 2 ,
. . .

, MN having
the character of the arrangement described in (6) above. The light

velocity HJ within Mj is chosen to be equal to u(y) evaluated at some

point between the (y constant) lines which bound Mj.

The light path through the sequence of subdividing media is a polyg-

onal line, the orientation of each of whose segments is described by the

extended form of Snell's law (2). The smaller the width of the individual

subdivisions and the larger their number N, the closer is the approxi-

mating arrangement to the actual medium Af
; and, therefore, the closer

an approximation is a given polygonal light path through Af i, 3/2, . . .
,

Ms to an actual light path through M. As we improve the degree of

approximation indefinitely by letting N increase without limit and hav-

ing the width of each subdivision approach zero, the relation (2) applies

tit every stage of the process. In the limit in which the approximation is

perfect, (2) describes the direction, at any point, of the tangent line to

an actual light path in M. We therefore rewrite (2) as

- K, (3)

where < and u are continuous functions of y.

If y = y(x} is the equation of a light path in Af
,
we have (see Fig. 5-3)

that y'(x)
- cot

<t>,
so that

sin
<t>
=

. (4)
+ y'

2

Thus, for a medium whose optical properties are described by the given

velocity function u(y), (3) reads, with the aid of (4),

= K (5)
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a first-order differential equation whose solution is directly found to be

(6)
4. v f udy

I XV I .. ..

J Vl-K
The constant K and the constant of integration are fixed by specifying

two points through which the light path is required to pass, provided
such a path actually exists.

Fir,. 5-3.

5-2. Format's Principle and the Calculus of Variations

In this section we traverse a second path of reasoning to achieve the

results (5) and (6) for a light path within a medium in which the light

velocity varies continuously as a function of one cartesian coordinate.

Here we express Fermat's principle directly as applied to an inhomo-

geneous medium: If the velocity of light is given by the continuous func-

tion u =
u(y], the actual light path connecting the points (#1,2/1) and

(#2,2/2) is one which extremizes the time integral

ds

U
+ y'

2

dx. (7)

(This statement of the principle is correct even if u = u(x,y}.}

According to 3-3 we thus have that y =
y(x) the equation of the

actual light path must satisfy the Euler-Lagrange equation (25) of that

section, with

/ = (8)
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the integrand of (7). Since / is explicitly independent of x, however, we

may employ directly the first integral (28) of 3-4(6) namely,

y'jf
-/ = c, 0)

With (8), equation (9) reads

u\/\
or

Clearly, (10) is identical with the result (5), derived on the basis of Snell's

law, with the constant C\ identified with A'. Thus (10) also leads

directly to (0), with the same identification of constants.

We have in ((>), therefore, the solution of a problem in the calculus of

variations the problem of finding the function for which the integral

(7) is an extremum -obtained by methods other than those which are

peculiar to the calculus of variations. The methods employed to achieve

this solution are those of geometrical optics, together with a limiting

process following upon the approximation of an optically inhomogeneous
medium by a sequence of homogeneous media.

If, for example, we choose the velocity function to be

u(y) =
\>"2<j(y

-
i/o),

where ?/ and g(> 0) are given constants, the time integral (7) becomes

identical with the integral (10) of 3-2 (c), whose extremization results in

the solution of the brachistochrone problem. Through the procedure of

5-1, therefore, the solution of the brachistochrone problem is effected by
means of geometrical optics. In essence, this is the method employed

by Johann Bernoulli to solve his brachistochrone problem at the end of

the seventeenth century.

EXERCISES

1. (a) Write down the integral which must he extremized, according to Fermat's

principle, if the light paths are not restricted to plane curves, and with n =
t/(z,?/,z).

Let x be the independent variable.

(6) Write down the pair of Euler-Lagrange equations (again with x as independent

variable) which describe light paths in three dimensions if u = u(x,y,z).

2. Describe the plane paths of light in the (two-dimensional) media in which the

light velocities are given respectively by (i) u = ay\ (ii) (a/y); (iii) ay*; (iv) ay~*;

where a > 0, y > 0.



CHAPTER 6

DYNAMICS OF PARTICLES

The material of the ensuing chapter is based upon an assumed knowl-

edge of only the most elementary concepts of particle dynamics.
1 Ade-

quate comprehension of the subject matter should therefore require

negligible background in physics. On the other hand this chapter can-

not be considered as a suitable introduction to an intensive study of

particle dynamics. It is meant, rather, to provide a glimpse of the role

played by the calculus of variations in a small segment of dynamics and

to serve as a springboard for several of the problems considered in chap-

ters following. The discussion is confined to nonrelativistic, or "classi-

cal," phenomena.

6-1. Potential and Kinetic Energies. Generalized Coordinates

(a) We consider a system of p particles subject to given geometric
constraints and otherwise influenced by forces which are functions only

of the positions of the particles. (The geometric constraints, which do

not vary in time, may consist, for example, of the confinement of certain

of the particles to given curves or surfaces, or of the constancy of the

distance separating certain pairs of the particles, etc.) Specifically, the

force acting upon the jth particle (at Xj,ijj,Zj) of the system (apart from

the forces of constraint) has the cartesian components F^\ F (

J\ F {

?
(j
=

1,2, . . . ,p), which are functions of the 3p position coordinates

xi, 2/1, 21, . . .
,
xp , yp ,

zp of the particles of the system.

In all but the final section of this chapter we confine consideration to

the special type of force system
"
conservative

"
system for which there

exists a single function V =
V(zi,t/i,3i, . . . ,xp,yp,zp) from which we

may derive the 3p force components as

(D

The function V is called the potential energy of the system; we do not

concern ourselves here with questions of its existence or determination in

specific physical situations : For purposes of this chapter the statement of

1 In particular the terms mass and force are employed here without definition.

72



6-1] DYNAMICS OF PARTICLES 73

a conservative-dynamics problem involves three given elements: (i) the

number and respective masses of the particles, (ii) the geometric con-

straints upon the particles, and (iii) the potential-energy function V.

(6) The kinetic energy of a particle is defined as the quantity

where m is the mass of the particle and 1

(ds/dt)* = (z
2 + y* + z2

) is the

square of the velocity of the particle. For a system of p particles the

kinetic energy is defined as the sum

,(*' + # + */), (2)

where m, is the mass of the jfth particle. Since the mass is never nega-

tive, we have the inequality T ^ 0, with equality holding only if the

system is at rest.

(c) The effect of constraints upon a system of p particles is to reduce

the number of independent coordinates describing the positions of the

particles. If the constraints are completely specified by the k (< 3p)
consistent and independent equations

*,-(xi,i/i,2i, . . . ,Xp,i/p,Zp) =0 (t
=

1,2, ... ,fe), (3)

the number of independent coordinate variables is (3p A*); the equa-
tions (3) may be used, at least in principle, to eliminate the remaining k

variables from the problem.
It is more convenient, however, to introduce a set of (3p k) N

independent variables q\, </2, .
, QN through which the positions of all

p particles are described. Thus the equations of constraint (3) are in

effect replaced by the equivalent system of 3p equations

for j =
1, 2, . . .

, p. The variables #1, (? 2) . . .
, q* are known as

generalized coordinates; specification of their respective values estab-

lishes, through (4), the positions of the p particles and always con-

sistently with the geometric constraints imposed upon them.

The choice of a set of generalized coordinates for the description of the

positions of a particular system of particles subject to given constraints is

not unique; but the number of such coordinates which must be employed
is perfectly definite: It is the smallest number of variables required to

describe completely the position configuration of the system when the

constraints are known. For example, a particle confined to a given sur-

1 Throughout this chapter, and frequently in chapters following, we employ the

superior dot to indicate differentiation with respect to the time variable f.
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face has associated with it two generalized coordinates; a convenient

choice would be a pair of surface-coordinate variables. A particle con-

strained to move along a given curve would require a single coordinate

to describe its position. An unconstrained particle requires three coordi-

nates for the description of its position; it is frequently convenient to

employ the three cartesian* coordinates in this case.

(d) To express the kinetic energy (2) in terms of the generalized coordi-

nates qi, <?2y . . .
, 0* we differentiate each of the 3p equations (4) with

respect to time :

N N N
V faj V fyi -V 3*3 /rx

* = = Z =
- 5

Substituting (5) into (2), we obtain the important result: The kinetic

energy is a homogeneous function, of degree two, of the "generalized velocity

components" q\, <?2 ,
. .

, 0*. More specifically, the kinetic energy is a

quadratic form in the generalized velocity components; the coefficients in

this form are functions of the generalized coordinates.

We assume, in the remainder of this chapter, that the potential-energy

function V associated with any problem is expressed solely in terms of the

0i> 02, -
, 0.v| the corresponding kinetic energy is, until 0-3, assumed

expressed solely in terms of the q\, g 2 ,
. . .

, qs, 0i, <h, . . .
, q*. When

these functions are so expressed it is useful to define the lagrangian func-

tion or, simply, the lagrangian as

2, ,0y,0i,02, ,0*)
= T - V. (6)

6-2. Hamilton's Principle. Lagrange Equations of Motion

(a) Although Newton's laws of motion are the most fundamental

mathematical description of mechanical phenomena in general, it best-

suits the purposes of our study to assume the validity of Hamilton's

principle as the physical law which describes the motion of any system
of the type considered in 6-1 above. The principle of Hamilton reads:

The actual motion of a system whose lagrangian is

(T -
V) = L(qi,q 2 ,

. . . ,0*,tfi,0j, . . . ,0*)

is such as to render the (Hamilton's) integral

7 =
g(T-V)dt- f Ldt, (7)

where t\ and fa are two arbitrary instants of time, an extremum withrespect

to continuously twice-differentiable functions q\(t) 9 02(0, > 0^(0 for
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which qi(ti) and g t (2 2 ) are prescribed for all i 1, 2, . . .
,
N. We accept

Hamilton's principle as applicable to the motion of any conservative

system.

Although it is in some places stated that Hamilton's principle may be

used to replace Newton's laws of motion as the fundamental starting

point for mechanical systems possessing a lagrangian, it should be realized

that Newton's laws are implicitly employed in the preceding paragraphs
in at least two ways: (i) The definition of mass resides in Newton's third

law. (ii) In the tacit assumption that our system of coordinates is fixed

relative to an inertial frame of reference, we make use of Newton's first

law, by means of which an inertia] frame is defined.

(6) With the result (57) of 3-8(a) we conclude from Hamilton's princi-

ple that the generalized coordinates describing tho motion of a system of

particles must satisfy the set of Kuler-Lagrange equations

dL d fdL\ / , o
,. I 1

=
(i
= \ ,2,

d<H dt V"//
(8)

The equations (8), Lagrunge's equations of motion, constitute a set of

X simultaneous second-order differential equations, whose solution yields

the functions q\(t], q*>(t)i . . .
, q\(t). The 2Ar constants involved in the

general solution of (8) are evaluated when the initial (/
=

0, for example)
values of all the

r/,-
and r/ (?' =1/2.....N) are given. Once the initial

state of the system is thus prescribed, its future motion is described in

detail by the functions obtained through the solution of (8).

Application of Lagningo's equations to specific mechanical systems is

found in the exercises at the end of this chapter.

(r) Since the lagrangian L does not explicitly involve the time variable t,

the equations of motion (8) lead, according to (59) of 3-8(6), to the first

integral

**-*-
i- I

<9)

where E is a constant. To interpret (9) we note first that (dV/dqj) =
0,

so that, according to (6) of 0-1 (d), (dL/dq<) = (dT/dqJ for all

i =
1, 2, . . .

,
N. Since, according to 6-1 (d), T is a homogeneous

function, of degree two, of <Ji, q^ ...
, q\, we therefore have from

Euler's theorem (2-5) that S&(dL/d&) = ^^(dT/dqi) = 2T. Thus,

with (G), equation (9) becomes 2T -
(T

- F) = E, or

T + V = E. (10)
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That is, the motion of a conservative system is characterized by the con-

stancy of the sum of the potential and kinetic energies (whence the appel-

lation conservative). The constant E, the total energy of the system, is

determined when the initial values of all the
<?
and qi are assigned.

6-3. Generalized Momenta. Hamilton Equations of Motion

(a) Dealing with a system whose position configuration is completely
described by the generalized coordinates q\, g 2 ,

. . .
, q\ and whose

lagrangian is L, we define the set p\ y p 2 ,
. . .

, PN of generalized momenta

as
r\rrt

p<==
ff;

<*'
-

1,2, ,#). (ii)

Since, according to 6-l(d), the kinetic energy T is a quadratic form in

the generalized velocity components <?;, it follows from the definition (11)

that each p is a linear homogeneous function of q\, <? 2 ,
. . .

, <JN . Con-

versely, solution of the N equations (11) must yield each of the <j, as a

linear homogeneous function 1 of p\, p 2 ,
. . .

, PN.

(6) Using the equations (11) to eliminate q\, q^ . . .
, <?,v from the

lagrangian L which is thus expressed solely as a function of q\, q^ . . .
,

qNj pi, p 2 , , PN we define the hamiltonian II of the system through
the identity

#((?i><?2, ><?Ar>Pi>P2, >PN)
= ) Pi(ji L, (12)

where the appearance of each <? t
in the right-hand member represents

the solution of (11) for this quantity in terms of the generalized momenta.

Since (12) is an identity in the p and q^ (via (11)), we may form the

partial derivative with respect to p} whereby all tho p, with i j j,

together with all the <?, are held constant and so obtain

N N

N

i-1

1 This follows directly from Cramer's rule for the solution of linear equations by
means of determinants, provided the determinant of the coefficients of #1, fa, . . .

, QN

in (11) does not vanish. We accept here the nonvanishing of this determinant, which

is a consequence of the positive definite character of T as a quadratic form in the fa.
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since (dL/dql) = (dT/dqt) for all t, and because of the definition (11) of

Pi. The N equations (13) clearly represent the explicit solution of the

set (11) for each 7, in terms of the p t .

Substituting (11) into (12) and making use of the result

N
Vs (IT

2T = )
7,^4-

i= 1

arrived at in 6-2(c), we have

AT

with the aid of the definition (6) of L. That is, the hamiltonian of a

system is the sum of the potential energy and the kinetic energy, when
the latter quantity is expressed in terms of the 7, and the p, rather than

in terms of the 7*. Thus the most convenient method of forming the

hamiltonian of a given system is the following: (i) We write down the

potential energy in terms of the 7,, the kinetic energy in terms of the

7i and 7; (ii) form and solve the N equations (11) since the explicit

solution (13) is not available prior to formation of the hamiltonian! for

the 7; (iii) substitute for the 7, in T and so obtain H = T + V in terms

of 71, 72, . . .
, 7A-' Pi, Pe, . . .

, P.v.

(c) In terms of the hamiltonian the integral (7) of 6-2 (a) whose extrem-

ization loads, according to Hamilton's principle, to the equations of

motion of a mechanical system is given by

(15)

on substitution for L through (12). The extremization must be effected

with respect to the 2AT continuously differentiable functions 71, 72, . . .
,

Qx> Pi> PS, , P#> among which there obtains the set of N relations

according to (13).

To derive the set of differential equations called for by the extremi-

zation, we employ the method of 4-5(a). With (15) and (16) respectively

representing specific cases of (42) and (43) of the earlier section we form

the function (52) of 4-5(a)
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N N

Oifr
- H + V /z<(0 (qt

- |^\ (17)/
( y dpi/

i-1

where MI> Ms, . . .
, M# are undetermined functions. Substituting (17)

into (57) of 4-5 (a), with appropriate changes of notation, we obtain, since

(identically) for all j,

AT

t-i

and

-i.2,...,*). 09)

Because of (16) the N equations (18) read

- tf-iA .*>. (20)

i=i

for which an obvious solution 1
is /x

= for all i = 1, 2, . . .
,
N. Sub-

stituting this result into (19), we obtain p,
= (dH/dqj) for all j. This

set of equations, taken in conjunction with the relations (10), supplies the

system of 2N equations the Hamilton equations of motion

pi >
(ji
=

(i
=

1,2, ... ,A
r
). (21)

The system (21) constitutes 2N first-order ordinary differential equations.

Their general solution is accomplished in the attainment of 2N finite equa-
tions which relate q\, q%, . . .

, qN , pi, P2, . .
, PN and the time varia-

ble t, and which involve 2N arbitrary constants of integration. These

constants become determinate when initial (t
=

0, for example) values

are assigned to q\, <? 2 ,
. . .

, qN and to pi, p 2 ,
. ., , p^r- -or, equivalently,

to q\, #2, . . .
, qN, q\, qz, . . .

, <}N. Thus, through (21), knowledge of

the motion of a mechanical system is completely determined if the hamil-

tonian function H is known, along with the initial state of the system.

1 That this solution is unique follows from the nonvanishing of the determinant of

the coefficients of the MI in (20). We accept here the nonvanishing of this determinant

a direct consequence of the positive definite character of T as a quadratic form in

PI, P2, . . .
, PN (see footnote 1, p. 76 and also end-chapter exercise 8).
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Application of the Hamilton equations (21) to specific problems is left

for the end-chapter exercises.

6-4. Canonical Transformations

(a) We consider a mechanical system whose hamiltonian function

Hfai&i - (?.v>PiP2, . . . ,p,v) is known and propose a change of

variables which has the following character:

(i) By means of "2N finite equations we define a system of 2N new

variables Q\, Qi, . . .
, Q\, PI, p2, . . .

, PA as functions of the original

set of variables q\, </ 2 ,
. . .

, q.\, pi, p 2 ,
- . -

, p.v- The possibility that

the time variable t may appear explicitly in the equations of transforma-

tion is admitted.

(ii) There is no functional relationship among the variables <?i, </ 2 ,
. . .

,

(/A*, Qi> C?2, . . .
, QN which is completely independent of all the p t and Pt .

(iii) The equations of motion, written in terms of the new variables,

must possess the same form as the Hamilton equations (21) in the sense

that there exists a function A' = K(Qi.Q, . . . ,Q.v ,Pi,P 2 ,
. . . ,P*,0

such that the transformed equations of motion read

Pi = ~
;

^ =
w, (i

=
1>2) >Ar) - (22)

That a transformation which satisfies (i) and (iii) is always possible

should be obvious if we take 4 into account the Hamilton 's-prineiple deri-

vation of (21) in (>-3(r) and the result of 3-4(c) which allows the addition

to an integrand of an "exact derivative" without alteration of the

resulting Kuler-Lagrange equation.
1 Thus if we effect a transformation

through the identities

v)> - K + ' ** =

(i
=

1,2, . . . ,N), (23)

where 8 is any continuously differentiate function of q\, q^ . . .
, #AT,

Qi, ^2, . .
, QA-, t, we should expect Hamilton's principle to lead directly

to (22). (The explicit equations of transformation are derived from (23)

in (b) below.)

To prove this assertion we use the first of (23) with q\, q$, . . .
, qN

eliminated from *S in terms of Qi, Q 2 ,
. . .

, Qx, Pi, P2, . . .
, P.v, t

to substitute for the integrand of (15). We proceed to extremize / with

1 The result of 3-4 (c) must be extended to apply to the present case. The extension

is implicit in the derivation below of (22). We merely use 3-4 (c) here as a guide.
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respect to the new variables Pt , Q, which are linked by the second of

(23) (N equations). Following the procedure of 6-3(c), we replace (17),

according to (23), by

x
-Zirl (24)

t^l
"

i=i

Substituting (24) into (57) of 4-5 (a), with appropriate changes of nota-

tion, we obtain

N
dK

,
a fdS\ _ V d *K - T

d /*
\dt) 2,

w
dP, dPt

~
dt [Wj \dt

(j
=

1,2, . . . ,N) (25)

and

_ d r p ,
d MS\ ]

d<
L aOA di /

"'

J

(J
=

1,2, . . . ,N). (26)

Since S is supposed expressed in terms of Qi, Q 2 ,
. . .

, QN, PI, ^2, . .
,

PN , t, in (24), (25), and (26), we have

N

so that

1 [ J. (d\\ = 1 /M\ = a2gf
. V / a2>S n -r-

aVS P
* [a/V \* / J

~
dt \dPj) dt dPj

*
2j \dQi dpj dp< dl'j

'

- 1

AT

J

:i*l n. 4. P. 1 I - -^- ( I (28^
^n vt -r ^ p ^

j I

-
^jr v j t I v^o;

t-i

Because of (28) and the second of (23) the system (25) reads

N
MK

(29)

t-1

for which the solution isf Mi = 0, for all f =
1, 2, . . .

,
N. Further, it

t See end-chapter exercise 8.
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follows from (27), in the manner of achieving (28), that 1

.

dt dQdt
so that, with the vanishing of all the /*,, (26) reduces to

= PJ (j
=

1,2, ... ,N).

We therefore have, with the second of (23), the required set (22) of the

transformed Hamilton equations of motion.

(6) The result of (a) above demonstrates that any change of variables

of the type (i) for which the identities (23) hold necessarily satisfies the

requirement (iii). We proceed to derive from the first of (23), with

application of the restriction (ii), the actual equations of transformation:

Multiplying the first of (23) by dt and expanding the differential of

2 9
. . . ,g\,Qi,Q2, . . . ,Qs,t), we get

* - Hdt =

or

t (-
-

Since the first of (23) and therefore also (31) is an identity in the

variables involved, and because of the requirement (ii) of (a) above

(whereby the dq\, dq^ . . .
, dq.\, dQ\, dQi, . . .

, dQx may be assigned

arbitrary values), we conclude from (31) that

(i)K =H+ft

,

(ii)p<-||.
(iii)P.= -^. (f-1,2, . . . ,N). (32)

Thus if S is any continously differentiable function of the
<j t ,

the Q,
and t, (32) generates a transformation a so-called canonical transforma-

tion of the character called for at the opening of (a) above. The 2W

equations (32,ii,iii) express the actual relations among the new (Q,P)
and the old (g,-,p<) variables, with t playing the role of parameter in the

transformation; (32,i) provides the function K, which plays the role of

hamiltonian in the transformed equations of motion (22) and which, for

sake of brevity, we call the kamiltonian.

1 See end-chapter exercise 7.
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We may therefore choose at random any suitable function S and so

generate a canonical transformation (see end-chapter exercise 6). It is

of course hoped, in the execution of any such transformation, that it leads

to a set of equations of motion (22) whose integration is less difficult than

that of the original set (21). In the section following we consider a

method for choosing the function 8 so that the integration of (22) may
be accomplished with maximum simplicity.

6-5. The Hamilton-Jacob! Differential Equation

(a) The most easily integrated set of transformed equations of motion

(22) is arrived at by a canonical transformation which leads to a kamil-

tonian K which is identically zero. For, in such an event, (22) reads

P\
~

Qi
~ for all i, so that the solutions are simply

P< = fc,Q< = a t
-

(i
=

1,2, ... ,N),

where the & and a t are two sets of arbitrary constants. With thoso solu-

tions obtained we may then solve the transformation equations (32,ii,iii)

and so obtain the pi and <? t ,
for all i, as functions of / and the 2Ar

arbitrary

constants 0i, 2 ,
.

, &v, ab a 2 ,
. . .

, a.v .

For a canonical transformation to lead to a kamiltonian A' identically

zero, it follows from (32, i) that the function S which generates the trans-

formation must be such that // + (dti/dt) 0. Or if

is the hamiltonian of the system under study, we therefore have from

(32,ii) that S must satisfy the partial differential equation

I n /Q0 ,

,^> ;
, + -

(33)

the so-called Hamilton-Jacobi equation.

The equation (33) has an infinity of solutions, of which our interest

lies solely in the complete solutions those which involve N independent

arbitrary constants i, a 2 ,
. . .

,
aN ,

aside from the one additive con-

stant of integration. (It is clear that (S + C) is a solution of (33) if

S is a solution, where C is any constant
;
this constant C is not included

among the N constants of a complete solution.)

We suppose that S =
S(qi,qt, . . . ,gv,ai,a2, . . ,<W) is a com-

plete solution of the Hamilton-Jacobi equation (33). Since the a,

(i
=

1,2, ... ,N) are constants only in so far as they are independ-
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ent of q\, </ 2 ,
. . .

, QN, t, we may effect the identification a< = Q,

(i
=

1,2, . . . ,N) and so obtain

S = 8(qi,q* 9
. ,<?A',Qi,Q 2 ,

- . ,<M (34)

as the function which generates, through (32), a canonical transforma-

tion. But since (34) satisfies (33), we have, as planned, that K =
0, by

(32,i), so that (22) yields the results Pi =
ft, Q t

= a t ,
for each t, as

required. To obtain the original variables q\, <? 2 ,
. . .

, g.v , Pi, p 2 ,
. . .

,

p,v as functions of and the 2Ar

arbitrary constants, we employ (as stated

in the opening paragraph of this section) the transformation equations

(32,ii,iii), with the arbitrary constant values substituted for the P, and Q,-.

Since, however, the a,-, as well as the a t ,
constitute a set of N inde-

pendent arbitrary constants, we may make the identification a t
= a<

(i
=

1,2, ... ,A
7

), bypass the substitution a t
=

Q,- in the complete
solution 8 = *S

T

(<?i//2, . . . ,r/\,ai,a 2 ,
. . . ,a.v,0 of (33), and directly

rewrite the set of transformation equations (32,ii,iii) as

"-^' ^'=- (.--lA...^), (35)

where i, a 2 ,
. . . , <v are the independent constants of the complete

solution of (33), and 1, /3 2 ,
. . .

, /3.\ are a second set. of arbitrary con-

stants substituted for PI, P 2 ,
. .

, P.\ in (32,iii). The solution of the

2N finite equations (35) for the <? t and p t (?' =1,2, . . . ,A
T

) constitutes the

general solution of (he original Hamilton equations of motion (21). Thus
the solution of the 2Ar

ordinary differential equations (21) is reduced to

the achievement of a complete solution of the single partial differential

equation (33).

(b) By writing

S = S* -
Et, (36)

where S* is independent of / and E is an arbitrary constant, we see

that M is a solution of (33) if S* satisfies the time-independent reduced

Hamilton-.Iacobi equation

Since, according to (14) of 6-3(6), // = T + V, and (T + V) is a con-

stant the total energy-- during the motion of a given conservative sys-

tem, according to 6-2(c), the arbitrary constant E in (36) and (37) must

be identified with the total energy of the system whose hamiltonian is H,

(Since the total energy of a system is determined only when the 2N con-
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stants of integration of the equations of motion are assigned definite

values, E maintains its character as an arbitrary constant.)

To obtain a complete solution of the Hamilton-Jacobi equation (33)

one usually first determines a complete solution of the reduced equation

(37), after which (36) is employed as the solution of (33). A complete
solution of (37) involves (N 1) arbitrary constants 2 , 3 ,

. . .
, a#,

as well as E (aside from the trivial additive constant). Thus, with E
properly regarded as an arbitrary constant equal to i, say the solu-

tion of (33) given by (36) is the required complete solution.

(c) In the case of a single particle of mass ra moving under the influence

of a conservative force, but completely free of geometric constraints, we

may use the cartesian coordinates as the generalized coordinates

namely, q\
=

x, q* =
y, q*

= z. Thus, according to (2) of 6-1(6), the

kinetic energy is given by T = $m(x 2 + if + z 2
)
= %m(q\ + q\ + q\).

From the definition (11) of 6-3 (a) we have the generalized momenta

Pi = mq\, pz = mq*, PS = mq A ,
so that T = (l/2m)(pj + pi + pi)-

From (14) of 6-3(6), therefore, the hamiltonian of the single-particle

system is H = (l/2m)(p* + pi 4- pi) + V(x,y,z), where V is the poten-

tial energy of the particle. Accordingly, the reduced Hamilton-Jacobi

equation (37) reads, in this important special case,

^J(fHfHf)
since q\

=
x, qz

=
y, q*

= z.

(d) To illustrate the use of the Hamilton-Jacobi method of deter-

mining the motion of a system we consider the special case of the uncon-

strained single particle in which V depends only on z namely, V = V(z).

In accordance with a general mode of procedure we seek a solution of (38)

of the form

S* = X(x) + Y(y) + Z(z), (39)

whence (38), with V = V(z), becomes

An obvious complete solution is achieved by letting each of the first two

terms equal arbitrary constants, so that

X =
f [a,

-
V()lcfc, (40)

where 3 is written for (E a\
-

a*). With (39) and (40), together

with (36), we therefore have
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8 = V2m { aix + a 2y + [ [<* 3
- F()] cb)

-
(a, + a\ + a\)t,

hence the solutions (35) of the equations of motion read (since q\
=

x,

y, q*
=

z) p\
= V2mai, p 2

= \/2m <* 2 , PS =
-v/2m(as V), and

/ Vim
J [ai

_ (41)

he more important trio of equations (41) may be solved for x, y, and z

)on performance of the integration when V(z) is given explicitly in

rms of t and the six arbitrary constants a t , &.

Additional discussion of the Hamilton-Jacobi method, including fur-

ier treatment of the foregoing problem in exercise 10, is reserved for the

id-chapter exercises.

6. Principle of Least Action

(a) We denote by the symbol Ci the configuration i.e., the aggregate
1

the positions of the individual particles exhibited by a given system

particles at an instant t = /r, C 2 denotes the configuration at a later

istant t = / 2 . The aggregate of all the paths traversed by the indi-

idual particles when the system pursues its course from the configu-

ition C\ to the configuration C 2 we call the configuration path, or orbit,

'. the system from Ci to C 2 . The actual, or dynamical, orbit of a system
2t\veen two given configurations clearly depends upon the geometric
Distraints imposed upon the system and the forces which influence the

lotion. It is useful, also, to speak of possible orbits between two given

^figurations ;
these are configuration paths which are merely geometri-

illy, while not necessarily dynamically, feasible within the limitations

f the constraints. For example, we consider a single particle which is

unstrained to lie in a fixed plane; it moves, under the influence of a given

>rce, along a certain arc connecting the points P\ and P 2 in this plane.

bs actual orbit between PI and P 2 is that arc; but any (smooth) curve
rhich lies in the fixed plane and which connects Pi and P 2 is considered a

ossible orbit between these points.

We consider a given conservative system whose kinetic energy is

rhose potential energy is V(qi,q^ . . . ,<?*), and which pursues its

ynamical orbit Od from configuration Ci to configuration C 2 with the

onstant value t E of the total energy (T + V). We next conceive of

t See 6-2(c).
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the system as pursuing an arbitrary possible orbit Op from Ci to C2 in

the following manner:

(i) The system starts from C\ at the same instant t = t\ at which the

actual motion starts from Ci.

(ii) The motion along Op is characterized by the same .constant value

E of the total energy (T + V) as that which characterizes the actual

motion along Od . (In general, the instant of arrival at C 2 is not the

same t = t? at which the pursuit of Od is completed at C 2 .)

We evaluate the so-called action integral

/* = 2 Tdt (42)

for the actual motion from C\ to C 2 along Od, and for the motions as

described by (i) and (ii) along all possible orbits O p which connect C\

and C 2 ,
where t% represents the time of arrival at C 2 (different, in general,

for each choice of Op) for each individual motion. In (b) below we
demonstrate the validity of the principle of least action:

The actual motion from C\ to CY

2 is characterized by an extremum of the

action (42) with respect to possible motions from C\ to C 2 for which the total

energy is constant and equal to the actual total energy E.

(b) To prove the validity of the least-action principle, we show that it

leads to a set of equations identical with Lagrange's equations of motion

(8) of 6-2 (b).

Since the upper limit 2 is not prescribed for the extremization of (42),

the proof is greatly simplified through introduction of a parameter
u =

u(t), which plays the role of independent variable in (42). This

parameter must be chosen differently for each possible orbit, but in such

fashion that Ui =
u(ti) and u^ = u(t 2) have the same pair of values for

every possible orbit. Thus the extremization of (42) is reduced, since

dt = (du/u), to the extremization of

/* = 2
/

T , (43)
Jui U

in which both u\ and u% have fixed values.

To complete the elimination of the variable t we write, for each i = 1,

2, . . .
, N, qi (dqi/du)u q^u

=
q'+w, where the prime indicates dif-

ferentiation with respect to u, and w = w(u) = u is introduced for sake

of convenience. Thus we have

T = T(qi, . . . ,qN,q'iWj . . . ,q'Nw) = w 2
T(qi, . . . ,##,</!, . . . ,</#), (44)

since T is a homogeneous function, of degree two, in <ji, </ 2 ,
. . .

, qN ,

according to 6-l(d). Writing T* = T(qi, . . . ,?y,gi, . . . ,#'#), we use



6-6] DYNAMICS OF PARTICLES 87

(44) to express (43) as

7* = 2
Jui

wT* du. (45)

Finally, we may rewrite the constancy-of-energy condition T + V = E as

+ V = E. (46)

With the transformations of the preceding paragraph we may restate

the principle of least action briefly as follows: The actual orbit is charac-

terized by an extremum of (45) with respect to the functions q\(u), qz(u),

. . .
, <7.v(w), w(u) which satisfy the auxiliary condition (40), and for

which r/i, f/ 2 ,
. . .

, q* are prescribed at u = Hi and u u*,

We proceed to effect the extremization indicated using the method of

4-5(). With (45) and (40) respectively representing specific cases of

(42) and (43) of 4-5(a) we form the function [(52) of 4-5(a)]

F = 2wT* + n(u)(w*T* + V -
E), (47)

whore ju is an undetermined function. Substituting (47) into (57) of

4-5(<7), with appropriate change of notation, we obtain, since (dF/dw
f

)
=

(identically),

27'* -f- 2/m'T* =
0, (48)

and, since (OV/dfy =
(identically) for all z,

dT* . / dT* . OV\ d [, ,

, aT
7

*]2tr ~r--h M I W 2 -~--h -r-
)
= -T- (2W + MW 2

) -r-7-
c^r/i \ c)^- dry,/ r/w [ ^^/t J

(i
=

1,2, . . . ,AT). (49)

From (44) it follows, since w =
u, that

dT*
__ J_ dOrv7'*) _ J_ OT = J_ aj[ dqi: = ]_

dT

c)(/ t

' w 2
<9r/J

w- d(fi w- dqidq'i lidqi

and w*(3T*/dqi) = (dT/dq<). With the aid of these results, and in con-

junction with
IJL
= (\/w) = (\/u) from (48), equation (49) reads, on

multiplication by w =
u,

since u(d/du) =
(d/rf/) and (dP

r

/d</t')
=

(identically) for all i. Com-

parison of (50) with (8) of 6-2(6) reveals, since (T - V) = L, that the

principle of least action does indeed lead to Lagrange's equations for the

motion of a system of particles. The validity of the principle is hereby

proved.
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(c) In the case of a single particle of mass m without geometric con-

straint the principle of least action leads directly to the differential equa-
tions of the particle's orbit, with the time variable t eliminated. In this

case we have

T -
\
m(x* + p + )

=
\
m

(I)*,
V =

V(x,y,z), (51)

so that the constancy of energy (10) of 6-2 (c) reads

=z? - y - (52)

With the first of (51), and on substitution from (52), the action (42) is

given by

/# = mr($ dt = m
ii Tt

ds= v^r vir=n? ds - (53)

If, for example, x is used as the independent variable in the equations

describing the particle's orbit, we write ds = \/l + y'~ +~ z
f

'

2
dx, where

the primes indicate differentiation with respect to x, so that (53) reads

/* = V2m f
**

\/E - V Vl + 2/'
2 + *'

2 dx. (54)

In the substitution from (52) into (53) the constancy-of-energy require-

ment of the least-action principle is taken care of, so that the extrem-

ization of (54) with respect to functions y(x) and z(x), prescribed at

x = x\ and x =
#2, is effected by the particular y(x) and z (x) which

describe the actual orbit of the particle between a given pair of fixed

points. According to (57) of 3-8 (a), therefore with appropriate changes
of notation the differential equations of the actual orbit are the pair of

Euler-Lagrange equations

*/_ d/a/\ df_ d(df\
fy ~dx \dy'J

"
U>

dz Tx \dz')

where / is the integrand of (54).

Application of the preceding result to specific examples is left for the

end-chapter exercises.

6-7. The Extended Hamilton's Principle

For application to dynamical systems which involve certain types of

forces not derivable from a potential-energy function, we have recourse

to a form of Hamilton's principle somewhat more general than the state-

ment given in 6-2 (a).
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We consider a system of p particles subject to given geometric con-

straints and to a set of forces which are only in part (if at all) derivable

from a potential energy V. That is, the three cartesian components of

the force influencing the motion of the jth particle are given by

(56)

where V = V (#1,1/1,21, . . . ,p,2/p ,zp), and the components of the non-

conservative part of the force acting upon each particle are functions of

the coordinates Xi, ?/i, 21, . . .
,
x pj y p ,

z p of the system and the time

variable t. If the generalized coordinates which describe the configu-

ration of the system are </i, # 2 ,
. . .

, <Z.v, we define the set of generalized

force components

We accept as applicable to the dynamical motion of a system of parti-

cles under the influence of the forces described by (56) the extended

Hamilton's principle:

The actual motion of the given system is such as to render the integral

N

I =
/" (r

- V + J /
Gk

dq^)
dt (58)

fc = l

an extremum with respect to continuously twice-differentiable functions

qi(t), qi(t'), . . .
, </.v(0 f<)r which (/,-( i) and ^('2) are prescribed for all

i = 1, 2, . . .
,
N. Here T =

T(<?i> ><?<vtfi> , ^jv) is the kinetic

energy of the system, and the Gk, expressed in terms of 51, # 2 ,
. . .

, (/N,

<, are given by (57). The indefinite integrals in the integrand of (58) are

to be regarded in such fashion that

(59)

In the important special case in which the generalized force com-

ponents are explicitly independent of the generalized coordinates, the

indefinite integral /(?* dqk may be replaced by Gkqk for each A:
;
that is,

the integral (58) may be rewritten as
N

- V+ Gkqk)dt. (60)
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Because of (59), however, the equations of motion derived from the

extremization of (GO) are no different from those derived from the

extremization of (58) [see end-chapter exercise 13 (a)].

It is clear from (57) that the generalized force components are ordi-

nary cartesian force components if we employ the cartesian coordinates

as generalized coordinates. If, for example, we have <y t
= Xk for a par-

ticular pair of values of i and k, it follows from (57) that (/ = F (

*\

EXERCISES

1. Consider a system of p particles moving under the influence of a set of forces as

described in the opening paragraph of 0-1 (a). In the course of its motion between

two given configurations [see 6-6(a)] the system has done upon it by the given forces

an amount of work defined by

W = V f /'> te /'< rf. /'
( dz

where thejth line integral is computed over the path pursued by thej'th particle.

(a) Show that the integral (f>I) is equal to the loss of potential energy of the system
if (1) holds.

(6) Show that the work (61) is given, in terms of the generalized force components
defined by (57) of 6-7, by

AT

Vs /V (2)

W = > / Gi dq i9/ I - t \\ l '

where
f/|

n and </-

2)
(>
=

1,2, ... ,N) respectively describe the initial and final con-

figurations of the system.

2. Show that a necessary condition for the equilibrium of a conservative system is

=0 (i
-

1,2, ,N). (02)

HINT: Using the fact that T is a quadratic form in the q t ,
set all the q, and r/ t equal to

zero after carrying out the differentiations indicated in (8).

3. Introduce a convenient set of generalized coordinates and derive the (Lagrange)

equations of motion for each of the following systems; a single particle of mass m is

involved in each:

(a) A particle is constrained to lie on a given circle of radius R in a fixed vertical

plane; V = myz, where g = positive constant, and z = vertical coordinate? measured

upward from any convenient horizontal line in the plane (simple pendulum). HINT:

Introduce the angular displacement (6) from the vertical of the line from the center of

circle to the particle; V = mgR(l cos 0), T = ^mRW. ANSWER: It& -f- g sin 0=0.
(6) A particle is constrained to lie on a given straight line; V = \kx 2

,
where

k positive constant, arid x = displacement from a fixed point on the line (har-

monic oscillator). ANSWER: mx + kx = 0.

(c) A particle is constrained to move on the surface of a given sphere of radius R\
V = mgz, where g positive constant, and z = vertical coordinate measured upward
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from any convenient horizontal plane (spherical pendulum). HINT: Introduce

x = ft sin cos 0, ?/
= ft sin 0sin <, z = ft cos 0. T =

^?/fft
2
(0

2 + <
2 sin 2

0).

(d) A particle is unconstrained; V rngz, where the symbols have the same mean-

ing as in part (r) (projectile). ANSWER: j = 0, y =
0, z =

g.

4. For each of the systems listed in exercise 3:

(a) Determine the generalized momenta. ANSWER: For exercise 3(6): p = mx.

(b) Write down the hamiltonian function. ANSWER: For exercise 3(6):

1 ,

for exercise 3(</): // =
\(p\ -f p* -f p;)/2?w] + wgrz.

(r) Construct the Hamilton equations of motion. ANSWER: For exercise 3(6):

(p/tn}
=

.r, p =
A\r; for exercise 3(t/): p, =0, p y

=
0, pt

=
nig, x = (px/m),

y =
(p,/; ?//), z = (p2 m).

5. Use exercise 2 to determine the equilibrium positions, if any, for the systems of

exercise 3. ANSWER: For exercise 2(a) 0, ?r; (6) x = 0; (r) = 0, -n-; (d) none.

6. ((/) Apply the canonical transformation generated by S = \ \/]wi x 2Q to the

system of exercise 3(6); derive the transformed equations of motion. ANSWER:

P = - \/A^ xQ, P =
{ \T^i x*, K = \/k/m P(Q* -f 1), Q = V^Tm (Q* + 1),

P = ~ 2 \''k?mP<).

(6) Integrate the transformed equations of motion obtained in part (a) and use

the transformation relations to obtain p and x as functions of t (and two arbitrary

constants).

(r) Integrate the Hamilton equations of motion obtained in exercise 4 for the

system of exercise 3(6). Show, by convenient designation of the constants of integra-

tion, that the results are identical with those obtained in part (6) of this exercise.

ANSWER: x = .r ( , cos ut -h (po/x/A-w) sin w/, p = p cos wt x \/'km sin a?/, wrhere

u> = \' k/iu, and x
, po, are arbitrary constants. (It may take a bit of juggling to

get the result of part (6) into this form.)

7. Carry out the details of deriving (30) from (27).

8. Discuss the validity of the use of the solution M. =
(/
= 1,2, . . . ,A

T

) of (29)

in the event it is not unique. HINT: Consider the specific purpose for the introduction

of the ^, into the extremization problem at hand. Answer the crucial question: Is

this purpose fulfilled if all the /i, are set equal to zero? ANSWER: Yes, automatically.
9. (a) Write down and solve the reduced Hamilton-Jacobi differential equation

for the system of exercise 3(6). Thus write down a complete solution S of the time-

dependent Hamilton-Jacobi equation. ANSWER:

S

where a = y/2E/k.

(b) Use the result of part (a) to derive, by means of (35), the solution of the Hamil-

ton equations of motion of the system. Compare with the result of exercise 6(r).

10. (a) If S is given by (30), where S* is a complete solution of (37), and if we

choose a i E, what is the significance of the set of equations [from (35)]

0, = -(dS/dm) for ? =
2, 3, . . .

,
N? HINT: Go on to parts (6), (c) below.

(6) Carry through the work of 6-5(rZ) without introducing t* 3
= (E a\ c^);

instead, let 3
= E. In particular write down the equations /3i

=
(
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02 = (dS/daz). Interpret these equations to show that the orbit of the particle

lies in a plane parallel to the z axis.

(c) Show that the result of part (6) is equivalent to the pair of equations obtained

by eliminating t from the three equations of (41).

(d) In 6-5 (d) consider the particular case V = mgz, with the initial conditions

y(Q) =
t/(Q)

=
0, #(0) =

XQ, x(0) VQ COS <, z(0) =
Zo, (0) = V Q sin <, (0 < </> <TT).

Show that the orbit is the parabola

z = zo + (x XQ) tan <t> 2 (x z )
2 sec 2

<f>

in the plane y = 0.

11. (a) Apply the least-action principle to the unconstrained particle under the

influence of V = V(z). Show that the orbit equations are given by

/
&

X = Ci I .

_
y ss x -f- e

ci

HINT: Use the fact that the integrand of (54) is in this case explicitly independent of x.

Apply (59) of 3-8(6), with appropriate change of notation.

(6) Show that the result of part (a) is identical with that of 6-5 (c) when t is elimi-

nated from (41) (see exercise 10(6,c) above).

12. (a) A particle of mass m constrained to lie in a given plane has a potential

energy which is a function only of its distance r from a fixed point in the plane. Use

the principle of least action to derive the equation

/
dr

of the particle's orbit, where (r,<) are plane polar coordinates.

(6) Apply part (a) to the special case V = (k*/r). Identify the orbit in each

of the cases E > 0, E =
0, E < 0.

(c) Solve the problem of part (a), and subsequently that of part (6), by the Hamil-

ton-Jacobi method. SOLUTION: T = im(f
2
4- r

2
<j>

2
), pr mf, p0 = mr 2

<,

S* = -
F)

-
(7)'

use the second of (35) with i = 1.

13. (a) With the aid of (59) show that the extremization of both (58) and (60) leads

to the equations of motion

S -*()-- "*-.*>.

(6) Apply the result of part (a) to the problem of the harmonic oscillator of exercise

3(6) in which a force whose x component is F(t) is applied to the particle. ANSWER:

mx + kx -
F(t).*



CHAPTER 7

TWO INDEPENDENT VARIABLES: THE VIBRATING STRING

7-1. Extremization of a Double Integral

(a) We consider the double integral
1

I =
) f(x,y,u>,wt,wv)dx dy (1)

D

carried out over a given domain D of the xy plane. The given function

/ is twice differentiable with respect to the indicated arguments. We
proceed to derive the partial differential equation which must be satis-

fied by the function which renders (1) an extremum 2 with respect to con-

tinuously differentiable functions w(x,y) which assume prescribed values

at all points of the boundary curve C of the domain D.

To effect the extremization of (1) we employ the method of 3-3 (b)

whereby we introduce a one-parameter family of comparison functions

W(x,y) = w(x,y) + w(x,y), (2)

where w(x,y) is assumed to be the actual extremizing function, and is

the parameter of the family. Thus no matter what the choice of ii(x,y),

arbitrary to within continuous differentiability and

l(x,y) = on C, (3)

we have that the integral formed by replacing w by W in (1) is an extre-

mum for c = 0. That is,

/'(O)
=

0, (4)

where

/() =
fff(x,y,W,WWJdx dy. (5)

D

1 In this and ensuing chapters we employ, whenever the usual notation becomes too

cumbersome, subscripts to indicate partial differentiation. Thus we write wx for

(dw/dx), w^ for (d*w/dy dx), etc.

2 We use the term "extremum" here in the sense of 3-3 (c), with obvious extension

to the case of functions of two variables.

93
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Using (2) to compute (dW/de) =
77, (dWx/de) =

77*, (dWv/de) =
vj vj we

differentiate (5) with respect to to form

Since, according to (2), setting = is equivalent to replacing W by w,

we therefore have

^ *)

because of (4).

Applying Green's theorem (22) of 2-13 to the final two terms of the

middle member of (G), we obtain

ft ft ["*/
^

( df\ d ( df\] . ,=
/ /

*
\

-~-- T- I I -r- I IT- ]\dx ay
JJ

'

[_dw dx\dwj dy\dwy}\
y

D

because of (3). From the basic lemma of 3-1 (c) we therefore conclude

that the extremizing function w = w(x,y) must satisfy

^ _ 1 (*L\ _ 1 / /
^ = o

dw dx \dwx/ dy \dwyj
(9)

x y

everywhere in D.

(b) We may directly extend the result of (a) above to the case in which

the functions eligible for the extremization of (1) arc required to satisfy

no special condition on the boundary C. The only alteration of the pro-

cedure of (a) is to remove the restriction (3) and so adopt the result (7).

Since the right-hand member of (7) must vanish for all choices of arbi-

trary differentiable TJ(Z,T/), it must in particular vanish for those TJ which

satisfy (3). For such functions 77 equation (7) reduces to (8), and we

immediately conclude the applicability of (9). With (9) equation (7)

becomes

(
Jc

-
ds dwv ds

as U)
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for t] arbitrary along C. Applying a form of the basic lemma of 3-1, we
therefore have

3L% - *L** = along C (10)dwx ds dwy ds
6 v '

as the condition which must be fulfilled in case the functions eligible for

the extremization are not prescribed on C.

In case the eligible functions are prescribed on a portion of C but are

arbitrary on the remainder of C, it is clear from the preceding paragraph
that (10) must hold along the remainder of C. That is, every point of

C is characterized by either the prescription of w or the fulfillment of (10)

by the actual extremizing function w.

(c) By adapting the procedure of 4-1 we achieve the following result

for the simple isoperimetnc problem involving two independent variables:

The function which extremizes (1) of (a) above with respect to functions

w for which the integral

J =
ffg(x )y t

w
)
wx)wv)dxdy

D

has a given prescribed value must satisfy the Euler-Lagrange equation

df* =
dw djr \3wJ dy \dwj

'

where /* = / + X#- Along portions of C on which w is not prescribed,

the condition (10), with / replaced by /*, is fulfilled by the extremizing
function w.

7-2. The Vibrating String

In this section we apply Hamilton's principle [6-2(a)] to a system

involving a continuous distribution of mass as distinguished from a dis-

crete set of mass particles, to which our attention is confined in Chap. 6.

The means for effecting this application is the simple device employed
with great success through the domain of "continuum mechanics"- -of

replacing sums over discrete particles by integrals over the continuous

mass distributions.

(a) We consider a perfectly flexible elastic string stretched under con-

stant tension T along the x axis with its end points fixed at x = and

x = L. This undistorted state is called the equilibrium configuration.

Following the proper type of stimulus, the string is permitted to vibrate

freely in a plane containing the x axis in such fashion that each particle

of the string moves in a straight line perpendicular to the a' axis; the

amplitude of vibration is supposed so small that the slope (with respect
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to the x axis) of the string at any point is small compared with unity at

all instants of time t. We further assume that there is no frictional (or

other) damping, so that we deal with a conservative system.
The transverse displacement at time t of the particle whose equilibrium

position is characterized by its distance x from the end of the string at

x = is denoted by the function w w(x,f) ;
thus w(x,t), with g x ^ L,

describes the shape of the string during the course of the vibration. The

slope of the string is given by (dw/dx) = wx(x,t) as a function of position

x and time t. At time t the velocity of the particle at a particular value

of x is denoted by (dw/dt) = w(x,). The fact that the ends are fixed

(with zero displacement) at x = and x = L supplies the end-point con-

ditions w(0,f)
= w(L,f) =

0, for all t.

Since the string is perfectly flexible, the amount of work which must
be done upon it in order to effect a given distorted configuration must be

employed merely to increase the length of the string relative to its equi-

librium length L. Therefore, in order to compute the potential energy
V of the string at an arbitrary instant of time we must compute merely
the amount of work which is required to stretch it from the length L to

its total length in the configuration exhibited at the given instant. Thus
since the stretching force is equal to the tension f T, the potential energy is

given by

< dx
-L),

where the integral is clearly the length of the string in its distorted con-

figuration. With the assumption that \wx
\

is small compared with unity
we may expand \/l + wl =

(1 + %wl + * '

') and neglect the higher

powers of w2

x to obtain from (11)

v " T
[K (l + *w^dx - L

]
= *T K w* dx - (12)

We assume a distribution of mass along the string of density (mass per

unit length) o-(x), where a =
<r(x) is a positive continuous function. Thus

the mass contained in an element of length dx at x is <r(x)dxj with the

associated kinetic energy ^(r(x)dx[w(x ) t)]
2

or, simply, -J<ru?
2 dx. The

total kinetic energy of the string, accordingly, is

-*jr (13)

With (12) and (13) we apply Hamilton's principle [6-2 (a)] to the vibra-

tion of the string. That is, the function which describes the actual

t It is tacitly assumed that the elongation is so slight that the tension remains

constant throughout the stretching.
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motion of the string is one which renders

/ =
I* (T - V)dt = * I* /Q

L
(cru?

2 -
rwl)dx dt (14)

an extremum with respect to functions w(x,t) which describe the actual

configuration at t = t\ and t = < 2 and which vanish, for all /, at x =
and x = L. (The instants 1 and 2 > t\ are completely arbitrary.)

The extremization of (14) is accomplished through 7-1 (a) above (with
the replacement of y by /, wv by w) if we denote by D the "rectangle"
^ x ^ L, t\ ^ ^ / 2 in the "# plane." According to the preceding

paragraph the functions eligible for the extremizalion are prescribed

everywhere on the boundary C of D. Thus we may apply (9) of 7-1 (a)

to the integrand/ = %(crw* rwl) of (14) to obtain

d*w _ <r(.r)_ ._ _
.

J()

dX" T dt 2

as the partial differential equation which describes the motion of our

vibrating string.

(b) We consider also the case in which each end point of the vibrating

string described in (a) above, instead of being maintained in fixed posi-

tion, is allowed to move froely along a straight line perpendicular to the

.r axis and lying in the plane of vibration. 1

Mathematically the only

change incident upon freeing the end points in this fashion is to remove
the restriction that the functions w eligible for the extremization of (14)

vanish at .r = and x = L. Since, because of Hamilton's principle, the

eligible functions are still prescribed at t = t\ and t = / 2 ,
we may there-

fore apply the free-boundary condition (10) of 7-1(6), with appropriate

change of notation, only along the "sides" x =
0, x L of the "rectan-

gle" D in the ".r/ piano" described in the final paragraph of (a) above.

Along these sides we have (dt/ds) = 1 and (dx/ds) = 0. Thus (10) is

reduced to (df/dwx)
=

0; with the integrand / = %(aw~ rwl) of (14)

it reads, simply,

i - <>

at x =
0, x L. In case one end of the string is held fixed and the

other is free, condition (16) holds at the free end only, of course, while

w = holds at the other end.

(c) Mathematically, the problem of the vibrating string is completely

equivalent to the problem of the plane longitudinal vibrations of an

1 Such an arrangement is, approximately at least, physically feasible. The reader

is urged to devise schemes by which the "free-end string
"
may be set up.
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elastic medium. Specifically, the foregoing results apply, for example,
to the vibrations of the gas filling a long cylindrical tube. At a closed

end of the tube the vibration amplitude w is required to vanish (the fixed-

end problem of (a) above); at an open end, since there is no constraint

upon the amplitude w, the condition (16) is applicable. The quantity a

appearing in (15) is the mass of the gas per unit length of the tube and is

in general a constant; r is a constant related to the compressibility of

the gas. In the remainder of this chapter we speak only of the vibrating

string; it should be understood, however, that our results are generally

applicable to the gas-vibration problem as well.

7-3. Eigenvalue-Eigenfunction Problem for the Vibrating String

(a) The initial attack upon the vibrating-string equation (15) involves

seeking a solution of the form

w =
4>(x)q(t), (17)

where (/> is independent of i and q is independent of x. From (17) it fol-

lows that w xx = (i>"(x)q(t}
=

<t>"q and w =
<t>(x)q"(t)

=
<f>q, so that sub-

stitution into (15) gives, on division by (<r#//r),

!< - 1
(18)

Since the left-hand member depends upon x alone and the right-hand

member upon t alone, it follows that the only circumstance in which

(18) can hold for all values of the independent variables x and t is that

both members be equal to a constant 1

independent of x and t] we denote

the constant, at this point undetermined, by ( X). Thus (18) implies

the two ordinary differential equations

Determination of the values which may be assigned to X depends upon
the particular set of end-point conditions we happen to deal with. If

both ends of the string are fixed, the conditions w(Q,t)
= w(L,t) =

lead,

through (17), to the conditions <(0) =
<t>(L)

= upon <. On the other

hand if one or both end points of the string are free, the vanishing of </>

must be replaced, according to (16) and (17), by (d<t>/dx)
= at one or

1 This line of argument, the basis of the so-called method of separation of variables, is

employed repeatedly in chapters following.



7-3] TWO INDEPENDENT VARIABLES 99

both of x =
0, x = L. In what follows, we suppose that we have to deal

with one from among the possible sets of such end-point conditions. l

Thus we are faced with the problem of not only solving (19,i) but of

fitting the general solution </>
=

<t>(x,\) to the required end-point con-

ditions. It can be shown 2 that there exists only a discrete set of values

of X for which the end-point conditions are satisfied by 0(x,X). (It is

quite obvious that <
=

0, identically in ^ x g L, satisfies both (19,i)

and any of the various sets of end-point conditions, for arbitrary X. This

trivial solution must be ignored as irrelevant to our problem.) This

privileged set of values of X we may list in the increasing order Xi, X 2 ,
. . .

,

Xn ,
. . .

;
it has infinitely many members, of which there is a smallest

Xi, but for which X n is unbounded as n > oo
. Any such value of X

for which there exists a solution of (19,i) which conforms with the end-

point conditions is called an eigenvalue of X; the corresponding solution

is called an eigenfunction of (19,i) in conjunction with the particular end-

point conditions. Corresponding to any one eigenvalue there is one and

only one linearly independent eigenfunction; the vibrating-string eigen-

values are therefore said to be nondegenerate. Clearly, the totality of

eigenvalues of X associated with a given problem depends upon the values

of L and r, the function <r(x), and the particular set of end-point con-

ditions involved in the problem.
Since both the differential equation and the end-point conditions which

the eigenfunctions are required to satisfy are linear and homogeneous,
it follows that the product of an eigenfunction by any nonzero constant is

also an eigenfunction corresponding to the same eigenvalue. For this

reason we may impose the convenient restriction

K <r</>
2 dx = 1 (20)

for every eigenfunction we deal with. (Because a > 0, the left-hand

member of (20) must be positive for any real function $ not identically

zero. In case the integral were not equal to unity but equal to c
2

, say,

the corresponding integral, with </> replaced by (0/c), would be unity.)

Any function < for which (20) holds is said to be normalized with respect

to the weight function a in the interval ^ x ^ L or, briefly, normalized.

(6) There are no negative eigenvalues of X. To prove this fact we

multiply (19, i) by <t> and integrate the resulting equation from x = to

1 That is, we deal with a string with both ends fixed, both ends free, or one end fixed

and the other free, with only one of these cases considered in any given discussion.

2 The proof is beyond our present scope. Sec, however, Ince, Chap. 10. See also

exercise 2 at the end of this chapter.
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x = L. We thus obtain, with the aid of (20),

on integration by parts. If <t> is an eigenfunction, either
<f>
= or

(d<t>/dx)
= at x = and x = L, so that the right-hand member of (21)

reduces to its final term. Since r > 0, we therefore conclude that no

eigenvalue of X can be negative.

With the exceptional case X = left for end-chapter exercise 6(6) we

employ the positivity of the eigenvalues of X to solve the time-dependent

equation (19,ii). If Xn is an eigenvalue of X, the general solution of

(19,ii) is

q = qn = A n cos \/\~n i + Bn sin \/\~n t (n =
1,2,3, . . .), (22)

where A n and Bn are arbitrary constants. If
<t>n

=
<t>n (%) is the corre-

sponding eigenfunction,

w = wn = 0(z)(4 n cos \/\~n t + Bn sin \/\~n t) (n =
1,2,3, . . .) (23)

is therefore, for each n, a solution of the equation (15) describing the

motion of the vibrating string under a given set of end-point conditions.

Clearly, the solution (23) is periodic in the time variable t] the period

is given by (2?r/\An), the frequency by (\A n/27r). Thus we conclude

that the elastic string has the ability to vibrate with any of a discreet

set of frequencies which are determined by the eigenvalues of X. In

other words evaluation of the set of eigenvalues associated with a given

vibrating-string problem provides the set of natural vibration frequencies

of the string. In particular the lowest eigenvalue Xi provides the so-called

fundamental frequency (\/\i/2ir) of the string. In 7-5 below it is demon-

strated that the general motion of a vibrating string is a linear super-

position of the various single-frequency modes of vibration represented

by (23).

7-4. Eigenfunction Expansion of Arbitrary Functions. Minimum
Characterization of the Eigenvalue-Eigenfunction Problem

(a) We consider the sequence of normalized eigenfunctions $1, < 2 ,
. . .

,

4>n ,
. . . and corresponding eigenvalues Xi, X 2 ,

. . .
,
Xn ,

. . .
, arranged

in increasing order, of a given vibrating-string problem; that is, for each

n =
1, 2, 3, . . . .

,
the function <t>n satisfies

T<t>" + Xn(70n =0 (0 g X g L) (24)

and either

<t>n
= or <'n

=
(25)
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at x = and x = L. Rewriting (24) with n =
j, we multiply this

equation by <t>k(j ^ k). Reversing the indices j and fc in the result so

achieved, we obtain a second such result. Subtracting one from the

other of these two results and integrating from x = to x =
L, we get

(X*
~

Ay)

L
a<t>jfa dx = r

L
(<t>k <t>"

-
<t>j<t>")dx

on integration by parts of each term of the second member. Since

</>/ and fa are eigenfunctions of the same problem, they satisfy the same

conditions either of (25) at each of x 0, x L. It therefore fol-

lows that the final member of (26) vanishes. Also, since j 5* k and

thereforef Ay 7* A* -we have

'

cr<t>j<t>k dx = for j ^ fc. (27)

Any two functions </, fa which satisfy (27) are said to be orthogonal
with respect to the weight function a in the interval ^ x ^ L or,

briefly, orthogonal. A set of functions fa, fa, . . .
, fa, . . . of which

every two distinct members satisfy (27) is said to constitute a set of

orthogonal functions (with respect to the weight function a in the interval

^ x g L). In case all the functions of an orthogonal set satisfy the

normalization condition (20) of 7-3 (a) with the same weight function

and same interval they are said to constitute an orthonormal set. Since

the vibrating-string eigenfunctions are required to be normalized, the

result (27) discloses the fact that they constitute an orthonormal set.

This fact is best expressed through introduction of the Kronecker delta

,*, a symbol which denotes when j ^ k and 1 when j = fc. Thus we
have for the eigenfunctions of a given vibrating-string problem

(r<t>j<t>k
dx =

djk. (28)

(&) We state without proof the following theorem concerning the expan-
sion of an arbitrary function in terms of the known set of eigenfunctions :

If the arbitrary function g(x) is piecewise continuous and piecewise

differentiable 1 in g x g L, the series

withcn = <rfag dx,

converges uniformly to g(x) in every subinterval of ^ x ^ L in which

g(x) is continuous. We may therefore write

t See end-chapter exercise 3.

J See 2-1.
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00

Cn <t>n (x) (c
n = <T<j>ng dx). (29)

=l

Moreover, in any subinterval in which g'(x) is continuous, we may
differentiate (29) term by term to obtain

00

g'(x)
=

.
cn <t>'n (x), (30)

and the convergence is uniform. (Possible exceptions at x = and

x = L are mentioned below.)

Given that there exists a series expansion of the type shown in (29),

we get the parenthetic part of (29) directly from the orthonormality rela-

tionship (28). The details are left for exercise 4 at the end of this chapter.

The matter of end-point conditions requires special discussion. If the

eigenfurictions employed in the expansion of a given function g(x) accord-

ing to (29) satisfy the condition <t>n
= at x =

(or x = L, or both),

the series (29) clearly converges to zero at x =
(or x = L, or both).

Thus, although the function g(x) may be continuous in the neighborhood
of x = (or x L, or both), the sum of the series (29) is discontinuous

at x = (or x = L, or both) in case g(x) does not vanish at x = (or

x =
L, or both). We encounter no difficulty from this fact in our study,

however.

If, on the other hand, the eigenfurictions $ which appear in (29)

satisfy the condition </>'n
= at x = (or x = L, or both), the difficulty

of the preceding paragraph does not arise at x =
(or x = L, or both) ;

that is, if g(x) is continuous at x = (or x = L, or both), the series (29)

is also continuous at x = (or x = L, or both). The derivative series

(30), however, is discontinuous at x = (or x = L, or both), in case

g'(x) is continuous and different from zero at x = (or x = L, or both).

(c) With the aid of the expansion theorem of (6) above we demon-

strate the following minimum characterization of the eigenvalue-eigen-

function problem for a given vibrating string :

The kth eigenvalue^ \k is the minimum of the integral

I = T
Q

<t>'*dx (31)

with respect to those functions <f> which satisfy the normalization condition

fftfdx = l (32)

f The totality of the eigenvalues is supposed arranged in the ascending order

Xi < Xi < < X* < .
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and the (k 1) orthogonality relations

<r<t>j<t> dx =
(j
=

1,2, . . . ,fc
-

1), (33)

where </ ts /ie eigenfunction that satisfies

rtf + \ph = (j =
1,2,3, . . .) (34)

and the set of end-point conditions (<,-
= or

<t>j

= at =
0, x = L)

associated with the problem. Further, every function </> eligible for the

minimization must be continuous everywhere in ^ x ^ L and have a

first derivative $' which is piecewisc continuous in ^ x 5= L.

In the problem of the string whose end at x = (or x = L, or both)

is held fixed, the additional restriction = at x (or x L, or both)

must be imposed upon the eligible functions. (No special restriction is

imposed upon the eligible functions <f> at x =0 (or x =
L, or both) if the

end of the string at x = (or x = L, or both) is free.)

The minimum \k of I under the stated restrictions is achieved when
<f> fa.

(We note, in particular, that the functions <t> eligible for the first

minimization of /, whereby the minimum is the lowest eigenvalue Xi,

are required to satisfy no orthogonality condition (30). )

!

To prove the stated characterization we expand the arbitrary function

eligible for the &th minimization of (31) in accordance with (29) and

(30) of (b) above:

(c n
=
/Q

7'

<?** dx). (35)

(The eigenfunctions employed in the expansion are associated with the

particular vibrating-string problem under discussion. Thus, according

to the above statement of possible end-point restrictions upon the eligible

functions <, every <t>
is required to vanish at x = (or x = L, or both)

if and only if every < n vanishes at x = (or x = L, or both). We there-

fore avoid the end-point-discontinuity difficulty mentioned in the penulti-

mate paragraph of (b) above. On the other hand, at a free end point,

the second series of (35) may be discontinuous (according to the final

paragraph of (b) above), since each </>'n must vanish there, while <t>' is arbi-

trary; this fact involves no difficulty in the proof which follows, however.)

From the parenthetic portion of (35) it follows that the orthogonality

1 A reading of 9-9 (c) at this point (with a few obvious minor changes of wording)

should be extremely helpful in achieving a fuller understanding of the foregoing

characterization.
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conditions (33) are satisfied only if

ci = c 2
= = c*_i = 0. (36)

Substituting the first of (35) for one factor of (32), we obtain 1

1 dx = > cn
JQ

o-4>n < do; = ) c;
=

1, (37)
n=l n=l

with the aid of the parenthetic part of (35).

Substituting the second of (35) for one factor of (31), we obtain

' / V / / 1
L

[
L K \

</>.,</> dx T / cn \ </>n </> L /rt <t>n <t>dxf> (38)

n = l

on integration by parts.
2 Since either <t>

= or <t>'n
= at both off x =

0,

x =
L, the integrated portion of every term of (38) must vanish. With

the aid of (34) with j replaced by n (38) therefore becomes

00 00

n (r<t>")<t>dx
= cnXn fffa+dx = Xnc

2

B , (39)
n = 1 n I

according to the parenthetic part of (35).

Taking into account (36) and (37), we may rewrite (39) as

nC
2

B
= X* ' + (An

- X*K = X* + (X.
-

X*)c'.

n k n = k n = k

Since Xn > X/t if n > /c, it therefore follows that / ^ X^; the equality sign

holds if Ck = 1 and c/t+i
=

Ck+2
= ck+z = = 0. But according to

the first of (35), this choice of the set of coefficients cn (clearly consistent

with (37)), taken in conjunction with (36), implies =
fa. The stated

1 The interchange of summation and integration, carried out in the sequel without

explicit statement of justification, is justified by the uniform convergence of the

series expansions, as stated in (6) above. Since <$>' is merely piecewiae continuous, the

second series of (35) may be discontinuous at a finite number of points. The conse-

quent nonuniformity of convergence is confined, however, to a finite number of

arbitrarily narrow subintervals whose contribution to any term-by-term integration

over ^ x ^ L can be made arbitrarily small and therefore zero.

2 It is this integration by parts which requires the continuity of the eligible functions

<f>,
rather than the merely piecewise continuity needed for the first expansion (35)

(see 2-4).

t See the parenthetic remark of the preceding paragraph. We may, of course,

have both </>
= and <t>n

= at one or both end points.
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minimum characterization of the vibrating-string eigenvalue-eigenfunc-

tion problem is hereby proved. Application is found in 7-6 below.

7-5. General Solution of the Vibrating-string Equation

(a) By means of the expansion theorem enunciated in 7-4(6) we may
obtain a solution of the vibrating-string equation (15) of 7-2 (a), together
with an appropriate set of end-point conditions, which is sufficiently

general to cover at least those cases which are of physical interest. The
method we employ bypasses the equation (15) itself, but instead returns

to the integral (14) namely,

*

(***- l)dxdt (40)

whose extremization according to Hamilton's principle leads directly

to (15), Further, the method presupposes the prior solution of the

eigenvalue-eigenfunction problem associated with the given vibrating-

string problem; t'.e., we have at our disposal the sequence of orthonormal

eigenfunctions </>i, </> 2 ,
. . .

, <t>mj . . . and corresponding eigenvalues

\i, X 2 ,
. . .

,
Xm ,

. . . for which

T& + \m<T<t>m =
(0 ^ X ^ L) (41)

and cither </>m = or $ = at x = and x = L, for each m. (At a

free end point of the string <f>m = 0; at a fixed end
<t>m =

0.)

We suppose that w =
w(x,t) is arbitrary for all in ^ x ^ L, to

within the following limitations: (i) continuity of w and w with respect

to both x and t, (ii) piecewise continuity of wx and wx with respect to x
y

(iii) w(x,t) describes the actual vibrating-string configuration at two arbi-

trary instants t t\ and t = fa (requirement of Hamilton's principle).

Finally, if the string under consideration is fixed at one end point (or

both), w(x,t) vanishes at that end point (or both), for all t. Regarded
as a function of x, w(x,t) clearly satisfies the requirements of the theorem

of 7-4(6) for expansion in terms of the eigenfunctions associated with the

given vibrating-string problem. Since w(x,t) depends upon t, however,
the coefficients in the expansion must depend upon t.

We thus write, according to (29) of 7-4(6),

w =
L,
^W*"^) \

Cm =
Jo v^rnwdx)' (42)

ml
We may also expand w(x,i) as

w =
^ dm (t)<t>m(x) (dm

=
fQ
L

<r<t>mw dx)> (43)
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according to (29). Since w is continuous with respect to x, it follows

from the parenthetic parts of (42) and (43), and from the rule [2-3(a)] for

differentiation of an integral, that dm cm . Thus since we may differ-

entiate the series of (42) term by term with respect to x, we have the

two expansions

00 00

w = cm (t)<t>m (x), wx = cm (t)4>'m (x). (44)

Substituting the appropriate series of (44) for one factor of each term

of the integrand of (40), we obtain

00

/ = i
2, )t* \^

m
Jo

J

v^ dx rcm
JQ

'

w x <t>m dxj
dt. (45)

m=l

Integrating by parts the second integral over x, and using the fact that

either w (at a fixed end) or <f>'m (at a free end) must vanish at x = and

x = L, we obtain (45) in the form

L v w L ff<t>mljb dx + Cm k
=l
oo

Li L \
m

Jo
"*m^ dx ~~ ^mCjn

Jo
ff^mW dx

)
dt

(cl
- \mc*Jdt, (46)

m-1

with the aid of (41), the parenthetic portions of (42) and (43), and the

fact that dm = cm .

Thus the extremization of the integral (40) with respect to the arbi-

trary function w(x,t) is reduced to the extremization of the simple inte-

gral (46) with respect to the infinite set of functions cm (t). To avoid any

possible difficulty involved in the circumstance of the appearance of

infinitely many dependent variables cm (f) in the integrand of (46), we

suppose that all but one cn (t}, say are correctly determined as cxtrem-

izing functions. With this we may apply the Euler-Lagrange equation

(25) of 3-3 (b) replacing y by cn and x by t, and with / = i S (cj, -Xwc^)
to obtain cn + Xnc n = as the differential equation which must be

satisfied by the extremizing function f cn (t). Since the choice of n is

arbitrary, however, this equation must hold for all n =
1, 2, 3, ....

t Since the arbitrary eligible function w(x,t) is required to describe the actual string

configuration at t ti and t = fa, we must suppose that cn (t) is prescribed at t == t\

and t = fa. There are thus no special "end-point" conditions on cn (t) at t = 1 and

* - fa.
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The general solution of the above equation for cn (i) is with the excep-
tional case in which \i = left for end-chapter exercise 6(c)

Cn(0 = A n COS V^n t + #n SHI \/\n t (n =
1,2,3, ...),' (47)

where the A n and Bn constitute two sets of arbitrary constants. With

(47) we conclude from (42) that the general solution of the vibrating-

string problem is

w(x,t) > <t> n (x)(A n cos \/\ n t + B n sin v X n t). (48)
n = 1

(b) The result (48) justifies the frequently employed analysis of any
given state of vibration of an elastic string as a linear superposition of

vibrations, each of which is characterized by a single frequency. Com-

parison with (23) of 7-3(6) reveals that each term of (48) represents one

of the single-frequency modes of vibration which the string is capable of

executing.

The infinite sets of arbitrary constants A n ,
B n may be determined if

initial (t
= 0) conditions arc prescribed for w and w] discussion of this

point is reserved for end-chapter exercise 7.

7-6. Approximation of the Vibrating-string Eigenvalues and Eigen-
functions (Ritz Method)

Since precise analytical methods are not available in all cases, one must
in general resort to methods for approximating the eigenvalues and eigen-

functions associated with a given vibrating-string problem.
1 One such

method, generally known as the Hilz method, is a direct consequence of

the minimum characterization developed above in 7-4 (c).
2

(a) According to 7-4 (c) substitution into

0'
2 dx (49)

of any continuous, piecewise differentiable function <(#) for which
= and

dx = 1 (50)

bestows upon / a value no less than the lowest eigenvalue \\ associated

with the fixed-end vibrating-string problem to which L, r, a pertain.

Accordingly, / provides an upper bound for XL

1 A few problems in which it is possible to write down explicit expressions for the

eigenvalues and eigenfunctions are handled in the end-chapter exercises.

2 See 10-10 below, second paragraph.
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Further, we may substitute into (49) an eligible function <t>(x) which

depends upon one or more parameters fci, fc 2 ,
. . .

,
kN . Thus / is com-

puted as a function of fci, fc 2 ,
. . .

,
kN ,

with respect to which parameters
the integral is subsequently minimized. The minimum so achieved is

accordingly the lowest upper bound to Xi obtainable through the class of

functions defined by <t> and the sets of values assumed by the N parame-
ters. The larger the number N, the wider is the class of functions so

defined, and so, in general, the lower is the computed upper bound for Xi.

(In the possible fortunate circumstance in which <, for some particular
set of values of fci, fc 2 ,

. . .
,
kN ,

coincides with the actual eigenfunction

0i, the upper bound computed by minimizing 7 with respect to these

parameters is exactly XL) The essence of the Ritz method lies in the

acceptance of the minimum of / with respect to the N parameters as an

approximation to Xi. (In (c) below we consider approximation of the

higher eigenvalues (X 2,X 3 ,
- ))

The closeness of the approximation of course depends upon the selec-

tion of the parameter-laden function </>. Although the criteria for the

accuracy in any given application of the Ritz method to a \ibrating-

string problem are by no means clear-cut, it is generally (except, of course,
when the approximation happens to be perfect, as described parentheti-

cally in the preceding paragraph) possible to improve a given approximate
computation at the expense of increased labor. It is possible, in fact,

to refine the method into a convergent procedure [see (c) below] although
the degree of accuracy is uncertain at every stage arid the difficulty of

computation increases inordinately with each improvement of the approxi-
mation. Justification for the expenditure of such labor can lie, of course,

only in the degree of urgency resident in any particular computation.
(It should be emphasized at this point that although one may perhaps

be inclined to dismiss as insignificant the problem of the vibrating string
and the application thereto of the Ritz method, the concepts, ideas, and

techniques involved here are of enormous significance in their extension

and adaptation to problems of possibly greater importance. A complete
understanding of the work of the present chapter is an almost indis-

pensable prerequisite to comprehension of much of the subject matter
which is found in the final four chapters of this volume.)

(6) Although we may employ the Ritz method as described in (a)

above to achieve, in a particular case, a useful approximation to Xi,

it should be recognized that the parameter-laden function which leads

to this approximation is not necessarily a correspondingly useful approxi-
mation to the precise eigenfunction <fri(x), even with the parameters
fci, fc 2 ,

. . .
,
kN set at their minimizing values. In spite of this fact it

is convenient to label as
"
corresponding approximate eigenfunction" the
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function
<t>
that renders the integral (49) equal to a value which we accept

as an approximation to a particular eigenvalue. (This usage is main-

tained without further comment in chapters following.)

It is very often far more important to know the few lowest eigenvalues

associated with a given problem than it is to possess knowledge of any of

the eigenfunctions. As in the case of the vibrating string, the few lowest

eigenvalues involved in any vibration problem determine the few lowest,

and most important, natural .vibration frequencies ;
in the Schrodinger

problem of Chap. 11 the lowest eigenvalues are the lowest, and most

important, energy levels of a quantum-mechanical system. In fact one

is often satisfied to know merely the lowest eigenvalue associated with

a given problem. For this reason we touch only lightly, in this and

following chapters, upon the possible approximation of eigenfunctions.

Instead, we devote our main effort toward the development of methods

which are readily amenable to the numerical approximation of the first

few eigenvalues.

(c) The Ritz method for approximating the first few say s eigen-

values of a given vibrating-string problem may be formulated by means

of a rephrasing of the statement of the minimum characterization given

at the opening of 7-4 (c) :

The approximation A* to the frth eigenvalue \k is the minimum of the

integral

/ = r
A

f* dx (51)

with respect to those functions ty (belonging to the special class intro-

duced directly below) which satisfy the normalization condition

/'
5 dx = 1 (52)

and the (fc 1) orthogonality relations

(m =
1,2, . . . ,k

-
1), (53)

[L

J

where \l/m is the rath approximate eigenfunction i.e., a function which

renders / equal to Am for ra = 1, 2, 3, . . . .

It is clear, through comparison of the preceding formulation with

7-4 (c), that inclusion in the class represented by \f/
of all the functions

which are eligible for the minimization in the precise minimum charac-

terization would provide the result A fc
= X* for all A:. In any single appli-

cation of the Ritz method, however, we create a special subclass of eligible

functions with respect to which the minimization of (51) is carried out:

We suppose that $i(z), $2(x), . . .
, &i(x) are s conveniently given con-
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tinuous functions continuously differentiable in ^ x g L. If we deal

with a string whose end at x = (or x = L, or both) is fixed, each of

the </ (j
=

1,2, ... ,s) must be chosen so as to vanish at x =
(or

x = L, or both). The special subclass consists of all functions \l/
which

exhibit the form

where Ci, c 2 ,
. . .

,
c a are arbitrary constants consistent with the normali-

zation condition (52).

We immediately arrive at the inequality Xi g Ai, since Xi is the mini-

mum of (51) with respect to a class of normalized functions which is

much wider than the class represented by (54). It is not at all obvious,

however, that X 2 ^ A 2
,
since it is not generally possible to determine

whether or not the members of (54) eligible for the second minimization

of (51) form a subclass of the class of functions with respect to which

the (second) minimum of (51) is the precise eigenvalue X 2 . For, accord-

ing to (33) of 7-4 (c), every member of the latter class is orthogonal to

the precise eigenfunction <i; on the other hand, each member of (54)

eligible for the second minimization of (51) is orthogonal merely to the

approximate eigenfunction ^i, according to (53). By the same token we

cannot tell at a glance whether or not Xs ^ AS, X4 ^ A 4 ,
etc. Neverthe-

less, the inequality \k ^ A*, does hold for k =
1, 2, . . .

, s, but the proof

is not at this point within our reach. In Chap. 9, however, a method is

developed by means of which X^ ^ A* is readily established; a proof is

called for in exercise 23 at the end of that chapter. We therefore borrow

the result : Each A& is an approximation from above to the corresponding

eigenvalue X fc
; or, every A fc is an upper bound for the corresponding X*.

The larger we choose the integer s in (54), the wider is the class of

functions represented by ^, and the more accurate are the approximations

we achieve. If <J>i, $2, . . -
,
$ are the first s of an infinite sequence of

functions for which there exists an expansion theorem such as the one

stated in 7-4(6),
! the approximations become perfect in the limit s > o

,

for then the class represented by \l/
includes all the functions </> eligible

for the precise minimizations. Unfortunately, however, the difficulties

of computation generally multiply tremendously with increase of 5.

Substituting (54) into (52), we obtain

88 88
t

<r\l/

2 dx =
2, ^ CiCi Jo

ff*&i dx =
^ /,

WPH - ^
=i y-i t-i y-i

1 In which case the sequence is said to be "closed."
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where we define

[L
GH = (7n = / 0$i$j dx. (56)3 3 k J v '

In accordance with (54) we write the approximate eigenfunctions as

f
}

*, (m =
1,2, . . . ,), (57)

so that the problem of finding each \f/m is equivalent to that of determining
the set of values c\

m)
,
c

(

\ . . .
,
c

(

8

m)
for the coefficients ci, c 2 ,

. . .
, c,,

respectively, in (54). Substituting (54) and (57) into (53), we obtain,

with the aid of the definition (56),

^dx =
******

= (w =
1,2, . . . ,fc

-
1). (58)

t = i > = i

Finally, if we define

*'$dx, (59)

substitution of (54) into (51) gives

s

I = V y r lC,I\, (60)

for the quantity whose minima we seek. In particular since / = A* when

\l/
=

i/a, it follows from (57), with m =
/;, that

To minimize (60) under the restrictions (55) and (58) we use the method

of Lagrange multipliers (2-6), whereby we form the quantity

A; 1

!* =
I I ^r - A<*> V V

,,,,. _ V X() V

where \ (k
\ X^, X^

2)

,
. . .

, Xf~
n

are undetermined multipliers. (In

our quest for the fcth minimum A^ of /, we suppose that cf\ cj
2)

,
. . .

, cf~
l}

are known for all j
=

1, 2, . . .
, s.) According to 2-6 the /cth minimum

of / is characterized by the s conditions 1

1 We make use of the relations I\,
= IV and <r</

=
<r/<, here and below, without

explicit mention thereof.
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k-l

\ (m)
*k

m-1
or

(IV,
-

m-l

[7-6

* = 0,

(62)

This set of s equations is satisfied by Ci = c^, c 2
= c

(k
\ . . .

,
c8
= c^

}

.

In (c?) below we prove that the multipliers X^, Xj.
2)

,
. . .

,
\ (

k
k~ l)

all

vanish. Accepting this fact here, we conclude from (62) that

= i = 1,2 (63)

Since (63) constitutes a system of s linear homogeneous equations in the

s quantities c{
k
\ c^, . . .

,
c

(

8

k
\ which, according to (55), do not all van-

ish, the determinant of the coefficients must vanish. 1 That is, A (A) must
be a root of the algebraic equation in A of degree s

A(7n

F21 = 0. (64)

Under the assumption that A = A (fc) satisfies (64) and therefore that

the system (63) is satisfied, we multiply the zth equation of (63) by cj
fc)

,

for all i = 1, 2, . . .
, s, and add the resulting equations sum over i,

that is to obtain

(IV,
- 0. (65)

t-i y-i

Solving (65) for A (fc)
,
we find, with the aid of the normalization (55)

with c replaced by c (fc) for all subscripts

(66)

y-i

according to (61).

Since the determinantal equation (64) has no explicit dependence upon
the specific choice of the index fc, we must conclude from (66) that its

2-8(6).
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s roots, arranged in ascending order, are the approximate eigenvalues Ai,

A 2 ,
. . .

, A, the quantities whose values we seek. Thus application of

the Ritz method to the approximation of the first few eigenvalues associ-

ated with a given vibrating-string problem involves merely (i) choosing
a suitable set of functions $1, <t> 2 ,

. . .
, $, (ii) computing the sets of

integrals defined by (56) and (59), and (iii) solving the algebraic equa-
tion (64). Examples of the application are found in the exercises at the

end of this chapter.

(d) The Lagrange multipliers X[
w)

are introduced in (c) above to ensure

fulfillment of the relations (58) by the set of coefficients c
(k

\ c
(

2

k
\ . . .

,

c
{k) which satisfy the system (62) of linear equations, with cy

=
Cj

k)
for

all j =
1, 2, . . .

,
s. For the actual solutions of (62) equation (58)

reads, in conjunction with (55),

(m =
1,2, . . . ,k g s\ (67)

where dkm is the Kronecker delta introduced in the final paragraph of

7-4 (a) above. We proceed to show that the multipliers X[
1}

, X[
2)

,
. . .

,

X^~
1} vanish for all k =

2, 3, . . .
,

s. To do this we must deduce the

result, for n =
1, 2, . . .

, s,

=
(68)

from (62) and (67) ;
we employ the method of complete induction.

Surely (68) holds for n =
1, as we find by setting k = 1 in (62)

(written with c/
=

Cy
fc)

)> since then the sum over m in the right-hand
member is empty. We now suppose that (68) holds for n =

1,

2, . . .
,
k 1: Multiplying the iih equation of (62) (with c,

=
c}*

}

)

by c-
n)

(n < k), for all i = 1, 2, . . .
, s, and adding the resulting s equa-

tions, we obtain

88 88 A: 1 * 8

ycj"M">. (69)

Because of (67) the coefficient of A (/:) in (69) vanishes, since n < k. For

the same reasons, the only term in the sum over m which does not vanish

is the one for which m =
n, and the coefficient of X n)

is . Thus (69)

becomes, on slight rearrangement of the left-hand member and use of

the fact that F# =
F^,
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88 88
ixr> =

j <f 2 r^-
n) = A(n) I c^ 2 rf)

y-i .--1 y=i f = i

t=i y-i

with the aid of (68) (with indices i, j reversed), which is assumed valid

for n < k. Since n < k, (67) dictates that the final member of (70)

vanishes, so that we have X^ = for n =
1, 2, . . .

,
k 1; that is,

every term of the right-hand member of (62) with Cj
=

cf
} must

vanish, and (68) holds also for n = fc.

The required proof is complete: Assumption that (68) holds for

n =
1, 2, . . .

,
k 1 implies that (68) holds also for n = k. But (08)

is known to hold, as pointed out above, for n = 1
;
it therefore holds also

for n = 2. Since it holds for n =
1, 2, it must hold also for n =

3, and

by continuation of the same argument (the usual argument of
"
complete

induction") for all n =
1, 2, . . .

,
s. The direct passage from (62)

to (63) in (c) above is hereby justified.

7-7. Remarks on the Distinction between Imposed and Free End-point
Conditions

In the statement in 7-4 (c) of the minimum characterization of the

eigenvalue-eigenfunction problem for the vibrating string, we note a

distinction between the two types of end-point conditions which does

not appear in the characterization of the problem through the differ-

ential equation (19,i) of 7-3(a). When one deals with the differential

equation, on the one hand, the cases in which the (fixed) end-point con-

dition $ = applies are handled in much the same manner as those in

which the (free) end-point condition <' =
applies. In the minimum

characterization, on the other hand, we observe the following exceedingly

important difference between the two cases:

At a fixed end point we must require that every function <j> eligible for

the minimization must vanish at that end point. At a free end point,

however, there is no special restriction which must be placed upon the

functions <f> eligible for the minimization; the vanishing of <' at a free

end point arises as a
" natural" end-point condition which turns out to

be necessarily satisfied by the minimizing functions. That is, an eigen-

function in a free end-point problem effects the minimization not merely

with respect to eligible functions which satisfy the end-point condition

<t>'
= but with respect to eligible functions which satisfy arbitrary end-

point conditions. An eigenfunction in a fixed end-point problem, how-
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ever, effects the minimization only with respect to the class of eligible

functions which satisfy the end-point condition = 0.

Although the foregoing remarks are of course redundant with respect

to 7-4 (c), they appear for the sake of reemphasis and because the same

type of distinction plays a role of extreme importance in chapters follow-

ing especially in Chap. 9. We must keep clearly in mind the essential

difference between imposed boundary conditions and so-called natural

boundary conditions.

EXERCISES

1. Assuming the existence of a surface z = z(x,y) for which the area enclosed by a

fixed space curve is a minimum, show that

^L^ + / \

+ 4/

on the minimal surface.

2. (a) Let //
=

</>(#) be a curve in the xy plane. Show that (<t>" /<t>) > implies that

the curve is everywhere convex toward the x axis, and that (</>"/<) < implies it is

everywhere conceive toward the x axis.

(b) Use part () to show that no function <t> which satisfies (19, i) in which r > 0,

ff(x) > can (i) vanish for two distinct values of a; if X ^ 0, (ii) have a vanishing
derivative for two distinct values of x if X < 0, (iii) vanish at one value of x while its

derivative vanishes at a second value if X ^ 0. (Thus we have a geometric-intuitive

proof of the fact that there are no negative vibrating-string eigenvalues.)

(c) Let </>
=

<j>(x,\) be the solution of (19,i) for which </>(0,X)
=

0, 0'(0,X) =
1, for

arbitrary X. It can be shown that </>(#, X) and </>'(#, X) are continuous functions of X.

HINT: Let t(x) =
<f>(x y

\ -f AX) -
<(s,X), so that ^(0) =

i/'(0)
= 0. Show that

T$" + Xo-i/'
= AX<T0(,X -f AX). Assuming </> to be known, use the method of vari-

ation of parameters to solve the equation for \f/,
with the given conditions at x =

0, and
so show that ^ arid \p

f

are proportional to AX.

With the knowledge of this continuity develop a geometric-intuitive proof that

there exists a smallest positive value Xi of X for which 0(L,X) == 0. HINT: By part

(6) above, </>(/>,0) > 0. As X increases continuously from zero, the curvature of

?/
= 0(x,X), which is concave toward the x axis, increases. For sufficiently large X,

the curve must cross the x axis at x L.

(d) Kxtend the method of part (c ) to show that there exists an infinite unbounded

sequence of positive values Xi, X-2, X 3 ,
... of X such that <j>(L,\)

= 0. The demon-
stration should be such as to make evident the fact that 4(x,\ n ) vanishes (n 1)

times in the open interval < x < L, for all n =
1, 2, 3, . . . . (Thus we have a

geometric-intuitive proof of the existence of an unbounded positive sequence of

eigenvalues associated with a vibrating string having both ends fixed. The restric-

tion (//Or,0)
= 1 is unessential; each function <j>(x,\n) may be multiplied by any non-

zero constant without altering the essence of the argument.)

(c) Adapt the method of parts (c) and (d) to demonstrate the existence of the

eigenvalues associated with the string having (i) both ends free and (ii) one end say
x = free and the other fixed. HINT: In each case let <t>(x,\) be the solution of

(19,i) for which 0(0,X) =
1, 4/(0,X) =

0, etc.
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In both cases the nth eigenfunction vanishes (n 1) times in the open interval

< x < L.

3. Let <f>(x) and <t>*(x) be two distinct solutions of (19,i) for the same value of X.

Prove that the wronskian [2-8(e)] w =
(<t>*<t>' <t><t>*') is a constant. HINT: Use (19,i)

to prove (dw/dx) = 0.

Thus show that, if both <f> and </>*, or both <f>' and <*', vanish at a single value of x,

the wronskian is identically zero. (Since <f> and 0* are therefore linearly dependent,
we have here a proof that there corresponds only one linearly independent eigenfunc-

tion to each vibrating-string eigenvalue.)

4. Given the series expansion (29), use (28) to derive the parenthetic part of (29).

HINT: Multiply both sides of (29) by <r<pm ,
for m 1, 2, 3, . . .

,
and integrate term

by term from x = to x = L. In the resulting right-hand member, only the term

for which n = m is different from zero.

5. Use 4-1 and 4-2(6) to characterize the vibrating-string eigenvalue-eigenfunction

problem as an isoperirnetric problem: The eigenfunctions cxtrcmize the integral

CL fL
1 = T I

<f>'* dx with respect to functions < for which the integral J = / o-</>
2 dx

has a prescribed value; at fixed end points the eligible functions must vanish; at free

end points the eligible functions are arbitrary.

6. (a) Prove in three ways that X = is an eigenvalue in (19, i) if and only if we
have 0'(0) =

<t>'(L)
= 0: (i) Use (21). (ii) Use exercise 2 above, (iii) Solve (19,i)

explicitly. Show that the corresponding eigenfunction is <j> constant.

(6) How must (22), and accordingly (23), be modified in the event Xi = 0? HINT:

Solve (19,ii) with X = 0.

(c) Rewrite (48) so that it applies to the problem of the string with both ends free.

7. Show that the sets of coefficients Am ,
Bm in (48) arc evaluated as

An =
/ <r<t>mw(x,Q)dx, Bm =

p^. I

J

<r<t>mw(x,Q)dx,
J VXm ^

where the initial shape w(x,Q) and initial velocity distribution w(xfi) are prescribed

arbitrarily. HINT: For A m ,
set t = in (48); then use (29). For Bm} use (48) to

from w(xfi); then use (29).

8. A vibrating string is subjected to a nonconservative transverse force per unit

length given by the expression F(x,t), (That is, an element of length dx at x experi-

ences the externally applied force F(x,t)dx perpendicular to the x axis in the plane

of vibration.)

(a) Use the extended Hamilton's principle of 6-7 to show that the equation of

motion of the string so influenced is derived by extremizing the integral

fl
Jti k

L

fo

Thus derive the equation of motion

as well as the condition (dw/dx) = at a possible free end point. (We impose w
at a fixed end point from the outset.)
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(6) Extend the method of 7-5 (a) to show that the general solution of the problem
00

at hand is w =
y cm (t)<i>m (x), where

m=l

dV fL

-^ + \mCm =
jo

F*m dx (m 1,2,3,
-

)

and the Xm and </>m constitute the sets of eigenvalues and corresponding normalized

eigenfunctions associated with the same string in the absence of the external force

distribution.

9. Throughout this exercise we deal with the uniform vibrating string of density
<T (TO, a constant.

(a) Show that the general solution of (19, i) is, for a = <r
,

p x)t - C cos <p x + D sin
-\

z, (71)

where C, D are arbitrary constants. For the uniform string with fixed ends show that

C = and sin (\/X<ro/T ^) 0. Thus show that the eigenvalues are given by
X = (nW/LVo), with the corresponding eigenfunctions # = Dn sin (rnrx/L), for

n =
1, 2, 3, ....

Show that the normalization (20) is satisfied if Du = \X2/r L for all n.

What are the natural vibration frequencies of the uniform string with both ends

fixed? ANSWER: (Vx^/27r) = (n/2L) \/^~ .

(6) List the eigenvalues and corresponding normalized eigenfunctions for the

uniform string fixed at x = and free at x = L. HINT: Use (71). Show that C =
and cos (VxWr L) = 0.

(f) List the eigenvalues and corresponding normalized eigenfunctions for the

uniform string free at both x =
0, x = L. ANSWER: X n+i = (nW/L'ao) for n = 0,

1,2, . . . ;</>i
= (l/V^o/jf </>+!

= \^/<ToLcos (mrx/L)foT n =
1, 2, 3, ....

(d) Write down the general solution (48) explicitly for the string of part (a).

10. (a) With </>
= A(x/L)

k
\l
-

(x/L)] (k > J) use the method of 7-6(a) to show
that the first eigenvalue of the fixed-end uniform vibrating-string problem in which

<r <r () ,
a constant, satisfies the inequality Xi ^ [rk(k -f 1)(2A; + 3)/<r L 2

(2A; 1)].

(We note that the requirement 0(0) = <(L) == is fulfilled.) HINT: First show that

the condition (50), with a = <r 0f demands that A 2 = [(2k + l)(k -f I) (2k + 3)/<r L];

then substitute into (49).

(b) Show that the "best" value for A: in part (a) is the solution of

(2k +3)(2fc -
l)^ = 6

for which k > i namely, k = 1.04, approximately. That is, verify that the upper
bound given for Xi is a minimum when k = 1.04. Thus show that Xi ^ 9.98 (r/o-oL

1
).

(Compare with the precise value Xi = 7r
2
(r/(ro^

2
) derived in exercise 9(a).)

(c) With <t>
= A (x/L)

k
(k > i) adapt the method of 7-6(a) to show that the first

eigenvalue of the uniform-string problem with the end at x = fixed and the end at

x - L free satisfies the inequality Xi ^ [rk*(2k -f l)/<r QL 2
(2k -

1)]. (We note that

the single end-point requirement, 0(0) =
0, is fulfilled.) HINT: First use (50), with

ff (T
,
to derive A 2 = [(2k + l)/o /^]; then use (49).

Show that the "best" choice is approximately k = 0.8, so that Xi 5| 2.8(r/<r L1
).

(Compare with the precise value Xi =
(ir

2
/4)(T/<y L 2

) derived in exercise 9(6).)
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11. (a) With 3>j
= (x/LVIl -

(x/L)] (j
= 1,2) use the method of 7-6(c), with

s =
2, to approximate \\ and X 2 for the fixed-end uniform (o-

= <7 ) string. ANSWER:

Ai = (10r/<r L2
), A 2

= (42r/o- L 2
). Compare with Xi and X 2 derived in exercise 9 (a).

(b) With 3>,
= (x/L)' (j

= 1,2) use the method of 7-6(r), with s =
2, to approxi-

mate Xi and X2 for the uniform (a
= a ) string that has its end at x = fixed and its

end at x = L free. ANSWER: AI = (2.49r/<7 L 2
), A 2

= (32.2r/(r L 2
). Compare with

Xi and Xj derived in exercise 9(6).

(c) With*,- = (x/L)'"-
1

0'
= 1,2,3) use the method of 7-6 (c), with s = 3, to approxi-

mate Xi, X 2 , Xs for the uniform (a
=

(TO) string with both ends free. ANSWER:

A! Xi =
0, A2 = (12T/croL

2
), ,A 3

= (COr/aoL
2
). Compare with X 2 and X 3 derived in

exercise 9(c).



CHAPTER 8

THE STURM-LIOUVILLE
EIGENVALUE-EIGENFUNCTION PROBLEM

In this chapter we consider a slight generalization of the eigenvalue-

eigenfunction problem met in the theory of the vibrating string (Chap. 7).

To achieve this generalization we appeal to no physical problem for a

starting point but, instead, deal with a problem formulated in purely

analytic terms.

8-1. Isoperimetric Problem Leading to a Sturm-Liouville System

(a) We consider the problem of extremizing the quantity

(1)

with respect to continuously differentiable functions </>(#) which satisfy

the normalization condition

*<t>
2 dx = 1. (2)

The given functions r(x) and a(x) are continuous positive functions, with

T(X) continuously differentiable in x\ g x g x 2 ; M(#) is given as continu-

ous in the interval. The given constants ai and a 2 are nonnegative.

In one aspect of the problem no conditions are imposed upon the

eligible functions <t> at the given end points x\ and 2 ;
we call this the

"
free-end-point problem." In a second aspect we require that the eligi-

ble functions </> vanish at one (the "free-fixed problem") or both (the

"fixed-end-point problem") end points. (If x =
x, is a fixed end point,

the term involving ay in (1) does not appear for j =
1, 2, or both.)

(6) To facilitate bringing the problem of (a) above within the scope of

the isoperimetric problem considered in 4-1 and 4-2(6) we introduce the

continuously differentiable function a = a(x) which is arbitrary to within

the limitations 0(0:1)
= a\ and a(x 2)

= a 2 . We may thus rewrite (1) as

119
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Using the method of 4-1, we form, from the integrands of (3) and (2),

the function

/* = T0" - M 2 + ^ (a0
2
)
-

Xcr0
2

, (4)

where X is an undetermined multiplier. Substitution of (4) into (14)

of 4-1(6), with y replaced by <, provides
1

(r*') + (M + X<7)0 = (5)

as the differential equation which must be satisfied by any extremizing

function for the problem of (a).

In the free-end-point problem, substitution of (4) into the general free

end-point condition (18) of 4-2(6) yields the result r<' + a<t>
= at

x =
xi, x =

#2, or since by definition a(x\)
=

ai, a(x 2)
= a 2

(i) T^'fri)
-

ai*(si) =
0,

f

(ii) r 20'(a; 2) + a 2 </>(* 2 ) =0,
^ '

where we write T(XI) n, r(# 2)
= r 2 . In a fixed-end-point problem we

replace (6), of course, by the conditions

(i) *(:n)
=

0, (ii) *(* 2)
= 0. (7)

In a free-fixed problem one condition from each of (6) and (7) (i) from

one, (ii) from the other applies.

Equation (5), with the functions r, cr, pi given, is called the Sturm-

Liouville differential equation. This equation, together with an appro-

priate set of end-point conditions from among (6) and (7), constitutes a

Sturm-Liouville system. Such a system is linear and homogeneous: If any
function </> satisfies the system, so also does the function k<t>, where k is

an arbitrary constant. Since <r(x) > for Xi ^ x g x z , any Sturm-

Liouville <t> (not identically zero) may therefore be supposed, when

necessary, to satisfy the normalization condition (2). The solution of a

Sturm-Liouville system is an eigenvalue-eigenfunction problem, of which

the main problem encountered in Chap. 7 is a special case. (In Chap. 7

we suppose ai = a 2
=

0, n(x) =
0, r = constant.) The eigenvalues

are those values of X for each of which (5) has a solution that meets the

specific end-point conditions of the problem ;
the corresponding solutions

are the eigenfunctions.

1 It follows from the result of 3-4 (c) that the term (d/dx)(a^) in (4) has no influence

upon the Euler-Lagrange equation generated upon /*. (We may, of course, verify

this fact by direct substitution into (14) of 4-1 (6).) Thus the specific character of a(x)

plays no role here.
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It can be shown 1 that the eigenvalues constitute a discrete unbounded
set \i < X 2 < < Xn < *

,
with one and only one 2

linearly inde-

pendent eigenfunction corresponding to each. The expansion theorem

of 7-4(6) applies to the Sturm-Liouville eigenfunctions with no alteration

other than replacing ^ x g L by x\ ^ x g x 2 . From this theorem we

may develop a minimum characterization of the Sturm-Liouville eigen-

value-eigenfunction problem analogous to the characterization given in

7-4 (c) for the vibrating-string problem (see exercise 5 at the end of this

chapter). Proofs of the orthogonality of the Sturm-Liouville eigenfunc-

tions are reserved for end-chapter exercises 2 and 3.

8-2. Transformation of a Sturm-Liouville System

(a) For various purposes it is often necessary to effect a change in the

form exhibited by a differential equation. According to what sort of

change is required, it may be accomplished by change of independent

variable, change of dependent variable, or both, or merely by multiply-

ing the equation by a suitable factor. As an example of the latter case

we demonstrate the possibility of writing any linear homogeneous equa-
tion of second order in the so-called self-adjoint form namely, in the form

^ (r*') + g(x)<t>
= (8)

through multiplication by a suitable factor.

We consider the given equation

p(x)4>" + q(x)<t>' + h(x)4> =
0, (9)

which we multiply by the function s = s(x), at this point undetermined.

Comparison with the expanded form of (8) reveals that (9) becomes self-

adjoint if and only if (d/dx)(sp) =
sq, whence (s'/s)

= (q/p) (p'/P)-

Integrating, we obtain directly

(10)
P

and so conclude that (9) becomes the self-adjoint equation

^ (sp<t>
f

) + sh<t>
=

0,

where s is given by (10). (We note that the Sturm-Liouville equation (5)

possesses the self-adjoint form. See end-chapter exercise 1.)

1 Sec Ince, Chap. 10, and also exercise 6 at the end of this chapter.
2 See end-chapter exercise 4 for a proof of the nondegeneracy.
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(6) The transformation of a given differential equation through a

change of independent variable, a change of dependent variable, or both,

may be effected, of course, through direct substitution. Quite often the

relationships expressed in the transformation equations are not com-

pletely known but remain to be determined in a fashion designed to bring

the differential equation into a particular desired form. In the case of

the Sturm-Liouville equation (5), or any other equation of the form (8),

a great simplification in the determination of the required transformation

relationships is achieved through carrying out all changes of variable in

the integral whose extremization leads to the differential equation. The

simplification lies in the fact that, while the differential equation involves

the second derivative, the integrand function involves only the first

derivative of the dependent variable. Moreover, any transformation of

end-point conditions arising from a change of variable may be effected

simultaneously with the change of form of the differential equation if the

integral, rather than the differential equation itself, serves as target for

the substitutions.

According to (4) of 8-1(6) the integral whose extremization leads to

the Sturm-Liouville system represented by (5) and (6) is

/* = r0'
2 -

(M + X<r)4>
2 + (a0

2
) <fa, (11)

where a(xi) =
a\, a(x 2)

= a 2 . We note in passing that the end-point
conditions (6) are expressed in terms of the function a(x) arbitrary to

within differentiability and the assigned end-point values as

r(x)<t>' + a(x)<t>
= at x =

Xi, x = x 2 . (12)

The most general type of transformation we seek to effect here involves

the change of independent variable x =
x(z), with z the new independent

variable, and the simultaneous change of dependent variable

= u(z)w(z), (13)

with w the new dependent variable; the role of u(z) is discussed in the

paragraph following. The change x = x(z) is restricted to functions x(z)

whose derivative with respect to z denoted by x(z) is strictly positive,

so that z is a single-valued function of x. Further, we make the con-

venient, although unessential, requirement that the change of independ-
ent variable be such that x\ = z(0) and # 2

=
X(TT). Thus, as z increases

continuously from to TT, x increases continuously from x\ to 2 ,
and

vice versa.

In the change of dependent variable (13) from <t> to w the function u(z)

plays the role of a tool, as does the function 2(2), in our quest for any
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given new form of the Sturm-Liouville system. We make the restriction

u(z) > for g z g TT. One consequence of this requirement, accord-

ing to (13), is that the vanishing of w(z) for a particular value of z in

^ z ^ TT is equivalent to the vanishing of <(x) for the corresponding
value of x in Xi g x g x 2 ;

the total number of zeros (vanishing points)

possessed by w(z) in ^ z ^ T equals the total number of zeros pos-

sessed by 0(x) in Xi ^ x ^ x2 .

Using the superior dot to indicate differentiation with respect to z,

we obtain, according to (13), <' = (</x) = [(uw + uw)/x\. Substituting

this result, with (13), x =
x(^), and dx = xdz, into (11), we obtain

f* (
2 2 f

*
2 T

/* =
/ ]
_ w* 4. ^f Ww + x^ 2

(M + X<r) w2

Jo I
x x I x ]

j \

!z, (14)

after a slight regrouping of terms. In order to evolve (14) into the same

form as (11) we employ the identity

2ruu

x

with this, (14) becomes

uu .
,
ru 1

9 d (run A 9 rf /TW\
T ww H r- t^

2 =
-7- 1 T- i^

2
1 wzu -r I -r 1;

c a; ds: \ a: / dz\x/

7 * =
/oMT^^K.(?) +^ +H

With the definitions 1

(i) T(2)
= T

-^, (ii) Af (Z)
= u -

x dz\x

(iii) -8(2)
= iwV, (iv) 4 (2)

= ow 2 + ,

X

equation (15) becomes

7* = ^ I" Tw* - (M + \S)w* + ^ (Aw*U dz, (17)

which, in form, is identical with (11). Accordingly, the Sturm-Liouville

system required for the extremization of (17) may be written down imme-

1 It is assumed that /u, *, r are all expressed in terms of z through x = x(z).
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diately by inserting the appropriate changes of nomenclature into (5) of

8-1(6) and (12):

^ (Tw) + (M + \S)w =
0, (18)

Tw + Aw = at z =
0, z = TT. (19)

(In a fixed-end-point problem the functions a(x), A(z) play no role what-

ever. Because of (13) and u(z) > the conditions <(zi) =
<t>(xz)

=

automatically become the conditions w(0) =
w(ir)

= 0. If merely one

of the conditions <t>(xi)
= or 0(# 2 )

= is imposed (the free-fixed prob-

lem), we are concerned with the specific values a(xz) = #2 and A(TT) if the

former is required, with a(x\)
= a\ and A(0) if the latter is required.)

Explicit justification for the above method of transforming (5) into

(18), and (12) into (19) namely, proof that the transformed integrand
function leads to the same differential equation and end-point conditions

we should achieve on direct substitution of x =
x(z), <t>

= uw into (5)

and (12) is reserved for (e) below. There follow directly specific exam-

ples of the above transformations.

(c) It is of some importance
1 to obtain the transformed Sturm-Liouville

equation (18) in the special form in which T = 1 and 8 K*, where
K is some conveniently chosen positive constant. According to (16,i,iii)

the desired transformation may be effected through the simultaneous

satisfaction of (ru
2
/x) 1 and xu'2<r = / 2

,
from which follow

i [*
iff i / /;= ^/ \\-dx, K = -

/
J- dx,K J XI \r TT J xt \T

u =
-RV

2 = ^ JX1 VT &> K =
- ' A/I ^' (20)

since x = (dx/dz), x(0) =
1, and x(?r)

= x 2 .

With the transformation (20) the Sturm-Liouville equation (5) reads,

through (16) and (18),

w = 0. (21)dz*

The relation between the old and the new dependent variable is, accord-

ing to (13) and the first of (20),
=

[\/K/(<rr)*]w. (We are not con-

cerned here with the transformed end-point conditions (19), although

explicit representation is readily achieved through (20).)

A tacit special requirement for the transformation to (21) is clearly the

differentiability of the product or.

1 See Ince, pp. 270-273, for example.
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(d) Discussion of the properties of a Sturm-Liouville system in par-

ticular, proof of the existence of an infinite unbounded sequence of eigen-
values of X is greatly simplified

1
if we deal with a transformed system

in which T = 1 and A(0) = A(v) = 0. The latter condition is ensured

by requiring A(z) =0 identically in ^ z g IT. According to (16,i,iv)

we may effect the desired transformation by setting

TU*
9 run n /ftrtN

-T- =
1, au* + =

0, (22)

from which it follows directly that (u/u*) + a =
0, or

u=\2 f ack\ arid P ^ = \ [' ( f a dz"\

*

dz, (23)

since x = (dx/dz) and x(Q) = x\.

We note that the function a(x) which appears in (22) and (23) is arbi-

trary, except in so far as it is continuously differentiable and fulfills the

end-point conditions o(xi) =
ai, 0(0-2)

= o 2 ,
where Oi and a 2 are given

nonnegative constants. Since 2 = when x =
xi, and z = TT when

x = x 2 ,
the end-point restrictions may be expressed as a a\ when

2 =
0, and o = a 2 when z = w. The simplest but by no means unique

form of a as a function of z which satisfies these requirements is the

linear function

a = i[0l (z -TT) + O 2z]; (24)
IT

we use the representation (24) in all that follows. Thus we have the

indefinite integral

adz =
-^2 \

a i(z fl")

2 + #22
2
] + C

)2
+

2 (a

l

+ a )

+ C
> (25 )

where the constant of integration C is chosen in such fashion that x = x 2

corresponds with z = ir in the second of (23). We have, namely,

(26)

7T

according to (23), (25), and X(TT)
= x2 .

1 A rigorous existence proof is found in Ince, Chap. 10. See also exercise 6 at the

end of this chapter.
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That there exists a constant C which satisfies the relation (26) is clear

from the following considerations: Since T(X) > and x\ < x 2 ,
the left-

hand member of (26) is positive. By taking C sufficiently large, the

right-hand member can be made arbitrarily close to zero. By taking C
sufficiently close to, but greater than [ aia^/2(a\ + a 2)], the right-hand

member of (26) can be made arbitrarily large. Since the right-hand mem-
ber is a positive continuous function of C for C > [ a,\a<iic/2(a\ + a 2)],

it therefore follows that there exists a value of C for which (26) is satisfied.

(We note that the required value of C renders (25) positive a condition

made necessary by the first relation of (23).)

In any specific problem the value of C may be computed from (26)

through some procedure of numerical approximation and x may be deter-

mined as a function of z, or vice versa, from the second of (23). For our

present purpose it is sufficient merely to demonstrate the existence of a

transformation of the type introduced in (b) above for which the trans-

formed differential equation (18) reads

g + (M + \S)w =
0,

_

(27)

with the transformed end-point conditions (19) reading

tHO) =
*>(*)

= 0. (28)

(e) We provide here the explicit justification called for in the final

paragraph of (6) above of the transformation method developed in (b)

and exemplified in (c) and (d). Into the integral

we introduce the changes of variable x =
x(z) and <

= uw having the

characteristics of the transformations described in (5). Thus since

dx = xdz, </>'
= [(uw + uw)/x], Xi = z(0), and 2

= x(v), the integral

(29) becomes

f* /* / / \ UW + UW\ . , /"* *, .v ,=
/ f*\x(z),uw,

-
^
- \xdz= I g*(z,w,w)dz,

/orkx
(30)

where g* =
f*x.

To construct the Euler-Lagrange equation required for the extremi-

zation of (30) we employ the relations <t>
= uw, <f>'

= [(uw + uw)/x] to

form the derivatives

= .

dw d<t> dw d<f>' dw \d d<t>' x
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and

dz\dw

Since (w/x) = (du/dx), we have directly from (31) and (32) that

*7*_ d(dg*\_ \df* _ d
(
df
*\\ (33)"^ d~* vatf /

"
L * 2Ew/ J'

l ;

Because, as required, xu ^ in ^ 2 ^ TT, it follows that the vanishing
of the left-hand member of (33) satisfaction of the Euler-Lagrange equa-
tion associated with the transformed integral (30) is a concomitant of

the vanishing of the bracketed portion of the right-hand member satis-

faction of the Euler-Lagrange equation associated with the original inte-

gral (29).

Moreover, since (dg*/dw) u(df*/d$'\ the transformation of the end-

point conditions is correctly carried out through the integral substitution.

For in the free-end-poirit problem we obtain (df*/d<t>
f

)
= at x =

x\, x 2

as necessary for the extremization of (29), (dg*/dw) = at z = 0, TT as

necessary for the extremization of (30). (In the fixed-end-point prob-

lem the question of transformation of the end-point conditions does not

arise.)

8-3. Two Singular Cases : Laguerre Polynomials, Bessel Functions

(a) In 8-1 (a) requirements are set forth concerning the functions T(X),

u(x), a(x) which appear in a given Sturm-Liouville equation. In par-

ticular we have r(x) > 0, a(x) continuous (and therefore bounded) and

<r(x) > in the closed interval of definition Xi g x ^ z 2 . Moreover, the

end points Xi and 2 are assumed to be finite. In this section we treat

two cases, of use in chapters following, in which not all of these condi-

tions are met; such cases are characterized as singular. We deal here

with extremum problems whose solutions lead respectively to the well-

known Laguerre polynomials and Bessel functions. Since these are

treated adequately in the literature,
1 many of the results concerning

them are stated below without proof. It is our main purpose merely to

demonstrate the possibility of defining these functions within the frame-

work of the calculus of variations.

In the singular cases considered, T(X) vanishes at one or both end points.

Since we choose the function a(x), introduced in 8-1(6), to be zero at such

end points, the applicable end-point condition (6) reads T<' = 0. It

would therefore appear, at first glance, that the end-point vanishing of T

automatically effects the satisfaction of this condition for all values of

1
See, for example, Jackson.
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the parameter X. It happens, however, that the vanishing of r for a par-
ticular value of x introduces a singularity into the Sturm-Liouville differ-

ential equation, so that we cannot be certain a priori that a solution 0(#),

or its derivative <'(z), is bounded at that value of x. It becomes expedi-

ent, therefore, to rewrite the end-point condition r<t>' at x = x\ and/or
x =

2 as

lim (r<')
= and/or lim (r<')

= 0. (34)
X *X1 X >X2

The eigenvalues are those values of X for which solutions of the differ-

ential equation exist satisfying one or both of (34) as required, as well as

any other independent end-point condition which is applicable.

It happens that conditions of the type (34) are equivalent, in the cases

we consider below, to (i) the requirement that the eigenfunctions be

bounded in the interval of definition, and (ii) the requirement of the

existence of the integral whose extremization leads to the differential

equation. Requirement (i) is crucial in the problems of the circular

membrane (exercise 13, Chap. 9) and the circular plate (exercise 29,

Chap. 10), for example; requirement (ii) finds its greatest significance in

the study of quantum mechanics (Chap. 11).

(b) We consider the singular Sturm-Liouville system defined by

T = xk+le~x
, u =

0, (j xke~x
, a\ = a 2

=
0, Xi =

0, x 2
= + >

,

where fc > 1. The integral whose extremization leads to the system is

/* = xk
e-*(x<}>

r * -
\tf)dx. (35)

The corresponding Euler-Lagrange equation (5) reads, on division by
x ke~x

,

x<t>" + (k + 1 - x)4>' + \<t>
=

0; (36)

the end-point condition (34) at x = o is

lim (x
k+l

e~*<l>')
= 0. (37)

X > oo

Equation (36) has a solution for which (37) holds if and only if X = n

(n =
0,1,2, ...); this solution (urmormalized) is

*, - L(*) = e^~~ (e-x~) (k > -
1

;
n = 0,1,2, . . .). (38)

The function L (

%(x) is clearly a polynomial the Laguerre polynomial
1

of degree n (with upper index fc). It is obvious that (38) satisfies the

1 Some authors omit the n\ in the denominator of (38) in the definition of Z/J^.
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left-hand end-point condition of (34) namely, lim (x
k+l

e~*4>')
=

x-0
since k > 1.

(c) We consider the singular Sturm-Liouville system in which

n 2

T = x, fj,
= --

,
cr = x, 0,1

=
0, a 2 ^ 0, #i =

0, Xz > 0,
c

where n is a given nonnegative constant. The integral whose extremiza-

tion leads to this system is

(39)

where a(0) =
0, a(x 2)

= a 2 . We effect the change of independent vari-

able z = \/\ x, whence (39) becomes

=
/o" I"**"

+ (?
~ Xa

7 *
2 + ^ (a* 2)

J
d*'

the superior dot indicates differentiation with respect to z. Theextremi-

zation of (40) leads to the Bessel differential equation

z
2 + z + (z*

- n 2
)0 =

(0 ^ 2 ^ WX). (41)

For given n, the Bessel equation (41) has only one linearly independent
solution which satisfies the left-hand end-point condition lim (z<j>)

= 0;
z-0

this solution, the ttth-order Bessel function of the first kind, is given by
the infinite series

oo

^ z} n+zk

' (42)

convergent for all z. (If n is integral, F(^ + k + 1)
= (n + fc)!; in

general,

r(n + fc + 1)
=
// i"

4*^
dt)

The applicable (unnormalized) solution of (41) is, accordingly,

The eigenvalues of X are determined through application of (6,ii) of

8-1(6) namely, 0:2^(^2) + a 20(x 2 )
=

0, or, since <f>
= Jn(\/\x),

2)
= 0. (43)
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The equation (43) has an infinite unbounded sequence of positive solu-

tions X =
Xi, X 2 ,

. . .
,
Xm ,

. . .
,
which constitute the eigenvalues of

the problem. In the important special case a 2
=

0, Xm = (/nm/a; 2)
2 for

m =
1, 2, 3, . . .

,
where fnm is the rath positive zero of J'n (z).

If, however, we impose upon the functions <t> eligible for the extremiza-

tion of (39) the condition #(#2) =
0, the relation (43) is clearly replaced

by </n(\/X #2)
= as the equation from which the sequence of eigen-

values of X is determined. In this problem the eigenvalues are given by
Xm = (jnm/xi)

2
,
where jnm is the mth positive zero of Jn (z).

EXERCISES

1. Show that the Euler-Lagrange equation derived from any integrand of the form

is self-adjoint.

2. When /* is given by (4) of 8-1 (6), the relation (12) of 4-1 (6), with y replaced by <,

holds for arbitrary differentiable ij> if $ is a Sturm-Liouville eigenfunetion and X the

corresponding eigenvalue. Let < t and fa be eigenfunctions of a given Sturm-Liouville

system which correspond to the distinct eigenvalues X and X*. With /* given by (4)

of 8-1(6), write down (12) of 4-1(6) twice once with =
t> X =

X,-, 77,-
= <*; and

then with <f> fa, X =
Xjt, 77,

= fa. Combine the two results to prove the

orthogonality

L
XZ

a<t>ifa dx =
(t 5* k). (44)

(Give explicit justification for these substitutions, particularly in the fixed-end case in

which 77 ,-
is required to vanish at one or both end points.)

3. (a) Let <t, fa, Xi, X* have the same 'meanings as in exercise 2. Use the Sturm-
Liouville differential equation to prove that

[, , ~\X2 fxz
r(<t>i<t>k

- ***) = (At
-

Xjfc) I <r<f>ifa dx. (45)
Jxi Jxi

HINT: Compare derivation of (26) of 7-4 (a).

(6) Use (45) to prove (44) for all permissible combinations of the end-point condi-

tions (6) and (7).

4. Prove the nondegeneracy of the Sturm-Liouville eigenvalues that there exists

only one linearly independent eigenfunetion to each eigenvalue, that is. HINT:

Compare exercise 3, Chap. 7, but show that rw = constant = zero.

5. In the manner of 7-4 (c) develop a minimum characterization of the Sturm-

Liouville eigenvalue-eigenfunction problem. Base the development upon the expan-
sion theorem valid also for Sturm-Liouville eigenfunctions, with ^ x ^ L replaced

by xi ^ x ^ xi of 7-4(6).

6. (a) By means of the transformed Sturm-Liouville system (27), (28) of 8-2 (d) and

through suitable adaptation of the method of exercise 2, Chap. 7, give a geometric-
intuitive proof of the existence of an infinite unbounded sequence of Sturm-Liouville

eigenvalues. In particular show that Xi is greater than minus the maximum of (M/S)
in ^ z TT.

(6) Give the existence proof also for the fixed- and free-fixed end-point problems.
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7. (a) Use the method of 8-2 (a) to obtain the self-adjoint forms of the equations

(i) zV + x<l>' + h(x)4> =
0,

(ii) x<i>" + (b
-

x)t' + = 0.

(6) Write down the integral whose extremization leads to the (Hermite) differential

equation

4>"
-

2x<t>' -f X< - (- oo ^ x oo). (46)

8. (a) Without change of independent variable use the method of 8-2(6) to rewrite

the equation (i) of exercise 7 (a) in the form w" + g(x)w =
0, where < = uw. (Give

w and 0(z) explicitly, the latter in terms of h(x).) HINT: Note that x =
1, and use

(16,i,ii).

(b) Work out the details of the transformation of 8-2 (c) as applied to the (Legendre)

equation

~
[(1

-
*)*'] + X* - (-1 * 1). (47)

g +
[1

(1 + csc* z) +
x]

u> - 0, (48)

ANSWER:

where x cos z, w <j> \/sin z. NOTE: The boundedness of u is violated at

z = 0, TT (re
=

1); this circumstance arises because of the singular condition r

for x 1. The singular character of (47) is carried over into (48) as the unbounded-

ness of the function M(z).

9. Show that the orthonormality relationship (44) plus the normalization (2) is

carried over directly into
/

IwiWk dz = dik

by the general transformation of 8-2(6).

10. (a) List the eigenvalues and corresponding eigonfunctions of the system

a?V' -f X</>
=

0, <(!) =
<t>(2)

= 0. HINT: Use (16,i to iii) to find a simplifying

transformation. NOTE: r = 1 here, not x 4
. ANSWER: Xn = 4ir 2n 2

,

< n = 2z sin [2Trn(x
-

l)/x] t

for n =
1, 2, 3, ....

(6) Show that the equation

~
(T00 + X<T<*>

-
uX

can always be transformed into w -f- \K 2w = if T<T[{ (I /r)dx]* = constant.



CHAPTER 9

SEVERAL INDEPENDENT VARIABLES:
THE VIBRATING MEMBRANE

9-1. Extremization of a Multiple Integral

(a) We fix our attention on the triple integral
1

carried out over a definite region R of xyz space. The integrand func-

tion /, supposed given explicitly as a function of the arguments indicated,

is continuously twice differentiate with respect to any combination of

them. The problem before us is to find the differential equation that

must be satisfied by the function w = w(x,y,z) which renders / an oxtre-

mum with respect to twice-differentiable functions which assume pre-

scribed values at all points of the boundary surface B of the region R. 2

To effect the extremization of (1) we employ the technique of 3-3(6)

and 7-1: We introduce a one-parameter family of comparison functions

W(x,y,z) as

W =
w(x,y,z) + er?0,2/,z), (2)

where it is assumed that w(x,y,z) is the actual extremizing function and

is the parameter of the family. Thus no matter what the choice of the

function ri(x,y,z) arbitrary to within continuous differentiability and

l(x,y,z)
= on B (3)

the extremizing function w is a member of each comparison family for

the parameter value = 0. The condition (3) ensures that every com-

parison function assumes the same set of values on the boundary sur-

face B.

In (1) we replace w by W with

Wx
= wx + cry*, Wy

= Wv + eriy, W, = W, + yf , (4)

1 In this chapter, as in 7, we often employ subscripts to indicate partial derivatives

wx for (dw/dx), etc.

2 We use "extremum" here in the sense of 3-3 (c), with obvious extension to the

case of functions of several variables,

132
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according to (2) and so form

dz.

Since, for all permissible choices of TJ,
= implies that W reduces to

the actual extremizing function, we have that 7(0) is the extremum

sought, or

/'(O)
= 0. (6)

We differentiate (5) with respect to e, using (2) and (4) to obtain

(dW/de) =
17, (d\Vf/de) =

r?x , etc.; we set e = 0, whereby W, Wz , etc.,

become w, wxj etc.; and finally we use (6) to achieve

Applying Green's theorem (29) of 2-14 to the final three terms of (7)

we get, since T?
= on jB,

- !()- (> -5]*** -
-

Since (8) holds for arbitrary rj vanishing on B, we use the basic lemma
of 3-1 (c), as extended to triple integrals, to conclude that

dw dx \dwx/ dy \dwy/ dz \dw2

This we call the Eulcr-Lagrangc differential equation generated upon the

integrand /of (1).

(6) A generalization of (9) comes from considering an n-tuple integral

over a fixed region of an /^-dimensional space. If the integrand function

is/ =
/(#,*/, . . fZyW 9

wXfWy, . . . ,u'z ), the function w of the n independ-
ent variables x,y,...,z which extremizes the integral in question must

satisfy the Euler-Lagrange equation

. = o
dw dx\dw dy\dw dz\dw

'

The derivation of (10) may be accomplished either by a generalization of

Green's theorem to n dimensions, or by the method called for in exercise 1

at the end of this chapter.

(c) Extension of the above results to isoperimetric problems is achieved

in the manner of 4-1 and 7-1 (c): If W is a function which extremizes (1)
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with respect to functions which satisfy the subsidiary conditions

gj(x,y,z,w,wx,wy,wz)dxdydz =
Cj (j

=
1,2, . . . ,s),

where Ci, C2 ,
. . .

,
C8 are constants, then w satisfies the Euler-Lagrange

equation

_

dw da; \dwx/ dy dwy dz \dwz

where

/* = / - Xtfi
- X 2 2

- .-. - \8g,. (11)

The constants Xi, X 2 ,
. . .

,
X8 are undetermined Lagrange multipliers.

If n independent variables are involved, so that we deal with n-tuple inte-

grals, we are led to (10), with / replaced by /*, given by (11).

(d) It follows from Green's theorem (28) of 2-14 that, if P, Q, R arc

three arbitrary continuously differentiablc functions of x, y, z, w and if

the integral /, given by (1), depends only on the values assumed by P,

Q, R on the boundary surface B. Since w is supposed prescribed on B,

it follows that 7 achieves the same value for all permissible choices of w
and the extremization problem is meaningless. We now show, in fact,

that the Euler-Lagrange equation (9) reduces to an identity in case (12)

holds.

We rewrite (12) through the relations

|
= P* + Pw*,

%j
= Qy + Qwwy ,

= R2 + Rww,, (13)

where Px represents the derivative of P with respect to x when y, 2, and

w are held constant and similarly for Pv ,
Pz while (dP/dx) is meant to

take into account the fact that P varies with x by dint of the fact that

w varies with x, as well as through the explicit dependence of P on x

and similarly for (dQ/dy), (dR/dz).
1 With (13), (12) becomes

/ = Px + Qy + Rz + PwWx + QWWV + RWWZ ,

1 At best, any notation for a partial derivative is inadequate when it is not clear

what is being held constant during the process of differentiation. Here (dP/dx)

implies merely that y and z are held constant, while Px calls for holding constant y y z,

and w during the differentiation. The reader unfamiliar with such distinctions may
be straightened out by the following example: If P = x*yzw*, we have, according to the

notation adopted here, Px = 2xyzw3
,
while (dP/dx) = Zxyzw* + 3x*yzw

2wx .
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and we have

J
= Pw + Qv* + R,w +PM + Qwwwv + Rwwwz ; (14)

and since (df/dwx)
= PWy

Bx

which is analogous to the first of (13) with P replaced by Pw . With (14),

(15), and corresponding expressions with (P,z) replaced by (Q,y) and

then by (R,z), it is directly noted that (9) reduces to an identity, since

JL xw ~ *wx) etc.

An immediate corollary of the above result is the fact that we may
add any expression of the form (12) a so-called "divergence" expression

to the integrand/ of (1) without altering the Euler-Lagrange equation

(9) generated upon /. This follows because every term of (9) depends

upon / linearly.

9-2. Change of Independent Variables. Transformation of the Lapla-
cian

It is clear from the form of / in (1) that (9) is in general a partial

differential equation of second order a relationship, that is, which

involves derivatives of the unknown w no higher than the second. We
usually arrive at such a differential equation with x, y, z representing
cartesian (rectangular) coordinates, but the geometrical configuration of

the problem at hand quite often happens to be better suited to some other

coordinate system. For example, if the region R in which the Euler-

Lagrange equation is to be solved is bounded by a sphere, or by con-

centric spheres, spherical coordinates are the most suitable, etc.

Although it is possible often with a tremendous amount of tedious

computation to transform the Euler-Lagrange equation from cartesian

coordinates to some other coordinate system by direct substitution in the

differential equation itself, we have in the technique of the calculus of

variations a means for significantly reducing the amount of labor required

to effect the transformation. The method we derive directly below is

analogous to the technique employed in 8-2 for altering the form of the

Sturm-Liouville differential equation. The advantage of this method
lies in the fact that we need go no further than the transformation of

first partial derivatives; direct transformation of the differential equation,
on the other hand, entails the much more complicated computations of

transformed second partial derivatives.
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(a) For convenience we write (zi,z 2,z 3) instead of (x,y,z) and let

be the equations of transformation from the cartesian system (rci,z 2,z 3)

to a general system of coordinates (ri,r 2,r 3). We suppose that the equa-
tions in (16) are twice continuously differentiable in the region R on

which we fix our attention below and that the jacobian of the transforma-

tion l

namely,
dx\ dxz da

D
<3r 2

dri dr\

dx 2 6X3

drz drz

dx% dx$

dr 3 dr 3

(17)

does not change sign, although it may vanish at certain exceptional

points or along certain exceptional curves, in R.

We consider the triple integral

f(xi,X2,Xs,w,wXl,WxWxt)dxi dxz dx^ (18)

which we transform according to (16). By (16) of 2-8(/), (18) becomes,
with the aid of (16) and (17),

/ =
HI F^is^r^WjWr^WrvWr^lDldri dr* dr 3 , (19)

where R f
is the region R, but described by the variables (ri,r 2,r 3), and

In /, that is, we substitute for (xi,x 2 ,o; 3) and express the derivatives

(wxijWxuWxi) explicitly in terms of (writwr^wri) and (ri,r 2,r 3), through (16),

and so form the function F.

The transformation of the first partial derivatives required in the

formation of F from / is accomplished most easily by solving the linear

system

V= >

Lj

OXi , . i n rw *< 5T =
1,2,* (20)

for (wxijwxt,wxt). The coefficients (dXi/dr,) are computed directly from

the transformation equations (16). A specific example of this compu-
tation is carried out in (c) below.

1 See 2-8(/).
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(6) Based upon w, which is any continuously twice-differentiable func-

tion of position of (0:1,2:2,0:3) or of (ri,r 2,r3), with the correspondence
established through (16) we form the auxiliary one-parameter family of

functions

W = w + CTJ,

where rj is an arbitrary continuously differentiate function of position

which vanishes on the boundary of /?, and therefore on the boundary of

R f

;
and e is the parameter of the family. In both (18) and (19) we replace

w by W (in terms of the appropriate variables), w Xi by \VX .
= w

xi + erj^ in

(18), w ri by W Ti
= w

Ti + erj ri in (19), and so form two distinct expressions

for the same quantity /(*).

The process of forming 7'(0) that is, differentiating 7(e) with respect

to and setting e = and applying Green's theorem is identical with

the process carried out in 9-1 (a) up to equation (9) inclusive. Guided

by this fact, we may directly write down and equate the two forms of

/'(()) computed from the equal integrals 7(e) defined in the preceding

paragraph :

dw
V d (dF \l>\\]j 11 /m-
/ T- V ~^ I

rfr i dr 2 dr*. (21)
Lt dri\ dw ri /J

The final stage of the development is reached by transforming the

middle member of (21) according to (1G). In the same way that (18) is

evolved into (19), that is, the middle member of (21) may be made to

read

It therefore follows from (21) that

-![ -. (

[dF\D\ V a /a*1#lYH A i i n- - ' -
/ T- I -^ df i dr<i dr z

= 0.

L dw LI' dr t \ dw ri
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Since tj is arbitrary in R,' we apply the basic lemma of 3-1 (c), extended

to three independent variables, and so obtain, on dividing through by \D\

and dropping the no-longer-needed absolute-value symbol,

jV _ V 1- (^-] = D-i [^ - V A (3/H (22)
dw Z/ to; \dwx.y L dw Z/ dr< \dwr,./ J

v ;

* - 1 - 1

where / replaces F along with the understanding that in the left-hand

member / is expressed in terms of (xi,X2,Xz 9w,wXl,wXt9wx,), while in the

right-hand member / is expressed in terms of (ri,r 2,r 3,w,wri,wr2,wri). Since

w is completely arbitrary to within twice continuous differentiability,

(22)- constitutes an identity in w and its derivatives: The transformation

(16) carries the Euler-Lagrange expression given by the left-hand mem-
ber of (22) into the transformed expression given by the equal right-hand

member.

(c) For an illustration of the use of (22) we employ

/ = wl + ti>J + wl (23)

where we replace (xi 9xz 9Xz) by (x,y,z) and effect the transformation to

spherical coordinates 1

x = r sin 6 cos <f> 9 y = r sin 6 sin <, z = r cos 6, (24)

with

g r < o
, ^ g TT, g </> < 27T. (25)

Here we have r\ = r, r 2
=

0, r 3
= <. The jacobian of the transforma-

tion (24) is readily calculated to be, according to (17),

D = r2 sin 6.
(26)

From (20), with the aid of (24), we compute

wr
= wx sin cos + wy sin 6 sin + w cos 6,

We = wxr cos 6 cos + wyr cos sin < wzr sin 0,

tty
= wxr sin sin + wy sin 8 cos <.

Solving this system, we have the required transformation of the first

partial derivatives

. A , ,
cos 6 cos <f> sin <f>

wx = wr sin cos <t> + We-- W+ r ~>
/ 7* sin I/

. n .
, ,

cos 6 sin
,

cos <t> /rfc- N
w;v

= wr sin sin < + we- + w^ r-~, (27)
7* T sin (/

sin
wt

= wr cos 6 We

1 See exercise 5 at end of chapter.
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Squaring and adding, we obtain from (23) and (26)

fD = wY sin + w\ sin + w* J-- (28)
sin \/

Finally, we use (23), (26), and (28) for substitution into (22), whence

we achieve the identity

*~
/om
(29)

1 \ d ( 2
diA

,
1 d ( . -dw\ . 1 d*w~]

F [sr (
r

)
+

shT* at V
sm 9

Te )
+ ST* a*4

according to the definition 1 V 2
w> = wxx + wyy + wzt of the laplacian of w.

(d) The transformation (29) of the laplacian from cartesian to spherical

coordinates is a special case of its transformation to a general system of

curvilinear orthogonal coordinates. A system of coordinates designated

by the variables (r^r^r^) is said to be orthogonal if, through any point,

the surfaces r\ = constant, r 2
= constant, r 3

= constant intersect at right

angles. A necessary and sufficient condition that a given system be

orthogonal is that the equations (16) of transformation from cartesian

coordinates lead to the relationship

dxl + dxl + dxl =
hi drl + hi dr\ + hi dr\, (30)

where we find, on direct computation from (16), that

and that (30) implies

3

/
* = for j 5^ k. (32)/

^ OTj uTk
t = 1

In fact we may write (31) and (32) in combination as

3

Vdx- dx-

/
'

F^
= ^;fc (^ ~ ^>3

> independently), (33)

where bjk is the Kronecker delta, equal to zero for j ^ k and equal to

unity for j = k. The quantities hi, A 2 ,
h 3 are nonnegative functions of

7*1, 7*2, r 3-

It is our aim to express the transformation of the laplacian from car-

See 2-12(c).
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tesian to general curvilinear orthogonal coordinates in terms of fci, A 2 , ^3.

We first obtain an auxiliary formula useful in achieving this aim.

On multiplying both sides of (33) by (drj/dxni ) and summing with

respect to j, we obtain, with the aid of the definition of 6^,

t-1

The sum in square brackets is clearly (dXi/dxm), and is therefore zero

if i 7* m and unity if i = m is equal, that is, to dim . Thus the only non-

vanishing term in the sum over i in (34) is the one for which i m, with

the coefficient of (dxm/drk ) equal to unity, so that (34) reads

^ = hlj^ (k,m =
1,2,3, independently). (35)

uTk
* uXm

Replacing (ra,fc) by (i,j), we use (35) to make (20) read

<*

It is seen in (c) above that the left-hand member of (22) becomes a con-

stant times the laplacian if we choose

_^
wl, (37)

t = i

as in (23). With (36) equation (37) becomes

3 3 3 3 3 3

f V V V Wr >Wr* ^ --i = V V Wr
'
Wr* \V **^

3
Li LI LI h]h\ drj drk L LI hffi [Lf dr,- drk

33 3

V V Wr*
W*~

where the penultimate expression is obtained from its predecessor with

the aid of (33) and the final form follows from the definition of 6^.

To evaluate the jacobian D in terms of (h^h^M we multiply the

determinant (17) by itself according to the rule given in 2-8(c). Thus
D 2

is a three-by-three determinant given by
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i=l
3

t - 1

3

?? <? V ^^
dr 2 dri Lj dr^ dri

t=l
3

dr 2

V
dx_i

Z-/ <5r 2dri dr 3

t-i

h\

h\

h\

with the aid of (33). Thus, since h\, hz, h^ are all positive, we have

D = Mafcs. (39)

With (37), (38), and (39) the transformation equation (22) yields the

result

- - (40)
dr 3 \ h, drj]

V ;

To illustrate the use of (40) we use (24) of (c) above to compute
dx 2 + d\f + dz 1 = dr 2 + r 2 dO~ + r

2 sin 2 6 d<f>'
2

,
so that hi =

1, fc 2
=

r,

As = r sin ^. With ri =
r, r 2

=
6, r 3

= ^, (40) leads directly to (29)

of (c).

(c) In transforming Euler-Lagrange expressions which involve only

two independent variables, we may use the result (22), but the sums over

i run from i = 1 to i = 2, only. Similarly, we may use (40) to transform

the two-dimensional laplacian V 2w = wxx + trvl/ by suppressing the final

term and by setting /i 3
= 1 in the remainder of the formula; that is, we

have

where (7*1/2) are plane curvilinear orthogonal coordinates, with

dx\ + dx\ == h\ dr\.

For example, in the transformation from cartesian to plane polar coor-

dinates, we have

Xi r cos 0, Xz = r sin 0, (42)
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where r\ = r, r2
= 0. From (42) it follows that dx\ + dx\ = dr* + r2 dOz

,

so that hi =
1, /i 2

= r. Thus (41) becomes

1 d ( dw\ 1 d 2^= -
v- 1 r 1 + -5 ^T (43 )

r dr\ dr / r 2 36*

9-3. The Vibrating Membrane

To derive the partial differential equation which describes the motion

of a vibrating elastic membrane we appeal to Hamilton's principle,

introduced in 6-2, so extended as to apply to a mechanical system in

which the mass is distributed continuously. This is done, as in the case

of the vibrating string (7-2), by considering a continuous mass distribu-

tion as a limiting case of a system composed of discrete mass particles

the case to which Hamilton's principle is initially held applicable.

Mathematically, the limiting process is effected in a natural way by

replacing sums over the particles of the discrete system by integrals over

the mass distribution of the continuous system.

(a) We consider a thin elastic membrane extended over a given non-

self-intersecting closed curve C in the xy plane. The boundary curve C
is supposed to consist of a finite number of arcs along each of which the

curvature is continuous. The plane domain D enclosed by C coincides

with the equilibrium configuration of the membrane.

We suppose the membrane to be in a state of vibration in which each

of its points undergoes a motion in a direction perpendicular to the xy

plane. For the present we confine our attention to the case in which the

boundary edge of the membrane is constrained to coincide with the curve

C. Aside from those which hold the boundary edge in place, the only

forces which influence the membrane motion are the elastic forces which

arise from the deformation of the membrane relative to its plane equi-

librium configuration.

The displacement from equilibrium at time t of a given membrane

point whose motion occurs along a line characterized by particular values

of x and y is denoted by w(x,y,f). Thus the configuration of the mem-
brane as a whole is described, at any instant t, by the function w = w(x,y,t)

of the three independent variables indicated; w may assume, of course,

both positive and negative values, with w =
indicating a point of the

membrane instantaneously in the xy plane. In particular we have

w(x,y,t)
= along C (all 0, (44)

in view of the above-imposed condition which fixes the boundary edge in

the xy plane. Since the membrane is supposed free of slits, and since
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mechanical motion cannot occur discontinuously, w is a continuous func-

tion of x and y in D and of t, for all t. Moreover, since a discontinuity
of velocity with respect to position would induce a tear in the mem-
brane, we have that the time rate of displacement designated by
(dw/dt) = w(x,y,t) is continuous in D as well as being a continuous

function of t. Finally, we suppose that the first and second partial

derivatives of w with respect to the position coordinates wx,
wv ,

wxx ,

wvv ,
wxv are continuous in D. 1

(6) We denote the mass per unit area of the membrane by the con-

tinuous positive density function <r = <r(z,2/). We confine the motion to

amplitudes of vibration so small that a- is effectively independent of w.

Since the velocity of the point at (x,y) is w(x,y,t) at any instant t, the

kinetic energy per unit area is accordingly ^(x fy)[w(x )y y t)]'
i
. Integrating

over D, we obtain

T =
tffvw*dxdy (45)
D

for the total kinetic energy of the membrane as a function of time.

The elastic potential energy of the membrane in any configuration is

equal to the amount of work which is required in order to bring the mem-
brane from equilibrium to the given configuration. Since the membrane
is assumed to be so flexible as to give no resistance to bending, the work
of deformation must be entirely owing to the increase of the membrane's

area relative to the equilibrium area of the domain D. We proceed to

compute this quantity of work under certain simplifying assumptions
characteristic of the usual membrane theory:

Across any arc drawn in the surface of a stretched membrane, the por-

tion of the membrane on one side of the arc exerts a normal stretch-

resisting force on the portion lying on the other side. If there is no

lateral motion of any point of the membrane, and if the elastic properties

of the membrane are isotropic (independent of direction) both of which

assumptions are appropriate to our theory the stretch-resisting force

per unit arc length is a constant with respect to position ;
and if we deal

with only small deformations, it is likewise constant with respect to time.

This positive constant force per unit length the so-called surface ten-

sion we denote by the symbol r. An elementary physical analysis

shows that the quantity of work required to increase the area of the

membrane by a small amount AA is given by (rAA):

1 This restriction is partially removed below in 9-7 (a) to provide for the possible

exception of a finite number of isolated points at which, and a finite number of smooth

arcs across which, finite discontinuities of the derivatives may occur.
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In Fig. 9-1 we suppose that the membrane is initially plane and is

bounded by C; after deformation,
^ is stiU plane and is bounded by
C". Let any line normal to C have

intercepted on it by C and C' a small

segment of length 5 = 6(s), where s

denotes the arc coordinate on C
measured from some fixed point on

C. The quantity of work done by
the stretching agency is clearly given,

if 8 is everywhere small compared
with the linear dimensions of Z), by

where Lc is the total length of C.

In any given configuration described by w =
w(x,y,t) the total area of

the membrane is given
1

by

// Vl + u>l + u>l dx dy.

D

Thus the potential energy of deformation is

V = T
(fI Vl + wl + w* dx dy

-
II

dx
dy), (46)

D

where the second integral is the equilibrium area the area of D. 2 We
assume the deformation such that at every instant t the quantities wx

and wy are so small that we may expand

+ w\ + wl
= 1 + %(wl + ,)+...

and neglect without error the higher powers indicated by dots. With

this assumption which is the requirement of the usual theory that the

deviation of the membrane from a plane figure is always slight (46)

becomes the working formula 3

1 See 2-9.

2
Although the derivation upon which (46) is based takes into account no bending

of the deformed membrane out of its original plane configuration, the fact that there is

required no expenditure of work to bend the completely flexible membrane justifies

the use of (46) here.
8 The forces exerted by the external agency that keeps the boundary edge fixed

involve no motion and so contribute nothing to the potential energy of the system.
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V = ir ff (wl + wl)dx dy. (47)

According to 6-1 (d) we have from (45) and (47) that the lagrangian of

the system constituted by the vibrating membrane is

L = T - V = i[<^ 2 -
r(wl + wl)]dx dy.

D

According to Hamilton's principle of 6-2 the integral

dt

is extremized by the function w(x,y,t) which describes the actual motion

of the membrane; the extremization is effected with respect to functions

w which vanish on C for all /, which describe the actual membrane con-

figurations at t t\ and t = / 2 ,
and which satisfy the regularity condi-

tions set forth in (a) above. The limits of integration t\, i<i are completely

arbitrary.

To find the differential equation satisfied by the function w(x,y,t) which

extremizes (48) we may use the results of 9-1 (a) if we replace z by t and,

accordingly, wz by w. The region R of 9-1 (a) here becomes the cylindri-

cal region generated by moving the domain D parallel to the
"

I direction
"

from t = t\ to t /2- The condition that w be prescribed on the bound-

ary B of R is fulfilled here: By the imposed condition w = on C we

have that w vanishes on the cylindrical portion of #; since Hamilton's

principle requires that w be prescribed at t = 1 1 and t >, the plane faces

of B are taken care of. Thus, with

/ = *M> 2 -
r(wl + lift],

according to (48), the result (9) of 9-1 (a) reads

a 5?, (49)~

where V 2w = wxx + wvv is the two-dimensional laplacian of w. We refer

to (49) as the vibrating-membrane equation.

9-4. Eigenvalue-Eigenfunction Problem for the Membrane

(a) The initial assault upon the membrane equation (49) consists of

seeking a solution of the form

w =
4>(x,y)q(t), (50)
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where <t> satisfies the boundary condition

=0 on C, (51)

so that (44) of 9-3 (a) is satisfied by (50) and the normalization

condition

if-

x dy = 1. (52)

V

From (50) it follows that

so that (49) becomes, on division by aw =
ff<j>q,

^ = q-'
(53)

<r<t> q

Since the left-hand member of (53) is independent of t, and since the

right-hand member depends upon t alone, it follows that each member is

a constant, which we denote by X. Thus we have inherent in (53) the

pair of equations

q + \q = (54)

and
= 0. (55)

The values of X are as yet undetermined.

With the fact that X is positive, proved in (6) below, the general solu-

tion of (54) is directly found to be

q = A cos \/X t + B sin \/\ t, (56)

where A and B are arbitrary constants. We note that q is a periodic

function of circular frequency (2V times frequency)

o> = V% (57)

so that (50) represents a membrane vibration which is periodic in time.

Thus the determination of permissible values of X constitutes the deter-

mination of the list of frequencies (co/27r) with which a given membrane is

capable of executing periodic vibrations.

(6) Since (51) and (55) are homogeneous in <, and because a- is a posi-

tive function, any nontrivial solution may be multiplied by a suitable

constant in order that the normalization condition (52) be fulfilled.

The solution of (55) in the domain D, in conjunction with the boundary
condition (51) on C, constitutes an eigenvalue-eigenfunction problem of
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the sort encountered in Chaps. 7 and 8. Each value of X for which (55)

possesses a solution satisfying (51) is an eigenvalue of X.

To prove that every eigenvalue of X is positive a fact used in the

solution of (54) in (a) above we multiply (55) by <t> and integrate the

resulting equation over D:

t>* dx dy = -T <t>V
2

<j> dx dy. (58)

Because of the normalization (52) the left-hand member of (58) is simply
X. Applying Green's theorem (23) of 2-13 to the right-hand member, we
obtain from (58)

X ==

where the second integral on the right is a line integral taken along the

boundary C of D and (d<f>/dn) is the normal derivative of < taken with

respect to the direction exterior from D. Because of the fact that <
=

on (7, however, the line integral vanishes and (59) shows that X ^ 0.

For the equality to hold we must have <t>x
=

<t>y
=

0, which implies that

</>
= constant in 7); but since </>

= on C, this means that </>
= in D

a trivial solution, and therefore not an eigenfunction. Thus we have

X > 0.

For purposes below we point out that (59) follows merely from the fact

that <f> satisfies (55) for the given value of X; (59) in no way depends on

the boundary condition placed upon <f>.

(c) As in the case of the vibrating string, the eigenvalue-eigenfunction

problem for the membrane may be characterized as an isoperimetric

problem. If we seek to extremize the integral

f>l + fydx dy (60)

with respect to twice-differentiable functions # which vanish on C and

which satisfy the normalization condition

ij
<r<t>

2 dx dy =
1,

it follows directly from 7-1 (c) that <t> must satisfy the Euler-Lagrange

equation
=

0,



148 CALCULUS OF VARIATIONS [9-5

where X plays the role of undetermined Lagrange multiplier. The iden-

tity with (55) is observed.

Comparison of (60) with (59), with <t>
= on (7, shows that each

extremized value of / is one of the eigenvalues of X. In 9-9 below, this

fact takes on a more precise meaning.

9-6. Membrane with Boundary Held Elastically. The Free Membrane

(a) We consider here the vibrating membrane which possesses all the

characteristics of the membrane described in 9-3, with the exception that

its boundary edge is not held in fixed position along the closed curve C in

the xy plane. Instead, we suppose that the membrane edge is bound

elastically to the curve C in such fashion that each point of the edge is

free to move in a line through C perpendicular to the xy plane. The
nature of the binding agency is such that it pulls each point of the bound-

ary edge toward the point of C through which the point is free to move
with a force proportional to the displacement of the point from the xy

plane. Thus the equilibrium position of the membrane edge is the

curve C.

With the arc length ,9 measured along C from some fixed point on C we
consider the binding force acting upon an arbitrary element of the mem-
brane edge having the length ds in the equilibrium configuration. The

binding force experienced by this element is p(s)w ds, where the positive

function p(s) measures the strength of the binding along C and the minus

sign indicates that the force opposes displacement from equilibrium.

The potential energy associated with this force is

p(s)ds$w dw = vp(s)w
2
ds, (61)

where the arbitrary constant of integration is chosen so as to make the

potential energy zero in equilibrium. Finally, the total binding potential

energy, obtained by integrating (61) along C, is

2

ds, (62)

where of course w is a function of s along C.

We suppose that the binding agency is such as to contribute negligibly

to the kinetic energy of the system.

(6) If the integral (48) of 9-3(6) is to apply to the membrane under

discussion here, the potential-energy term must be augmented to include

the binding energy VB given by (62). That is, the integral which is

extremized by the function w = w(x,y,t} that describes the actual mem-
brane motion is

I = i T* IffM 2 -
r(wl + v>l)]dx dy

- f pw* ds] dt, (63)
Jti \jj jc }
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where the extremization is effected with respect to functions w which

describe the actual membrane configurations at t = t\ and t = 1% and
which satisfy the regularity conditions set forth in 9-3(a). There is

nothing in the mechanical problem under consideration which requires the

imposition of any specific condition to be satisfied on the boundary curve C
by the functions w eligible for the extremization.

As a preliminary to the process of extremizing (63) we transform the

line integral of (63) according to Green's theorem (21) of 2-13 as follows:

We define the functions P = P(x,y,t) and Q = Q(x,yfy\ as

D 1
,,
ds ~ 1 ds n f NP = _ pw,-_, Q=__ pw-_ onC

, (64)

and otherwise arbitrary to within continuous twice differentiability

in the domain D. With (64), we have

dy + pu>
2

cte = (P dy - Q dx)

according to (21) of 2-13. With (65) we may rewrite (63) as

7 =
5 f //H -

7(w* + "*>
-
(^ +

%)]**
dy dt

' (66)

D

an integral carried out over the cylindrical region R of xyt space described

in 9-3(6) just below (48).

Since there is a portion of the boundary B of R namely, the cylindrical

surface generated by the motion of C in the t direction from t = t\ to

t = ti on which the functions w eligible for the minimization are unre-

stricted, we cannot without alteration apply the result of 9-1 (a) ;
in that

section it is required that eligible functions w be prescribed everywhere
on B. We may, however, use (7) of 9-1 (a), which is achieved without

special assumption concerning the values of the arbitrary function 77 on

B] we must, of course, replace z by / and wz by w in (7). Thus we have

x dy dt = 0, (67)

D

where

I The derivatives (ds/dy) and (ds/dx) have reference to the curve C.
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according to (66) ; * is arbitrary to within continuous differentiability and

0, (69)

according to the requirement of Hamilton's principle that the eligible

functions w be prescribed at t = t^nd t = J 2 .

In the final term of (67) we carry out the integration over t first;

integrating by parts, we get

""

-Jf '*( (7o)

because of (69).

The second and third terms of (67) are transformed by means of (22)

of 2-13 to give

With (70) and (71) equation (67) becomes

*

o (72)

for all 97 satisfying (69). In particular (72) holds for those i? which vanish

on Cpfor such 17, only the triple integral remains, and we may apply the

basic lemma of 3-l(c), extended to multiple integrals, to conclude that

,

dw dx\dw dy\dw dt
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for all t. With (73), and with ij once again arbitrary on C, examination

of (72) in light of 3-1 (c) yields the further result

jtf_dy jV^a-Q Qn /74\
A<JM fto Ann fto

* ^ 'dwx ds y

(c) The membrane equation (49) fs obtained in 9-3(6) by substituting

(75)

into (9) of 9-1 (a), with appropriate changes of notation. If we now sub-

stitute (68) into (73), which is identical with (9), we must get precisely the

same equation of motion as (49) namely,

(76)

For (68) differs from (75) merely by an expression of the form $[(dP/dx) +
(dQ/dy)]; according to 9-1 (d), with R -

0, the addition of such an expres-

sion to (68) can have no effect on the resulting Euler-Lagrange equation.

The equation (76) describes the motion of the membrane of this section

as well as that of the membrane with fixed boundary edge.

The influence of the final two terms of (68) is expressed when / is sub-

stituted into (74) for the derivation of the boundary condition which

must be satisfied by the function w that describes the membrane motion.

Since we have 1

J
- P. + Pw,, |

- Qv + Qwwv,

(68) becomes

/ = ftrt**
-

r(wl + wl)
-

(P, + Q9)
- (Pwx + Qwwv)] 9

so that

or

&--<- \**% ^--^ + 5^E on0' (77)

as we find with the aid of (64). Substitution of (77) into (74) yields

s
~ Wv

5s
+ pw * on

1 See (13) of 9-1 (d), with the accompanying footnote.
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or, with the use of (13) of 2-7(d),

T T^ + pw = on C; (78)

(dw/dn) is the normal derivative of w taken with respect to the direction

exterior from D.

By way of summary, we have that the function w =
w(x,y,t) which

describes the motion of the membrane whose edge is held elastically

satisfies the equation (76) in D and the condition (78) on the boundary.
The positive function p =

p(s), introduced in (a) above, is a measure of

the strength of the force distribution which binds the boundary edge.

(d) We attack the equation (76), with the condition (78), in much the

same way as we handle the corresponding problem of the membrane with

fixed boundary edge in 9-4 (a): We seek a solution of the form

w =
4>(x,y)q(t). (79)

As in 9-4 (a), it follows directly that

q
= A cos \/X t + B sin \/\ t, (80)

with A and B arbitrary constants, and that <f> satisfies

rV 2 + \<r<t>
= in D, (81)

with the boundary condition derived directly from (78) and (79)

T -~ + p(/>
= on C. (82)

The eigenvalues of X are the values of X for which (81) possesses a solu-

tion which satisfies (82) ;
such a solution is an eigenfunction, upon which

we impose the normalization condition

p
2 dx dy = 1. (83)

To prove that X is positive a fact upon which the form (80) of q(t)

depends we use (59) of 9-4(6), which is valid for any < that satisfies

(81) and (83). If, further, <t> satisfies (82), then (59) reads

X =
rff (<t>l + <t>l)dx dy + fc ptf ds, (84)

which is clearly positive, since r > and p > 0.

As in 9-4 (c), we can show that the eigenvalue-eigenfunction problem
under discussion may be set up as an isoperimetric problem. It is left
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for exercise 6(6) at the end of this chapter to prove that the functions

which extremize

t>l + 4>l)dx dy + c ptf ds

with respect to sufficiently regular <j>
for which the normalization (83)

holds, but upon which no boundary conditions are imposed, must satisfy

(81) and (82). A fuller significance of this fact is brought out in 9-9

below.

(e) Upon introduction of the binding-force-distribution function p(s)

in (a) above, it is assumed that p is everywhere positive along C. We
may, however, remove this restriction by supposing that p(s) may vanish 1

over any portion, or over all, of C. At those points of C at which p(s) =

the membrane edge is completely free of external constraint with regard

to its motion perpendicular to the xy plane.
2 In particular if p(s) =

identically along C, the membrane edge is completely free and we speak
of the free membrane. The physical realization of the free membrane, of

course, is somewhat doubtful, but we consider it here for its mathematical

interest alone.

With p = identically on C the boundary condition for the free-mem-

brane eigenfunctions becomes, according to (82),

^ = on C, (85)

and from (81) it follows that <f>
= constant is an eigenfunction correspond-

ing to the eigenvalue X = 0. It is easily shown,
3
however, that the time-

dependent factor q(t) is not periodic when X =
0, so that this eigenvalue

is of no interest from the standpoint of vibrations; we cannot, however,

ignore it completely, as we see below in 9-9.

(/) A membrane may have portions of its boundary edge held fixed to

the equilibrium curve (7, while the remaining portions are bound elas-

tically in the manner described in (a) above. A slight modification of the

analysis of (6) shows that the eigenfunctions are required to satisfy <
=

on those portions of C to which the edge is held fixed and to satisfy

r(d(f>/dn) + p</>
= on the remaining portions of (7, with p ^ 0. The

differential equation satisfied by the eigenfunctions is (81) in any case.

(g) Boundary conditions of the type considered in this chapter either

<t>
= on C, or (82), with p ^ 0, or a mixture of both are called homo-

1 Nowhere, however, is p(s) negative.
2 It is always supposed, however, that each point of the edge is constrained to

move only in a straight line through C perpendicular to the xy plane.
8 See end-chapter exercise 10.
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geneous in that any < which satisfies them may be multiplied by an

arbitrary constant without violating the boundary conditions. Since

the same is true of any function which satisfies the associated differential

equation rV2
< + Xor< =

0, the membrane problem as we consider it is a

linear homogeneous problem. It is this fact, of course, which makes

possible the imposition of the convenient normalization condition (83).

9-6. Orthogonality of the Eigenfunctions. Expansion of Arbitrary

Functions

(a) In the Sturm-Liouville eigenvalue-eigenfunction problem includ-

ing the vibrating-string problem as a special case which is handled in

Chap. 8, there corresponds to each eigenvalue of the parameter X one

and only one linearly independent
1

eigenfunction. In dealing with eigcn-

value-eigenfunction problems involving two or more independent varia-

bles such as we have in the membrane problem we find, however, that

to each eigenvalue of X there may correspond one or more than one linearly

independent eigenfunction. An eigenvalue to which there correspond
two or more such eigenfunctions is called a multiple, or degenerate, eigen-

value; otherwise it is said to be simple, or nondegenerate.

The fact of possible degeneracy requires special attention in the dis-

cussion of the orthogonality of the membrane eigenfunctions in (b) and

(c) below. Specific examples of degeneracy are observed in 9-8 and end-

chapter exercise 13, in which we treat respectively the rectangular and

circular membranes of uniform density.

(b) We prove, first, that the membrane eigenfunctions which corre-

spond to distinct eigenvalues are orthogonal in the domain D with respect

to the positive weight function <r = <r(x,y). Next, in (c) below, we show

that the independent membrane eigcnfunetions which correspond to the

same degenerate eigenvalue are always capable of being chosen so as to

satisfy the same orthogonality relationship. We prove, that is, that

ff dx dy =
(j

where fa and fa are any two linearly independent membrane eigenfunc-

tions which correspond to the same eigenvalue or to distinct eigenvalues.
2

We have, according to (55) of 9-4 (a), or the identical (81) of 9-5 (d), that

TV*fa + \jtrfa
=

0, rV^k + X*<70, =
0, (87)

1 See 2-8 (e) for the definitions of linear independence and linear dependence.
2 We deal, of course, with eigenfunctions of a particular membrane, for which o-,

D (with boundary C), T, and the binding function p(s) are all given. Moreover, the

boundary conditions are the same for each eigenfunction.
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where Xy and X* are the eigenvalues of X which correspond respectively to

<fo and fa. If the membrane boundary edge is held fixed, we have

<t>j
= fa = on C; if the boundary edge is held elastically (or is free,

whereby p =
0), we have

T - + pfa =
0, T + pfa = on C, (88)

according to (82) of 9-5 (d). We suppose that Xy ^ \k .

We multiply the first of (87) by fa and the second by <,, subtract,

then integrate the result over Z), to obtain

rr rr
(\j

~"~
X;t) / / &$j$k dx dy == T

/ / (<j&!;V^$fc ^k^^^j}dx dy

i1 i1

-'/,(*-)* <89)

by virtue of Green's formula (24) of 2-13 (d). In the case <t>j
= fa =

on C the final member of (89) vanishes; the same fact holds if (88) is

applicable, as we find on substituting from it for the normal derivatives.

In either event the orthogonality (86) follows from (89), since X, ^ X*.

(c) We consider the linearly independent cigenfunctions ?/i, ?/ 2 ,
. . .

,
UN

associated with a single degenerate eigenvalue X*; there is no further

eigenfunction corresponding to Xt which is linearly independent of the

N functions listed. 1

Because, as it is pointed out in 9-5 (</), the

eigenvalue-eigenfunction problem for the membrane is linearly homo-

geneous, any arbitrary linear combination of u\, u^ . . .
,
UN is also an

(ugenfunction which corresponds to the eigenvalue X fc . We now show

that it is always possible to construct a set of N linear combinations of

7^1, 7/2, . . .
, MJV which form an orthogonal set in D with respect to the

weight function <r:

We consider the functions t>i, v 2 ,
. . .

, VN, defined successively in terms

of the given 7^1, 7^2, . . .
, UN, through the relations

(90)

with the coefficients am (i
=

1,2, . . . ,m l;m =
2,3, . . .

, N) deter-

mined according to the needs of the orthogonality as follows: We have

// (rviVz dx dy a 2 i // av\ dx dy + // vviUz dx dy,

1 That N must always be finite is shown in 9-12(d) below to be a consequence of the

asymptotic formula for the membrane eigenvalues.
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which vanishes, as required, if

dx dyjl

// vv\ dx dy

With v<t thus determined as orthogonal to vi, we evaluate the coefficients

a3 i and a 32 so that

// aViVa dx dy =
0, // 0^3 dx dy = (91)

are satisfied. The first of (91) yields

3i // <rvl dx dy + II av\Uz dx dy =
0,

while the second of (91) gives

a 32 // <rv\ dx dy + II cn; 2u 3 dx dy = 0.

The process is continued; with v\, v^ . . .
,
vm-\ thus determined as an

orthogonal set, the (m 1) coefficients in (90) are evaluated so as to

make vm orthogonal to each of v\, v^ . . .
,
vm-i- It is left for exercise 11

at the end of this chapter to show that the required evaluation is

(i
=

1,2, . . . ,m
-

1). (92)

^ dx dy

The process of orthogonalization the so-called Schmidt process is com-

pleted with m N.

Each of the orthogonal set of functions v\, #2, . . .
,
vm thus deter-

mined may be multiplied by a suitable constant in order that the normal-

ization condition (83) of 9-5 (d) be satisfied by every member of the set.

With the result of (6) above we are therefore justified in assuming that

the totality of eigenfunctions associated with a given membrane problem

<i> </>2, </>3, . constitutes an orthonormal set in D with respect to a-

as weight function :

dx dy = SJk . (93)
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We note that the Schmidt orthogonalization process does not depend
upon the fact that u\ y u^ . . .

, UN are membrane eigenfunctions, but

merely on the fact that the functions listed are linearly independent in D.
The same process can be carried out for any set, finite or infinite, of

linearly independent functions of any number of variables if the domain
or interval, in the case of one independent variable and the positive

weight function are given.

(d) Let 0i, 02, . . .
, m ,

... be the totality of the orthonormal

eigenfunctions associated with a given membrane problem. Let g(x,y)

be an arbitrary bounded function defined in the membrane domain />; g
is such that /) may be divided into a finite number of subdomains by a

finite set of smooth arcs such that 0, together with its first partial deriva-

tives gx and gv ,
is continuous in each subdomain. Then, if we write

m0m(s,y), cm =
(r<t>mg dx dy, (94)=

JJ
D

the series converges uniformly to g(x,y) in every subdomain of D in which

g(x,y) is continuous. The formula of (94) for the coefficients cm follows

directly
1 from the orthonormality (93).

Further, in every subdomain of D in which gx and gv are continuous, the

series

00

V a*. V
?i
= / fm -z-> gv = /

LI dx Ll
(95)

converge uniformly to gx and gv , respectively.

(To avoid going beyond the scope of our study, the above results are

stated without proof.)

If the eigenfunctions <t>m (x,y) used in the expansion (94) all vanish on

the boundary C of /), the series for g converges to zero on C. Thus at

those points of C at which g 7^ the representation breaks down and the

function represented by the series is discontinuous, and the convergence

is nonuniform in the neighborhood. If, however, g
= everywhere on

C, no such difficulty is incurred.

If the eigenfunctions m (#,//) used in the expansion (94) satisfy the

boundary condition r(d<t>m/dn) + p0m = on C, the series converges to

g(x,y) on C, but the derivative series (95) do not in general converge

respectively to gx and gv on C unless also r(dg/dn) + pg = on C.

Difficulties such as those mentioned in this and the preceding paragraph

play no role in our study.

1 See exercise 15 at end of chapter.
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9-7. General Solution of the Membrane Equation

(a) Through the validity of the expansion theorem stated in 9-6 (d) we
are led to a solution of the membrane equation

rVho = cr (90)

which is sufficiently general to embrace at least all cases which are of

physical interest. Leaving the problem of the membrane with boundary

edge held fixed for exercise 12 (a) at the end of this chapter, we consider

here the problem of the membrane whose boundary edge is held elastically
to the curve C in the xy plane. We have, accordingly,

r -^ + pw = on C, (97)on

with p p(s) a given positive function, by (78) of 9-5 (c).

As in the vibrating-string problem handled in 7-5, determination of the

general solution is based upon the prior complete solution of the associated

eigenvalue-eigenfunctioii problem; that is, we have at our disposal the

totality of the eigenvalues and orthonormal eigcnfunctions of the system

rV'2 <t>m + \m<r<t>m = in D, (98)

r
d-~ + P<t>m = on C, (99)on

form =
1,2, 3, .... (If any given eigenvalue is degenerate, it appears

consecutively in the list \i, \2, . . .
,
Xm ,

... a number of times equal
to the number of independent eigenfunctions associated with it. We
suppose that the eigenvalues are numbered in ascending order, so that

Xm ^ \m+i for all m.)

At this point we weaken the restrictions upon the solution w = w(x,y,t)

of (96) which are set forth in 9-3 (a). It is riot necessary for further pur-

poses to keep the restriction of continuity of the partial derivatives wx

and wy everywhere in D: We allow a finite number of isolated points at

which, and a finite number of smooth arcs across which, finite discon-

tinuities of wx and wy may occur. Since the conditions for expanding
w and w, for any /, as infinite series of eigenfunctions, according to9-6(d),

are clearly met, we may write

w(x,y,t)
= cw m (x,y), w(x,y,f)

= dm <t>m (x,y), (100)
m= 1
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where, according to (94),

cm = cm (t)
=

jj
<y<t>mw dx dy, dm = dm (t)

=
II

<7<t>mw dx dy. (101)

From (101), with the rule for differentiating an integral, it follows that

dm =
Cm] the second of (100) therefore reads

00

w(x,y,t)
= cm <l>m (x,y) (102)

the term-by-term time derivative of the first of (100). Further, we

have

,IM\
(103)

According to (G3) of 9-5(6) Hamilton's principle calls for the extremiza-

tion of the integral

7 = ^
/i" i !I [alb

'

2 ~
T(w* + W }]dj

'

d]J
"

/c pu^ d
*}

d/ (104)
z>

by the function w(x,y,t) which describes the actual membrane motion,

with respect to functions w which fit the actual membrane configurations

at t = 1 and /
= / 2 . Into one factor of each term of (104) we substitute

from (102), (103), and (100), as appropriate:

<\M / / o-<f>m w dx dy

V>

[/*/*/

*\\ r ~\\
I/ d<bm . d<bm \ , -. . I . ij, /in~\

r / / I wx 1- wy ;
J
dx dy + / pw(j>m us } cit. (10o)

i)

We transform the second integral over I) according to Green's theorem

(23) of 2-13 to obtain

* - "***- di*
/>

Thus (105) becomes, since the coefficient of cm in (105) is dm = cmj
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according to (101),

= ^y r k + cm
\TJfwV*<t>

m dx dy
-

I w (r~^ + P^ ds]\ds dl

D

- cm\m
ff<r<t>

mw dx dy\

w=l D m=l
(106)

with the aid of (98), (99), and finally the first of (101).

Thus the extremization of (104) is reduced to the extremization of the

final form of (106) with respect to the infinite set of quantities Ci, c 2 ,

. . .
,
cm ,

. . .
,
which are prescribed at t = ti and t = / 2 , according to

the requirements of Hamilton's principle. This extremization problem
is worked out in 7-5 (a), with the result

Cm = Am COS \/\m t + Bm SHI \/\m t (w =
1,2,3, . . .)>

where A m and Bm are arbitrary constants. According to (100), therefore,

we have for the general solution of the membrane problem characterized

analytically by (96) and (97)

w(x,y,t) = (A m cos V?U t + Bm sin V^ t)<t>m (x,y). (107)

Evaluation of the coefficients A m ,
Bm through the imposition of initial

(t
= 0) conditions is left for end-chapter exercise 12 (c).

(6) The result (107) justifies the analysis of any given state of vibra-

tion of a membrane as a linear superposition of vibrations, each of which

is characterized by a single frequency. Comparison with (79) and (80)

of 9-5(d) shows that each term of (107) corresponds to one of the single-

frequency modes of vibration which the membrane is capable of executing.

9-8. The Rectangular Membrane of Uniform Density

(a) The problem of determining the eigenvalues and corresponding

eigenfunctions for a given membrane is in general tractable only if the

boundary curve C is so shaped and the density function 0- so constituted

that the differential equation

= (108)

lends iself to a separation of variables. First, we must choose a coor-

dinate system in which the entire boundary curve is describable through
constant values of the coordinate variables. In the case of a rectangle
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of sides a and 6, for example, we use the cartesian system whose origin is

at one of the corners and along whose positive axes two sides of the rec-

tangle extend. In this case the boundary curve is describable by the

sequence of constant values y =
0, x =

a, y =
6, x = 0. For a circular

membrane of radius c, the equation of the boundary is simply r c in a

system of polar coordinates whose origin is at the center of the circle.

Once a coordinate system is determined to suit the boundary needs,

the next requirement is that the partial differential equation (108)

separate into two ordinary differential equations through substitution

into it of a product function- -a function of one of the coordinate variables

times a function of the other. Separation is effected when the equation
is put into a form such that each of its two members depends respectively

on one or the other, alone, of the independent variables. In this event

the two members must equal an undetermined constant, whereby two

ordinary differential equations result.

It may happen that the form of the function a is such as to make a

separation of variables impossible; but even if cr is a constant, there is

only a limited number of coordinate systems in which separation may
occur. In the event of inseparability the quest for a precise solution of

the problem is in general hopeless, so that methods of approximation
must be resorted to. Discussion of a method of approximation is found

in 9-13 below.

(b) In this section we illustrate the precise solution of a membrane

eigcnvalue-eigenfunction problem with the rectangular membrane of

uniform density. If the rectangle side lengths are a and b, we set up a

cartesian coordinate system so that the membrane is bounded by .r = 0,

x a, //
= 0, // />. For the fixed-edge membrane, which we consider

first, the boundary conditions thus read

)
= 0(a,y) =

0, 0(*,0) =
4>(x,b)

= 0. (109)

Into (108), with a = <T O ,
a constant, we substitute the product function

4>(x,y) =X(x)Y(y) (110)

whereby the conditions (109) become

X(0) = X(d) =
0, 7(0) = Y(b) = 0. (Ill)

Since it follows from (110) that V 2
<
- X"Y + XY" (where primes indi-

cate differentiation with respect to the appropriate independent variable),

(108) becomes r(X"Y + XY"} + \<r XY =
0, or

V'f \- V flA AO-o __
/_ + _ _ - _.
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Since the left-hand member of (112) is a function of x alone while the

right-hand is independent of x, it follows that each member is a constant,
which we denote by ft. Thus (112) results in the two ordinary equations

a? + aX =
0> w + 'Y =

0> (113)

where we introduce the constant a =
(X<ro/r) /3,

so that

X = -(o + j8). (114)
^0

The permissible values of a. and ft and thereby the eigenvalues of X

are determined directly.

For a < the solutions of the first of (113) are real exponentials,
which cannot be combined so as to vanish both at x = and x = a.

Thus we have a ^ 0, with the solution

X(x) = C cos \/a. x + D sin \/a x. (115)

Imposing the first pair of conditions (111), we obtain

X(0) - C =
0, X(d) = D sin V a =

0,

whence it follows that \/a a =
WTT, with m an integer, or

we ignore the trivial solution which arises if D = or a = 0. The

corresponding functions (1 15) are, for each m,

Xm = 7)w sin~ (m =
1,2,3, . . .)

In similar fashion we obtain for the functions Y(y) which satisfy the

second set of conditions (111)

Yk = Eh sin (k
=

1,2,3, . . .),

with the corresponding values

1.2-.2

ft
=
^r (fc

=
1,2,3, . . .). (117)

From (116), (117), and (114) we have for the eigenvalues of X

T7T
2 /m 2 k 2\

Xm fc
= IT + Til (m>k

= 12,3, . . .
, independently), (118)

(To \d /
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with the corresponding eigenfunctions

n . rmrx . kiry /^/>\
0mfc = Fm k sm

^-
sin -

, (119)

for m,fc
=

1, 2, 3, . . .
, independently. The constants Fmk may be

determined by the requirements of normalization.

(c) The attack upon the eigenvalue-eigenfunction problem for the free

membrane is handled in much the same way. We seek a solution of the

form (110), but the boundary conditions (111) are here replaced by

X'(0) = X'(a) =
0, F'(0) = Y'(b) = 0. (120)

For, the condition 1

(d<t>/d?i) Oon C reads, for the rectangle, (d<j>/dx)

on x =
0, x a, and (d<f>/dy)

= on ij
=

0, y 6; (120) follows directly.

Applying the first of (120) to (115), we obtain

X'(0) = \/a D =
0, X'(a) = - \/aC sin \/a a =

0,

whence \/a a =
?mr, with m an integer, or

(m =
0,1,2, .. .)

u

Similarly, we find /3
=

(/c
2
7r

2
/6

2
), so that the eigenvalues of X are, accord-

ing to (114),

2 /m 1 M\
Xmfc

= --( + ^j (m,fc = 0,1,2, . . .
, independently), (121)

with the corresponding eigenfunctions

<t>mk
= Fmk COS -- COS '^~'

(122)

It is significant that we may choose the values m = and k = in

the free-edge problem, whereas these values must be ignored in the fixed-

edge case. The reason for the difference is made clear on comparison of

the eigenfunctions (119) and (122): Setting m or A: equal to zero in (119)

yields the trivial solution =
0, while setting m, fc,

or both, equal to

zero in (122) leaves us with a nontrivial solution a constant in the

extreme case m = k = 0.

(rf) It is obvious from (119) and (122) that an eigenvalue exhibits

degeneracy, defined above in 9-6 (a), if there exist four integers m, fc,

m', k' (m 7* m'
,
k 7* k

f

) such that Xm*
= Xm^'. It is immediately seen

1 See 9-5(e).
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from the form of (118) and (121) that a membrane for which the ratio

(a/6) is rational possesses an infinite number of degenerate eigenvalues.

The most apparent type of degeneracy arises in the case of the square

membrane, a = 6. Mere interchange of (unequal) values of m and k

leads to a new eigenfunction without altering the eigenvalue.

If (a/6) is irrational, every eigenvalue for the rectangular membrane is

nondegerierate.

9-9. The Minimum Characterization of the Membrane Eigenvalues

(a) We proceed to prove the following theorem concerning the eigen-

values of the vibrating-membrane problem associated with the domain

D, the density function a, the elastic constant T, and having its boundary

edge either held fixed, or elastically bound,
1 with the binding function p,

to the boundary curve C:

We arrange the totality of the eigenvalues in the ascending order

Xi ^ \2 ^ ^ X* ^ * ' '

,
with each degenerate eigenvalue appear-

ing consecutively in the list a number of times equal to the number of

independent eigenfunctions associated with it. The kth eigenvalue \k is

the minimum of the quantity

I = r
II (<t>l + 4$dx dy + fc ptf ds (

1 23)
D

with respect to those functions < which satisfy the normalization condition

r

a<t>
2 dxdy = 1 (124)

D

and the (fc 1) orthogonality relations

> dx dy = (m =
1,2, . . . ,/c

-
1), (125)

ff-

where <t>m (m =
1,2,3, . . .) is the eigenfunction which satisfies

rV 2
</>m + Xm(70m = in D (m -

1,2,3, . . .) (12G)

and

= on C (m =
1,2,3, . . .)-

Further, the functions <t> eligible for the minimization must be continuous

everywhere in D and have partial derivatives
<t>x and '<t>v which are continu-

ous, except possibly for a finite number of isolated points at which, and a

1 "
Elastically bound" includes the case of the free edge, with the binding function p

identically zero on C. The theorem of this section also includes the mixed case in

which part of the boundary edge is held fixed, part held elastically (or free).
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finite number of smooth arcs across which, finite discontinuities of the

derivatives may occur.

For the membrane with fixed boundary edge the additional restriction

</>
= on C must be imposed on the eligible functions; in this case the

boundary line integral of (123) clearly drops out. Also, the condition

(127) upon the eigenfunctions </>,. appearing in (125) is replaced by
<(>m = on C. (No boundary restrictions are imposed upon the eligible

functions $ if the membrane edge is held elastically.)

The minimum \k of I under the stated restrictions is achieved when
m ==

(Dfc.

(5) The proof of the theorem stated in (a) runs along the line of the

corresponding proof of the minimum character of the vibrating-string

eigenvalues carried out in 7-4 (c). We use the eigenfunctions of the

system (12G) and (127) to expand the eligible functions < according to

the expansion theorem of 9-6 (d):

V t \ ( [t ^ ^ J i \ /io<n=
7 cm <t>m (x.in [ cm = II <rd>m <t> dx du }> (128)
Li \ JJ

'

/
m-l D

'

; (129)

m 1 m * 1

(127) is replaced by </>m = on C if the condition </>
= on C is imposed

(the fixed-edge case). According to the parenthetic part of (128) the

orthogonality conditions (125) take the form

Cl
= c 2

= = c fc_! - 0. (130)

Substituting (128) for one factor of (124), we have for the normalization

condition
oo

cm f[^m^dxdy =
J c- = l

> < 131 )

m^ID m = 1

with the aid of the parenthetic part of (128).

We substitute the appropriate member of (128), (129) for one factor

of each term of (123) to obtain

oo

V F ffi ,
d<t>rn

, , d<t>m\ , ,
, f . ^ , 1

/ = 7 cm r
I [ 4>x -T r <t>v -r I dx ay + / p<p<t>m as

t-4 L JJ \ dx dy / Jc Jml D
00

[/*
/* r / \ "1

II ^ J J , / . f
d

<t>
, . A^ /100\

T// <p\ <t>m dx ay ~r~ I <t> I T ~r p<pm /
ws h v^*^^/

JJ Jc \ dn / J
ml D
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with the aid of Green's theorem (23) of 2-13. From (127) or, in the

fixed-edge case, since <
= on C it follows that the line integral of

(132) vanishes for each m. In the double integral of (132) we use (126)

and so obtain

00 ee

/= cm\m
ff <r<t>m <i> dx dy = <X, (133)

m== 1 D m= 1

according to the parenthetic part of (128).

With the aid of (130) and (131) we rewrite (133) as

/ = X* + c
2

m (\m
- X fc). (134)

m = fc-H

Since, for m > fc, Xm ^ X*, this result implies

/ ^ X*. (135)

Equality is achieved if but not necessarily only if ck = 1 and cm =

for m T k, whereby the imposed conditions (130) and (131) are fulfilled.

But assignment of this set of coefficients implies </>
=

<A, according to

(128), so that the final part of the theorem of (a) is proved.

Aside from the trivial alternative ck = 1 the "not necessarily only

if" of the preceding paragraph is added because of the possibility of

degeneracy. If it happens that X* = X* f i
= =

XA-+AT, it follows

from (134) that the equality sign prevails in (135) if any one of the

coefficients c^ Ck+i, . . .
, CK+N is chosen equal to unity while every other

cm is set equal to zero.

(c) The theorem proved in (b) above provides us with a fresh statement

of the membrane eigenvalue-eigenfunction problem:
Given the expression / of (123) and the density function

er,
we consider

the class of functions <t> defined in D with the regularity properties stated

and which satisfy the normalization condition (124); only if we deal with

the fixed-edge membrane do we exclude from the class those functions

for which < j on C. The class of functions so defined we call KI the

class of functions eligible for the first minimization of /. The minimum
of / with respect to K\ is the lowest eigenvalue \\ associated with the

membrane; a function in K\ which renders / equal to Xi is the associated

eigenfunction <i.

We define the class /C 2 the class of functions <t> eligible for the second

minimization by removing from K\ all functions <t> which do not satisfy

the condition (125) for m = 1
;
that is, K2 includes only functions which
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are in K\ and which are orthogonal to </>i in D with respect to cr. The
minimum of / with respect to K 2 is the second eigenvalue X 2 ;

a function

in /C 2 which renders 7 equal to X 2 is 2 ,
the associated eigenfunction.

The process continues indefinitely: The class Kk the class of functions

eligible for the kt\\ minimization of / includes all functions in Kk-\

(and therefore in K\, K 2 ,
. . .

,
A'/t_ 2 ) which are orthogonal to </>i, < 2 ,

. . .
, fa-i. The minimum of / with respect to Kk is the fcth eigenvalue

\k \
a function 1 in K k which renders / equal to \ k is the associated eigen-

function fa.

9-10. Consequences of the Minimum Characterization of the Membrane

Eigenvalues

As a preliminary to the maximum-minimum characterization of the

membrane eigenvalues presented in 9-11 following, we draw some simple
inferences from the minimum characterization given in 9-9(c); and, of

possibly greater importance, we point out, with regard to the minimum

characterization, a fundamental limitation which is overcome only

through the vastly more powerful maximum-minimum principle. Since

every consequence of the minimum principle can also be derived from

the maximum-minimum, only a few results are treated in this section.

(a) It is useful here and in following sections of this chapter to intro-

duce the concept of a membrane system, which we define as follows:

A membrane system consists of a membrane eigenvalue-eigenfunction

problem in which we are given the domain D (and thus its boundary C),

the tension constant r, the binding function p, the density function o-,

and the class of functions K\ which includes those and only those func-

tions eligible for competition in the first minimization of the quantity /

of (123). (The orthogonality conditions (125) are clearly not included in

the determination of a membrane system.) Examples follow:

One membrane system Sx is defined, say, by a rectangular region of

given dimensions, with a definite tension constant and a definite constant

density, a binding function identically zero, and a class K\
X)

of normalized

functions $ which satisfy no special conditions other than the standard

regularity conditions stated in (a) above. This system, clearly, is associ-

ated with the rectangular free membrane of constant density considered

above in 9-8(c). If we now take a membrane which has the identical

physical characteristics of the foregoing, with the exception that we hold

its boundary edge fixed in the equilibrium plane, we have to deal with a

second membrane system *Sr : rectangular region of given dimensions,

1 We say "a function" rather than "the function" because of the possibility of

degeneracy [see the closing paragraph of (6)].
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definite tension constant, definite constant density, binding function 1

identically zero, K[
Y}

including regular normalized functions </> which

vanish on rectangle perimeter. A third system Sz may be formed from

the second by removing from the class K[
Y)

all functions for which

<t> T* at the intersection of the diagonals of the rectangle. Physically,

the third system is associated with the fixed-boundary membrane of the

second, but with an additional constraint which holds the center point at

rest in the equilibrium plane.

A membrane system SA is defined as narrower than a system Sn if S A

and SB have in common the first four of the defining characteristics of a

system namely, D, r, p, and cr and if every function of the class

K[
A)

(the class KI for SA ) is included in the class K(
B)

(the class K\
for SB ) 9

but not vice versa. For example, of the systems of the preceding

paragraph, 8Z is narrower than SY ,
SY is narrower than Sx ,

and Rz is

narrower than Sx . (This is a simple instance of the obvious property of

transitivity for the ''narrower" relation: If SA is narrower than SB and

SB is narrower than &, then SA is narrower than Sc .)

(i) We prove directly that if SA is narrower than KB, the lowest eigen-

value Xj
A)

of SA is not less than \[
B
\ the lowest eigenvalue of SB: For any

given <f> the quantity / of (123), whose minimum is sought, is the same

for both systems. A function </>

(

1

A) which minimizes / with respect to

K[
A)

is also in K[
B}

;
hence the minimum \{

R} of / with respect to K[
B)

is

less than or equal to its minimum \{
A) with respect to K{

A
\

Since, according to 9-4 (a) and 9-5 (d), the successive frequencies of the

single-frequency modes of vibration of which a membrane is capable
2 are

proportional to the respective square roots of the eigenvalues of X, the

theorem (i) may be reworded: If SA is narrower than Sa
,
the fundamental

frequency of the membrane associated with SA is no lower than that of

the membrane associated with SB . Applied to the three systems Sx, SY ,

Sz defined above, (i) implies that the fundamental frequency of the free

membrane is no higher than that of the same membrane with fixed

boundary, which is no higher than that of the same fixed-boundary mem-
brane having its center point constrained to remain in the equilibrium

plane. This result is a special case of a more general consequence of (i) :

1 To this point the binding function p(s) is riot defined for the membrane whose

boundary edge is held fixed in the equilibrium plane. From the physical point of

view we could regard the fixed boundary to be the limiting case of the cliistically held

boundary as p oo . It is more convenient for our purposes, however, to define p
as completely arbitrary in the fixed-boundary eigonvalue-eigenfunction problem.
This definition is valid because the line integral of (123), the only quantity in which p

appears, vanishes if < = on C. In the case at hand, p = is the most useful choice.
2 The so-called natural vibration frequencies, the lowest of which is called the

fundamental.
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The addition of constraints to a given membrane (such as holding it

fixed at certain points or along certain arcs, etc.) cannot lower its funda-

mental vibration frequency.

Conversely, the removal of constraints from a given membrane cannot

raise its fundamental frequency. An important application of this fact

lies in considering the effect of introducing a slit into a membrane surface.

Analytically, a slit along a given arc admits into the class K\ functions

which arc discontinuous across the arc, thus giving rise to a system less

narrow than that associated with the unmutilated membrane: The
introduction of a slit cannot increase the fundamental frequency of a

membrane.

(b) We suppose that two membrane systems KA and KB have in com-
mon the characteristics />, r, a, and 7\ i, but the respective binding func-

tions p A and pu are not necessarily equal. We prove the following

theorem :

(ii) // p A ^ PB, the lowest eigenvalue \{
A)

of SA is not less than \[
B
\ the

lowest eigenvalue of *SV

If, in (123) of 9-9(), we write p = p A ,
I is written IA \ if we write

p =
pn, I is written IB . Since pA ^ PB, it follows that I A ^ IB for any

given function in A"i (common to the two systems). Tf the minimum

\(
A)

of I A with respect to K\ is achieved through <f>
=

<t>(

A)
, and if / is

the value of / when </>
=

<t>{

A
\ we have \(

A) ^ /* ^ \1
B)

.

In physical terms (ii) implies that the tightening of the agency which

binds the boundary edge elastically (?.r., the increase of 7;) may raise,

but cannot lower, the fundamental frequency of a given membrane.

(c) We consider the two membrane systems SA and SB which have in

common the characteristics D, r and p, but for which the respective

density functions aA and a ri are not identically equal in /). The mem-
bers of the eligible classes K\

A) and K(
B)

,
we suppose, are required to

satisfy the same conditions of regularity and the same set of special con-

ditions (such as vanishing at certain points, or along certain arcs, etc.)

which may be imposed. The classes K[
A) and A^, clearly, are not in

general identical, because of the difference in the normalization which

springs from the nonidentity of a A and aB . Any function </>A in K[
A} can

be converted, however, to membership in K\
B)

simply through being

multiplied by a suitable constant. For if

o-B <t>\ dx dy = c2
,

(</M/C) is clearly a member of K[
B
\ Similarly, any function </>B in K{

B) can

be converted to membership in K\
A)

in the same manner.
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We prove the following theorem concerning two systems satisfying the

relationship stated in the preceding paragraph:

(iii) // aA ^ CTB in D, the lowest eigenvalue \{
A)

of SA is not less than \{
B
\

the lowest eigenvalue of SB. It follows from the hypothesis that

dx dy ^
ff<rA <t>A dx dy =

1, (136)

where <t>A is any member of K(A ^ and c is a positive constant, in general

different for different members of K[
A)

,
defined by the left-hand equation

of (136). We therefore conclude from (136) and the result above that

for any member <t>A of K[
A) there is a corresponding member (<t>A/c) of

K[
B
\ with c fe 1. It accordingly follows that, if any member <t>A of

K(A} renders / of (123) equal to IA, there exists a member (<t>A/c) of

K(B) which renders / equal to /B, where

according to (136). From this we have that the minimum of I with

respect to K[
B}

is less than or equal to its minimum with respect to K(A
\

and theorem (iii) is proved.
The physical implication of (iii) is that an increase in the density of a

membrane, without other change, may lower, but cannot raise, the funda-

mental vibration frequency.

(d) In the statements of the three theorems of this section no mention

whatever is made concerning any but the lowest eigenvalue of a given

system. What about the higher eigenvalues? We may ask, for example :

If SA is narrower than S*, what can we say concerning the relative magni-
tudes of the fcth eigenvalue X (

/
) of SA and the kth eigenvalue \[

B) of SB,

for A: ^2? Does there exist a relation \ (

k
B) ^ \(A) which holds, accord-

ing to theorem (i), for k = 1? The answer is affirmative, but it is not

given by the minimum principle employed in the proof of theorem (i) ;

it does, however, follow from the maximum-minimum principle of 9-11

below.

It is not difficult to see why the minimum characterization of the

eigenvalues fails to provide information concerning the relative magni-
tudes of the higher eigenvalues of different systems. Reference to 9-9 (c)

reveals the source of the limitation in the following way:
We suppose SA narrower than SB so that K(B} includes every function

in K(A\ The minimum X^ of / of (123) with respect to K(
A)

is achieved

with $ ==
<t>

}

;
the minimum X^ of / with respect to K[

B)
is achieved with

<
=

<fr<*> 9
which is not in general the same as <I>

(A\ The class K(A
\ with
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respect to which X^ is the minimum of /, is formed by removing from

K[
A)

all functions <t> which do not satisfy

<r<t>

(A)
<t>dxdy = 0;

the corresponding class K (

2
B)

is formed by removing from K[
B)

all func-

tions </> which do not satisfy

v<t>{
B)
<t>dxdy = 0.

From this limited information concerning the formation of K (

2
A) and K (

2
B)

,

we are in no position to know whether every < of K (

2
A}

is a member of

K(B
\ or vice versa. In fact, neither instance of all-inclusion is generally

exhibited.

Since the proof that Xi
B) ^ \[

A)
depends upon the fact that every < in

K[
A)

is a member of K\
B
\ lack of corresponding information concerning

K (

2

A) and K(B) makes it impossible to infer from the minimum principle

a similar relationship between \(A) and \(B\ It is clear that this limita-

tion extends to the higher eigenvalues \ (A) and \(B
\ for A: > 2.

9-11. The Maximum-Minimum Characterization of the Membrane

Eigenvalues
1

(a) We fix our attention upon a single membrane system $, character-

ized by the domain D (with boundary (7), the constant T, the functions

<r(x,y) and p(s), and the class K\ of functions 4> eligible for the first mini-

mization of

Wx dy + c ptf ds; (137)

all <f> in K\ satisfy the normalization condition

r

<r<t>
2 dxdy = 1. (138)

ff-

We form the class K(Uk) of functions </> (k ^ 2) by removing from KI

all members which do not satisfy the (fc 1) orthogonality relationships

vuj+dxdy =
(j
-

1,2, . . . ,fc
-

1), (139)

1 The important ideas in this and the following sections apparently originate with

Courant (2). See also Courant-Hilbert, Chap. 6.
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where the functions u\(x,y) y Ut(x yy), . . .
, Uk-\(x,y) are completely arbi-

trary in D to within continuity, except for a finite number of smooth arcs

across which finite discontinuities may occur. We denote the set of arbi-

trary functions HI, U2, . . .
, wjfc-i, in aggregate, by the single symbol /&.

We now prove that the minimum of / with respect to functions < in

K(Uk) is less than or equal to the ftth eigenvalue X* of the system S;

to do this we merely show that there is at least one <t> in K(Uk) which

renders / less than or equal to X*: The linear combination

<i>
= / cm <t>m (cm

=
jj

(r(f>m<t> dx dyj (140)
m=l D

of the first k orthonormal eigenfunctions of the system S is a member of

K(Uk) if the coefficients ci, c2 ,
. . .

,
ck satisfy the (k 1) conditions

imposed by (139),

Ujtmdxdy =
(3
=

1,2, . . . ,k
-

1), (141)

as well as the condition

k

* = 1, (142)

which results directly from substituting (140) into (138). It is easily

shown that a system of (k 1) linear homogeneous equations, such as

(141), in k unknowns subject to a normalization condition, such as (142),

always possesses a solution. 1 We may assume, therefore, that there is a

function </> of the form (140) which is a member of K(Uk).
We substitute (140) into (137) and, in the manner of achieving (133) in

9-9(6), we show that

k k-l

I = ci\m = X fc

-
cl(\k

-
Xm), (143)

m 1 m 1

with the aid of (142). Since Xm ^ Xfc for m < ft, it follows from (143)

that / ^ Xfc. Thus the assertion that the minimum of / with respect to

K(Uk) is less than or equal to X& is proved.

Furthermore, from the statement of the minimum prinoiple in 9-9 (c)

it is clear that the minimum of / with respect to K(Uk) is precisely \k

if the set Uk consists of the first (k 1) eigenfunctions <i, </> 2 ,
. . .

,

</>*_! that is, if Uj
=

<fo for j =
1, 2, . . .

,
k 1. For, in this event,

1 See exercise 15 at end of chanter.
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K(Uk) is identical with the class Kk defined in 9-9 (c), with respect to

which the minimum of I is X*.

Therefore, if we let /([/*) denote the minimum of / with respect to

K(Uk), we have /(/*) ^ X*, and the maximum of I(Uk) with respect to

all sets Uk is \k, the kth eigenvalue of the system S. This maximum mini-

mum of I is achieved when Uk is the set of the first (k 1) eigenfunctions

</>!, #2, , 4>Ar-l Of S.

Thus we may reformulate the membrane eigenvalue-eigenfunction

problem as follows: Given a set Uk of arbitrary functions u\, u^ - - .
,

Uk-i, we first minimize / of (137) with respect to those functions <f> in K\
which further satisfy the (k 1) orthogonality relations (139) with

respect to the functions < in K(Uk), that is. The minimum so achieved,

namely /(/*), depends in general upon the particular set Uk which is

employed. We next proceed to maximize I(Uk) with respect to Uk',

that is, we form the minimum /([/*) for each of all possible choices of

sets Uk, and we select from among these minima the largest. The maxi-

mum of I(Uk) so achieved is the kth eigenvalue X fc of the system S, accord-

ing to the maximum-minimum principle proved directly above.

(It is clear that the maximum-minimum formulation of the membrane

eigenvalue-eigenfunction problem reduces to the minimum formulation

of 9-9 (c) when k 1 that is, in the quest for the lowest eigenvalue Xi.

For the set U\ is an empty set, containing no functions whatever.)

In the paragraphs following, we derive several consequences of the

maximum-minimum principle, some of which are generalizations of the

theorems proved in 9-10.

(b) We prove:
Theorem (i). // the membrane system SA is narrower 1 than the system

SB, the kth eigenvalue \k
A)

of S* is no less than \ (

k

B
\ the kth eigenvalue of SB .

By definition every <f>
in K(

A)
is a member of K[

B
\ With the use of

any given set Uk the formation of Kj(Uk) involves removing from K[
A) a

subset of functions <t> those which do not satisfy the (k 1) orthogo-

nality conditions (139). In the formation of KB (Uk) the same subset is

removed from K[
B)

; any additional functions removed from K[
B} to form

Kn(Uk) are not in K(A) to begin with, and therefore not in KA (Uk).

Thus every function in KA(Uk ) is a member of KB (Uif). It thus follows

that the minimum IA (Uk) of / of (137) with respect to KA(Uk) is not less

than /^(t/fc), the minimum of / with respect to KB (Uk). If U'k is the

set the first (A: 1) eigenfunctions of SB which maximizes IB (Uk) y
we

have, according to the maximum-minimum principle,

X$? = IB (U'k ) ^ IA (U'k ) ^ \.

Theorem (i) is thus proved,

i See the definition in 9-10(a).
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We may express (i) in terms of the numbers NA (\) and NB (\), where

NA (\) is defined as the number of eigenvalues of SA which are less than

or equal to the number X, and NB (\) has the same meaning for SB :

Theorem (i'). If SA is narrower than SB ,
it follows that NA (\) ^ NB (\).

(c) We prove:
Theorem (ii). // the membrane systems SA and SB have in common the

characteristics Z), r, <r,
and K\, but the respective binding functions satisfy

the relation pA ^ pB) then \(A) ^ \ (

k
B
\ Or,

Theorem (ii'). NA(\) g NB (\).

If in (137) above we write p = pA ,
I is written IA ]

if we write p = pB ,

I is written IB . Since pA ^ PB, it follows that IA ^ IB for any given
function <t>

in K(Uk) common to both systems for any Uk employed.

By the argument of 9-10(6), it also follows that the respective minima of

/ with respect to K(Uk) satisfy the relation IA(U k ) ^ IB(Uk). By the

argument of (6) above it follows that \(A) ^ \k
B) and therefore that

NA (\) ^ NB (\).

(d) We prove a third direct consequence of the maximum-minimum

principle :

Theorem (iii). The systems SA and SB have in common the charac-

teristics D, r, and p; and the eligible classes K (A) and K(B) are required

to satisfy the same conditions of regularity and the same set of special

conditions which may be imposed. // <JA ^ <?B in D, then X^
A) ^ \(B)

.

Or,

Theorem (iii'). NA (\) ^ NB (\).

We proceed to form the class of functions KA (Uk) by removing from

K(A)
all functions <f> which do not satisfy

xdy =
(j
=

1,2, . . . ,fc
-

1). (144)

With Uk given we form the set Vk such that its members v\, v^ . . .
,

vk-i satisfy the relations

VBVJ
= *AUj in D (j

=
1,2, . . .

,fc
-

1). (145)

With Vk thus established we form the class KB(Vk ) by removing from

K(B)
all functions <t> which fail to satisfy

dx dy =
(j
=

1,2, . . . ,k
-

1), (146)

which is identical with (144) because of (145).

In 9-10(c) it is shown that, if <t> is any member of K[
A
\ there is a

corresponding member (<t>/c) in K[
B)

,
where c is a constant which may
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differ for different 0, but where always

c2 fe 1. (147)

If and only if the formation of KA(Uk ] involves the removal of a given </>

from K[
A
\ the formation of KB (Vk) involves the removal of the corre-

sponding (<t>/c) from K[
B)

y
because of the identity of (146) with (144).

We therefore conclude that for each < in KA (Uk ) there is a corresponding

(0/c) in KB (Vk).

Hence if the minimum IA (Uk) of 7 with respect KA (Uk) is achieved

when <t>
=

<t>A, it follows from (137) that the function (fa/c) in KB (Vk)

renders / equal to

I, = -
t lA(l

T*)lA(Uk), (148)
c

because of (147). But since IB is not less than IB (Vk), the minimum of 7

with respect to KB (Vk), we conclude from (148) that

/*07
*) ^ lA(Uk). (149)

We now proceed to maximize IB (Vk) with respect to V k and suppose that

the maximum X^
B)

is attained when V k
= V'k

- the set of the first (k 1)

eigenfunctions of 8B . If
J. corresponds to V'k through (145), it follows

from (149) that

according to the maximum-minimum principle. Theorem (iii) is thus

proved, and (Hi') follows directly.

The physical implications in the theorems (i) to (iii) above are obvious

generalizations of the inferences drawn in 9-10 from the corresponding

theorems (i) to (iii) of that section. Fuller discussion is left for exercise

18 at the end of this chapter.

(e) We consider the membrane system SB which is characterized by
the domain DB (with boundary C), the density function <JB

,
the tension

constant r, the binding function p =
0, and the class K{

B)
of functions <f>

which satisfy the standard regularity conditions 1 and <t>
= on CB . SB is

associated, that is, with a given fixed-edge membrane.

A second system SA is characterized by the domain DA whose bound-

ary CA lies entirely in DB or is, at most, in partial coincidence with CB \

the density function <TA defined so that <rA = VB in DA ]
the same tension

constant r as for SB
\
the binding function p =

0; and the class K[
A)

of

functions which satisfy the standard regularity conditions and =

1 See 9-9 (a), just following equation (127).
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on CA . Clearly, the membrane associated with SA may be constructed

from the membrane of SB by holding the latter fixed along an internal

closed non-self-intersecting curve CA and ignoring whatever of DB is left

over (see Fig. 9-2).

We characterize a third system
S'A by the domain DB (with bound-

ary CB), the density function <TB,

the tension constant r (same as

above), the binding function p =
0,

and the class K[
A>) of standardly

regular functions
<j>

which satisfy

FIG. 9-2. <
= on CA, </>

= on CB ,
<
=

<t>x
=

<t>v
= throughout the portion

of DB exterior to CA . It is evident that the sequence of eigenvalues

. of S'A is identical with the sequence X^,
of SA . For we have from (137) of (a) above, if

*k
A
'\

X*
A)

t

is any member of K{
A
'\

=
r//
DB

+ <t>l)dx d
== r

ff
DA

(<t>l + <f>l)dx dy;

<TB <t)

2 dx dy = <rA <t>

2 dx dy,

also

because <f>
=

<f>x
=

<l>v
= between CA and CB. Since the functions in

K^ satisfy the same requirements in DA as do the members of K[
A}

,

it follows that the SA and S'A eigenvalue-eigenfunction problems are

identical.

Comparison of the characteristics defining SB and S'A shows, according

to the definition in 9-10(a), that S'A is narrower than SB . From theorem

(i) of (b) above, it therefore follows that \ (

k
B) ^ Xj^ = X^. We thus

have a proof of:

Theorem (iv) . The shrinking of the boundary, without any other change,
1

of a fixed-edge membrane may increase, but cannot lower, each eigenvalue

X* (k
=

1,2,3, . . .). Or,

Theorem (iv'). The shrinking may decrease, but cannot increase, the

number N(\) of the fixed-edge-membrane eigenvalues which are less than or

equal to any number X.

1 The "shrinking" is effected in the way the system SA is created above, on the

basis of SB-
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9-12. The Asymptotic Distribution of the Membrane Eigenvalues

In this section we derive, as a consequence of the maximum-minimum

principle, an asymptotic formula for the kth eigenvalue of a vibrating
membrane. The results we achieve are applicable to any membrane of

which the domain D is divisible into a finite number of congruent squares.

Finally, with the aid of theorem (iv) of the preceding section, we extend

our results to include the fixed-edge membrane of arbitrary shape. To
avoid an uninteresting morass of tedious detail, however, we merely state

without proof the corresponding extension to the elastically bound (or

free) membrane of arbitrary shape.

(a) We consider the membrane system SA characterized by the domain

D, the tension constant r, the binding function p =
0, the density func-

tion a-, and the eligible class K[
A)

of standardly regular
1 functions

</>
which

satisfy
= on the boundary C of D. A second system 8* has the

first four characteristics /), r, 77, and cr in common with SA, but the

functions < in its eligible class K 1 *'*
are required to vanish not only on C

but also along a given network of piecewise smooth arcs which subdivide

/), without gap or overlap, into a finite set of r subdomains DI, 7)o, ....
D r (see Fig. 9-3). Clearly $A > is narrower than SA

,
so that the kth eigen-

value \
(

k

A '

}

of ft A' is not less than Xj^, the fcth eigenvalue of SA, according

to theorem (i) of 9-11(6). Or by the equivalent theorem (i') of 9-11(6),

#A>(X) ^ NA (\), (150)

where the two members of (150) are respectively the numbers of eigen-

values of SA> and SA less than or equal to a given number X.

We seek a second characterization of the eigenvalue X^ in terms of

the eigenvalues of the r systems SA SA^ . . .
, S* r

defined as follows:

The system SAj (j
=

1,2, ... ,r) is characterized by the domain Dj (jth

subdomain of D), the tension constant r (same as for SA , 8*), the density

function a which coincides with a of SA and SA> in D,, arbitrary bind-

ing function p, and the eligible class K{
Ai)

of standardly regular functions

<t>
which vanish on the boundary C, of Dj. We prove now that every

eigenvalue of SA> is an eigenvalue of one of the systems SA,- and, conversely,

that every eigenvalue of each SA, is an eigenvalue of 8*'.

If Xj."

4 }

is an eigenvalue of 8* and <t>k is the corresponding eigenfunction,

we have, according to (126) of 9-9 (a),

rV 2
fa + X{.*'W = in D, (151)

and therefore in each Dj (j
=

1,2, . . . ,r). Since fa is not identically

1 See 9-9 (a), just following equation (127).
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zero, there is at least one subdomain say D4 in which it is not identi-

cally zero; and since fa is a member of K{
A
'\ <f>k vanishes on the boundary

d of D{. The function 0J.
r)

,
defined as identical with 0* in /^ and identi-

cally zero outside D^ is therefore the eigenfunction associated with the

eigenvalue Xj^ of S^. For, according to (151), we have

+ '= n

and on That is, Xj.
A)

is an eigenvalue (in general not the

fcth) of SAi .

If X* is any eigenvalue of S^ and

<* is the corresponding eigenfunc-

tion, we have that (X *,<*) also con-

stitutes an eigenvalue-eigenfunction

pair of the system SA>, provided we
extend the definition of 0* by means
of <* =

0, identically, outside D^
For we have

TV 2
** + X*<r0* = (152)

FIG. 9-3.

in Diy and, with the extended defi-

nition of <*, equation (152) holds also in D, with <* = on (7.

If no two systems $A., SA,- (i 7^ j) have an eigenvalue in common, we

conclude from the preceding two paragraphs that the list of eigenvalues

\{
A
'\ \2

A
'\ . . .

, Xfc

A'

}

,
. . . of 8A' may be formed by writing down the

aggregate of the eigenvalues of all the systems SAD 8*21 > $A r
and arrang-

ing them in ascending order. We now show that the same statement holds

even if several of the systems SA, have in common any number of eigen-

values: Let s systems of the SA, which, for the sake of simplicity, we sup-

pose to be A$A!, AJ, , SA, (s ^ r) have in common any eigenvalue

X*, and let the corresponding eigenfunction in >SA
;
be <^f (j

=
1,2, . . . ,s).

We extend the definition of 0* by means of <t>*
=

0, identically, outside D,.

According to the preceding paragraph, X* is also an eigenvalue of 8* cor-

responding to the s eigenfunctions </>? , <*, . . .
,
<* (with the extended

definitions). Since the extended </>*, 0*, . . .
,
<* are linearly independ-

ent,
1 the eigenvalue X* is at least2 s-fold degenerate in 8* and thus appears

consecutively at least s times in the list \{
A
'\ \ (

2
A)

,
. . .

, Xjj.

A/)
,
....

We therefore conclude that the italicized statement above holds in all

cases.

If A^Ay(X) is the number of eigenvalues of SA, (j
=

1,2, ... ,r) less

1 For no two are different from zero at any point of D.
2 "At least" because X* may be degenerate in any or all of SA^ SA*, . . . , SA..
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than or equal to X, and -/V^(X) is the corresponding number for SA>,
the

above result is equivalent to writing

NA,(\)
= N Al (\) + AUOO + ' ' + NAr (\). (153)

From (150) it therefore follows that

AUOO + NAM + + N Ar (\) g NA(\), (154)

where jVx(X) applies to the original fixed-edge membrane bounded by C.

(6) Holding in attention the membrane systems SA ,
8Al ,

SAt ,
. -

,
SAf

defined in (a) above, we consider also the system SB characterized by the

same D, r, <7, and p (= identically) as 8A but having a class K[
B)

of

eligible functions </>
which satisfy no restrictions in D or on C except for

standard regularity. It is clear that 8A is narrower than SB and, there-

fore, by theorem (i') of 9-11(6), that

NA(\) ^ NB (\), (155)

where JVi(X) is the number of eigenvalues of SB less than or equal to X,

and NA(X) is similarly defined in (a).

We next define the system SB >,
characterized by the same D, r, <7, and

p as in SA and SB but which has the eligible class K[
B)

of functions <t>

which are permitted to exhibit finite discontinuities across each arc of

the network which subdivides D into the subdomains 7)i, Z) 2 ,
. . .

,
DT

the same set of subdivisions used in the definition of SA> in (a). (See

Fig. 9-3. )* Clearly, SB is narrower than 8B >,
since every in K{

B)
is a

member of K[
B
\ while the latter contains discontinuous functions as well.

We therefore have, from theorem (i') of 9-11(6), that

N*(\) ^ AV(X). (156)

Finally, we define the r systems *SBl ,
Sj? 2 ,

. . .
, SB, the free-edge

counterparts of SAlJ 8A . . .
,
SAr of (a) as follows: The system

SB, (J
~

1)2, . . . ,r) is characterized by the domain /)/, the tension

constant r (same as for SB', etc.), the density function v which coincides

with of SA; etc., in /)/, binding function p 0, identically, and the

eligible class K[
B>)

of functions < which satisfy standard regularity con-

ditions and no other special requirements. With point-by-point corre-

spondence of details we may use the method of deriving (153) in (a) above

to prove also that

N(\) - N Bl (\) + AT*,(X) + . . . + N Br (\) (157)

1 In barely realizable physical terms, SB' has to do with the free-edge membrane
associated with SB after it has been sliced into r free-edge membranes in the domains

Di, Z>2 ,
. . .

,
Dr .
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with the single exception that we must replace the boundary condition

f>
= in the proof above with the boundary condition (d<t>/dn)

= for

he present proof. This fact requires special discussion:

From (127) of 9-9 (a) it follows that every eigenfunction <f> of SBJ must

satisfy (d<t>/dn)
= on the boundary Cy of Dj since p = in the definition

>f SBJ (j
=

1,2, . . . ,r). Thus a preliminary requirement for the proof
>f (157) is that the eigenfunction <* of SB' also satisfy (dfa/dn) = on

iach of Ci, C2 ,
. . .

, CV, for every /c = 1, 2, 3, .... The proof of this

act depends essentially upon the "cry process" of extremizing

vith respect to those functions in K[
B } which may exhibit finite dis-

ontinuities across those portions of Ci, C 2 ,
. . . , Cr which do not coin-

ide with the boundary C of the whole of D which satisfy the orthogo-

lality conditions

v<t>m<i> dx dy = (m =
1,2, . . . ,fc

-
1).

The proof, which is quite straightforward, is left for end-chapter exercise

!0, which is presented with an ample supply of guiding hints.

We may therefore accept the validity of (157), which we combine with

156), (155), and (154) to achieve the important result

^ NA (\) g NB (\) ^ NBJ(\). (158)

>-l

(c) In (118) of 9-8 (b) we have, by setting a =
b, the explicit formula

Xm*
= - 2̂ (m

2 + fc
2
) (m,k =

1,2,3, . . .
, independently) (159)

0*00

or the eigenvalues of a fixed-edge square membrane of side length b and
)f uniform density <TO . If we write

(160)

vith R positive, it follows from (159) that the number NAl (\) of eigen-
values of the system less than or equal to X is the number of pairs of
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positive integers (m,k) which satisfy the inequality

m 2 + fc
2 g 7?

2
(mk 7* 0). (161)

N

In the language of analytic geometry -/V^X) is thus the number of lattice

points
1

lying within and on the first quadrant of the circle

z 2 + y* - # 2
, (162)

exclusive of points lying on the x and y axes (see Fig. 9-4).

We associate with each lattice

point x = m, y = A: for which (101)

is satisfied the unit square of which ^^ t

it is the upper right-hand corner.
, X^

With this, it is clear that A^^(X) is
' '^ -"

the total area of those unit squares
which lie completely within the

quarter-circle under consideration. \

To obtain an upper bound to the

difference AI between AT^X) and

(ir#
2
/4), the quarter-circle area, we

note that a concentric circle of

radius (R \/2) excludes all the

partial squares whose total area is

AI. It therefore follows that AI is
| (R-J2)

less than the first-quadrant area of

the annular ring between the circles

having the respective radii R and (R \/2) (see Fig. 9-4); that is,

\

-R-

FIG. 9-4.

- NAv (\)

Thus we may write

(2R -

where < 6A < 1; or, with the aid of (160), we have '

#x,(X)
= ff-~^ - 6Ab . /~ (0 < BA < 1). (163)

*7TT \ Zr

In similar fashion we obtain an analogous expression for Afa,(X), the

corresponding quantity for the free-edge square membrane of side b and
uniform density o- . The only difference, according to (121) of 9-8(c),

between the fixed- and free-edge cases is that we may admit zero values

1 A lattice point in the xy plane is any point both of whose coordinates are integers

positive, negative, or zero.
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if ff > (1 + i A/2). Thus we may write

of m and k. We therefore associate, in Fig. 9-5, each lattice point which

represents a free-edge eigenvalue with the unit square of which it is the

lower left-hand corner. With this, it is clear that NBl (\) is the total area

of those unit squares which lie completely or partially within the first

quadrant of the circle (162). The difference A 2 between #*,(X

(7nft
2
/4) clearly satisfies the relation

V2 (2/Z + \/2)

(0 < $B < 1), (164)

with the aid of (160).

Although 6 A. and B cannot be evaluated in simple form as functions

of X, the results (163) and (164)

are useful in that the unevaluated

final term is, in each case, small

compared with the term ((T b'
2

\/4irr) ,

for sufficiently large X. Both of

(163) and (164) are used, in con-

junction with (158) of (b) above,

in deriving the asymptotic results

below.

(d) We consider now a mem-
brane of uniform density <r and

tension constant r, for which the

domain D may be subdivided,

without gap or overlap, into a

finite number r of congruent

squares of side length b. Asso-

ciated with this membrane we con-

sider the systems SA, SB , S* it
SBj (j

=
1,2, . . . ,r), which correspond to

the systems defined in (a) and (b) above:

SA'- Entire membrane, boundary edge held fixed

SB : Entire membrane, boundary edge free

SA, : Membrane of jth square of side length b, boundary edge held

fixed (3
=

1,2, . . . ,r)

SB,-: Membrane of jth square of side length b, boundary edge free

(3
=

1,2, ,r).

The symbols #A(\), #B(X), #A,(X), NBf (\) have the meanings assigned to

them in (a) and (b).

FIG. 9-5.
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For each j, we may apply to the system SA
{
the result (163) of (c)

namely,

N*,(\)
= -g-0Ab^ (0<e.< 1). (165)

To the system SBi we similarly apply (104), for each,;:

NBi (\)
= a

- + Bb (0< B < 1). (166)

Since the expressions for both NA,(X) and JVn
y (X) are independent of

the index j, summation of each overj fromj = 1 to j
= r merely involves

multiplication by r. Thus, with (165) and (166), the relations (158) of

(6) above read

r - 9A = AT,(X) ^ tf.(X) 1 r +8*. (167)

We use the fact that rb 2
is the total area, and therefore

M = (T r6 2

the total mass, of the membrane to conclude from (167) that

and

NaW =
* + * rb^ (

~ l < * < ^} - (169)

For X large compared with (87r
2
r
2^ 2

o-or/M
2
)
=

(87r
2
T/o- Jr) the second

term of each of (168) and (169) is negligible compared with the first.

For such large X we may therefore write

NA (\) - N(\) - (170)

or, equivalently,

We let \ (

k
A)

represent the fcth eigenvalue of the fixed-edge membrane

(SA) and Xj.
B) the fcth eigenvalue of the free-edge membrane (S*). If 1

1 This means that X* (either superscript) is nondegenerate or that in the ascending

sequence of the eigenvalues of the system involved X* denotes the final listing of a given

degenerate eigenvalue.
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both Xj.
A) < Xj.^ and \ (

k
B} < \$19 we have, by definition of NA (\) and

NB(\),

NA (\
(

k
A}

)
=

*, tf*(Xi*
}

)
= k. (172)

Thus the asymptotic results (170) imply

Xjj"
~

XS
~

(large Jfc). (173)

Asymptotically, that is, the kth eigenvalue of a fixed-edge membrane is equal

to the kth eigenvalue of the corresponding free-edge membrane, with the com-

mon asymptotic value depending only on the total mass M, the tension con-

stant r, and the index k. Although this result is proved here only for the

membrane of uniform density whose shape is such that it may be sub-

divided into a finite number of congruent squares, it is extended below

so as to justify the italicized statement in its full generality.
1

It is to be pointed out that the final member of (173) is not an approxi-

mation to X^
} or \[

B)
in the sense that the error of approximation can be

made arbitrarily small by taking k sufficiently large. The mode of deri-

vation in particular, the neglect of terms involving the undetermined

tfA and tfB in (168) and (169), respectively makes it clear that the reverse

is in general true. But although the error increases with increasing k,

the relative error approaches zero with increasing k. The approximation

given by (173) is good only in the asymptotic sense; i.e., the ratio of any

pair of members of (173) approaches unity as k oo.

We may draw two important conclusions from the results of the pre-

ceding paragraphs. First, the multiplicity of any given (degenerate) eigen-

value is necessarily finite. For it follows from (168) and (169) that below

any given number there lie only a finite number of eigenvalues. Second,

the eigenvalues of a given membrane form an infinite unbounded sequence.

Our ability to prove these facts depends upon the explicit solubility of

the eigenvalue-eigenfunction problems for the uniform square membranes

of fixed and free boundary edges.

The assumptions X A) < X& and Xi
B) < X^\ upon which (172) is

founded are unessential to the results (173). If \k = ^k+j < X*+/+i (either

superscript), the number k in the final member of (173) should be replaced

by (k + j). Since, according to the preceding paragraph, j is necessarily

finite, failure to make this replacement incurs a relative error which

approaches zero as k increases indefinitely.

(e) We consider next a membrane of tension constant r, for which the

domain D may be subdivided, without gap or overlap, into a finite num-
ber r of congruent squares of side length 6, but whose density a =

<r(x,y)

1 In end-chapter exercise 20 the general result is extended to the membrane whose
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varies continuously over D. We suppose that the maximum and mini-

mum of cr in the jih subdomain Dj are given respectively by f VM
,-

and <rm/ ,

so that

*, ^<J ^ *Mi in D, (j
=

1,2, ... ,r). (174)

In addition to the (2r + 2) membrane systems defined at the opening of

(d) above we consider also the 2r systems

8A', : Membrane of jih square of side length 6, boundary edge held fixed,

a replaced by the constant crm . (j
=

1,2, ... ,r)

*SV
;

: Membrane of jth square of side length b, boundary edge free,

a replaced by the constant o\u, (j =1,2, . . . ,r).

The symbols Ar

^,(X), NB >

} (\) have the same meanings with respect to

SA*, and *SV, as NA,(\) and N Bj (\) have with respect to SAi and S*,, for

each j.

It follows directly from theorem (Hi') of 9-11 (d) that

A'x<,(A) g Ar

x,(X) and .
flj (X) ^ ^(X), (175)

by virtue of (171). Since 8*, is associated with a fixed-edge square mem-
brane of side 6 and constant density crm

,,
the result (165) of $d) above,

with (TO replaced by <r
wi| , may be taken over to read

*',',(X)
= " - ^b.f (0 < ffx < D.

'

With the first of (175), therefore, we have

' - NA>W (0 < A < x) * (176)

With similar application of (166) of (d), with <T O replaced by vMy we have,

further, __
(0 <0fl < 1). (177)

Because of (170) and (177) the general result (158) of (b) above implies

r r

V ^/,6
2 + M J^ V (0 < A ,0B < 1). (178)

t The use of the subscript M to denote maximum should not be confused with the

use of the same symbol (but never as subscript) to denote the total mass of the

membrane.
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From the definition of the double integral we have

dx dy -
61 = M -

5i (179)

y-l

and

T <7A/,&
2 =

ff irdxdy + h = M + 5 2 , (180)
y-i 2>

where M is the total membrane mass and 61, 6 2 are positive numbers
which can be made arbitrarily close to zero by taking b sufficiently small

(or, since rb 2
is the membrane area, by taking r sufficiently large). Fur-

ther, if we denote the maximum of a in D by GM, we have

V^ = ^ V**- (181)

y-i y-i y-i

With (179), (180), and (181), the inequalities (178) imply

47TT
V

^ NB (\) ^ j^ (M + 5 2) + 6BrbJ^ (0 < 6A,BB < 1). (182)

Ignoring, temporarily, the quantity JVa(A), we infer from (182) that

47TT
A \2r\ =

X 47TT

- + dsr6 (0 < ^'** < 1} - (183)

From (183) it follows that

7I/f ^ /~
(184)

where 5 is the larger of the positive numbers 5i, 5 2 ,
both of which, accord-

ing to (179) and (180), can be made arbitrarily small by taking 6 suf-

ficiently small.

Letting X increase indefinitely (with b held fixed), we see that the limit

of the left-hand member of (184) as X > oo is less than (6/47rr). But,

since this limit is independent of 5, and since 6 can be made as close to

zero as we please, it follows that the limit is zero, or

* . * (185)
X 47TT
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From (182) we may also derive the result (185), with NA(X) replaced by
ATB (X), in identical fashion.

Thus (185) and the equivalent statement for NB(^) bring us to the

result (171) of (d) above. We therefore conclude that all the asymptotic

results enunciated in (d) as springing from (171) are applicable to the

membrane of nonuniform density which is divisible into a finite number

of congruent squares.

(/) With the aid of theorem (iv
;

) of 9-1 l(e) we can extend the asymp-
totic results achieved above to the fixed-edge membrane of arbitrary

shape. We let SA denote the sys-

tem associated with a given fixed-

edge membrane whose domain D is

of arbitrary shape. The system SA >

is characterized by the domain DA >

which is divisible into a finite num-
ber of congruent squares and whose

boundary CA , lies entirely in D, the

same tension constant as for *SA ,

and a density function which coin-

cides with that of SA over D*. The

system SA ,, is characterized by the

domain DAn which is also divisible

into a finite number of congruent

squares and whose boundary CA completely encloses D, the same

tension constant as for SA ,
SA >,

and a density function which coincides

with that of SA in D and is arbitrary outside D (see Fig. 9-6). All three

systems are associated with fixed-edge membranes.

If the symbols JV A (X), AT A (X), JV A (X) have their usual meanings, it fol-

lows from theorem (iv
;

) of 9-1 l(e) that

NA,(\) ^ NA(\) g ATA,,(X),

from which we have, on subtracting (M/km) from each member,

NA>(\) _ AT M' - M ^ NA (\) _M_
X 4?rr 47TT

~~
X 4x7

M"- M

FIG. 9-6.

4TT

NA,.(\) M
~"

X
(186)

where M' is the membrane mass in DA , and M" is the mass in DA,,.

Because DA, and DA are both divisible into a finite number of congruent

squares, it follows from (e) above that

lim lim
47TT

0.
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We therefore conclude from (186) that

lim
^ (X) M

x- 47TT

where AM is the larger of the differences \M' M|, \M" M
|.

If the boundary C of Z) is made up of a finite number of smooth arcs

which we assume to be the case 'it is always possible to construct

domains D* and DA,, in such fashion that AM is arbitrarily small. Since

the limit on the left is independent of AM, it is therefore zero. Thus we
are returned to the result (171) of (d) above, whence it follows that the

general asymptotic results expressed in (d) are applicable to the fixed-

edge nonuniform membrane of arbitrary shape. The results are like-

wise applicable to the corresponding free-edge membrane, but we omit

the proof.

9-13. Approximation of the Membrane Eigenvalues

(a) The minimum characterization of the membrane eigenvalues pro-

vides us with a direct (Ritz) method for approximating these eigenvalues

in cases where explicit solution cannot be effected. We limit consider-

ation here to the membrane whose boundary edge is held fixed, with

extension to other cases left for the end-chapter exercises.

According to 9-9 the fcth eigenvalue \k of a given fixed-edge membrane

problem is the minimum of

dy (188)
'D

with respect to those sufficiently regular functions which vanish on C
and satisfy the normalization condition

atf dx dy = 1 (189)

and the (fc 1) orthogonality relations

T<t>m<t>dxdy = (m =
1,2, . . . ,fc 1),

where <t>m is the minimizing function which renders 7 equal to Xm . We
denote the system, in the language of 9-10(a), associated with this mini-

mization problem by S, with K\ the class of functions < eligible for the

first minimization of /.

For an approximation procedure we replace S by a system S f

,
which

has in common with it the system-defining characteristics Z), r, a, p but

for which the class K\ of functions eligible for the first minimization is a

certain subclass of K\. According to the definition given in 9-10(a) the
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system S' is therefore narrower than S. If <f>i(z,?/), <i> 2 (;r,?/), . . .
, $,(x,y)

are s conveniently given functions continuously differentiable in Z), we
let the class K\ consist of all functions ^ which exhibit the form

I = ci*i + c 24> 2 + + cA, (190)

where Ci, c 2 ,
. . .

,
c8 are arbitrary constants consistent with the normali-

zation condition (189), with </> replaced by ^.

We denote by ^i, ^ 2 ,
. . .

, \l/s the first s approximate eigenfunctions
1

sought and the corresponding approximate eigenvalues by Ai, A 2 ,
. . .

,

A,. In accordance with (190) we write

so that the problem of finding each minimizing \l/m is equivalent to that

of determining the set of values c\
m)

,
c

(

2

m
\ . . .

,
c'

m)
for the coefficients

1, ^2, . .
, <**, respectively, in (190), for each m. Since the functions ^

eligible for the A'th minimization of / must be orthogonal in D to the first

(A- 1) approximate eigenfunctions ^i, ^ 2 ,
. . .

, ^t-i with respect to

tr(j,//), we have, because of (190) and (191),

t-i y-i

where we define

o-ji
=

<r<j
= <r$> t3>jdx dy. (193)

D

Substitution of (190) into the normalization condition (189) gives, fur-

ther, the condition

Finally, if we define

/T ^^f dty ,
^ 3 y , , /inK .

r, - r, = r
j] (-d

- ^ + ^ rfx rf f (195)

D

substitution of (190) for </>
in (188) gives

for the quantity whose successive minima we seek.

^ee 7-6(6).



190 CALCULUS OF VARIATIONS [9-13

The problem of determining the minimum of (196) with respect to the

s quantities Ci, c 2 ,
. . .

, c, which satisfy the normalization condition

(194) with the (k 1) subsidiary conditions (192) is readily seen to be

identical with the corresponding problem worked out in 7-6 (c). We may
therefore state directly the following results:

The first 5 approximate eigenvalues Ai, A 2 ,
. . .

,
A 8 of the system S

(the precise eigenvalues of the narrower system S') are given by the s

roots of the equation in A

0. (197)
F21 + A<T21

~ F 2 2 + A(T 2

The coefficients of , Cjf ,
. . .

, c[
k
\ which when k ranges over the values

1, 2, . . .
,

5 supply, through (191), the corresponding approximate

eigenfunctions ^i, ^ 2 ,
. . .

, ^., are obtained by solving the system of s

linear homogeneous equations

8

=
(A*r<,

-
r<,)c}

=
(i
=

1,2, ... ,)
y-i

in conjunction with the normalization requirement

8 8

Y V r (k)r (k>
fT-- 17 7 C< C

;
- <rv - 1,

-i y-i

for each k. The constants v^ are computed by means of their definition

(193); the F# are computed from (195).

From theorem (i) of 9-11(6) it follows directly that \k ^ A fc for all fc,

since S' is by definition narrower than S; that is, the approximation of

each eigenvalue of the original system is an approximation from above.

(b) If the boundary curve C of D may be described by the equation

u(x,y) =
0, a simple choice for the functions $, (j

=
1,2, . . . ,s) intro-

duced in (a) above is the following:

and, in general,

$j
= uxp~ q

y
q

,
with j

= p(p + 1) + (q + 1),

where; =
1, 2, . . .

, ; g =
0, 1, . . .

, p;

P -
1, 2, . . .

, Kx/gT+l -
3).
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(Thus the choice of s is restricted to values for which (8s + 1) is the

square of an integer.) We employ this choice of the functions <, to

approximate the three lowest eigenvalues associated with the circular

membrane of uniform density, with s = 3.

We suppose that the membrane density is the constant o-
,
with the

radius equal to R. For the function u (x,y) which vanishes on the bound-

ary, we choose

u = R _ yV + 2/
2

-

With s = 3 we have, according to the preceding paragraph,

4>i
= 72 \X#

2
4~ 2/

2
, $2 = x(R ~~ x/^ 2

H~ 2/
2
)> ^a =

2/(-R
~~ \/# 2

-(- 7/
2
).

With the introduction of polar coordinates (x = r cos B, y = r sin 0) so

that (193) and (195) become respectively

r

<f\4y d0 dr
j\t j\r

and

we compute directly that

r n = Trrw
y

r 22
= r 33

= fan*,
r 12

= r 21
= r 13

= r 31 = r 23
= r 32

= o

and

0.

With these results the determinantal equation (197) assumes the par-

ticularly simple form

(-Trrtf
2 + irrcro#

4
A)(-iirrR

4 + irWo 6
A)

2 =
0,

whence we obtain for the first three approximate eigenvalues of the uni-

form circular membrane

A
6r

A A
15r

Al =
' A 2

= A 3
= --

The precise results 1 are

-
*
- -" "

(To/?
2

where joi
== 2.40, jn = 3.83, to two decimal places.

1 See exercise 13 at the end of this chapter.
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Although the foregoing illustration is relatively free from the compu-
tational difficulties one generally encounters, it should supply an adequate

guide to the application of the method to cases which involve greater

complications.
EXERCISES

1. (a) Starting with equation (7), and without the aid of Green's theorem, derive (8)

by carrying out a suitable integration by parts in each of the last three integrand terms.

(6) Generalize the procedure of part (a) to derive the general Euler-Lagrange

equation (10).

2. The equations

x x' c.os Q -
y' sin Q,

y - x' sin Q + y' cos Q,

define the transformation from a plane cartesian xy coordinate system to a second

cartesian x'y' system having the same origin, where Q (a constant ) is the angle through

which the axes of the former system must be rotated counterclockwise to bring them

into coincidence with the axes of the latter.

(a) Use (22), reduced to two independent variables, with / = \w*tt to derive the

relation

wxx =* Wz'x' cos 2 Q + Wy'y' sin 2 Q 2iv JC
>
u

> sin Q cos Q.

(b) Derive analogous expressions for wyu and wfv with the aid of (22).

(c) Use the results of parts (a) and (6) to show that the expression wrlwuv w\ v

is unaltered by a rotation of the coordinate axes.

(d) Show that the laplacian wxx -f wvu is unaltered by a rotation of coordinate axes.

3. Show that the solution of the system (20) for wxi , u>,,, wfl is always possible if

the jacobian of the transformation is nonvanishing, as required.

4. (a) Given the transformation from cSrtesian to paraboloidul coordinates (p, q, 0)

x =* pq cos <, y = pq sin <, z }(p* </

2
),

show that

la
^ \1 .

]-
q e~q

(W)
J

-f^
HINT: Show that (30) is fulfilled and that hp = hq

= Vp^'HM/S h
<t>

"* PQ- Then

use (40).

Describe the three families of surfaces p = constant, q constant, </>
= constant.

(6) Given the transformation from plane cartesian to plane elliptic coordinates

where c is a positive constant, show that

(199)

Describe yie families of curves p = constant, q = constant, as defined by (199).

6. By solving the equations of transformation to spherical coordinates

x r sin B cos <, y r sin $ sin <, z r cos Q
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for r, 0, <, show that r represents the distance from (x,y,z) to the origin, the angle
between the positive z axis and the line drawn to (x,y,z) from the origin, <f> the angle
between the xz plane (positive x) and the half-plane bounded by the z axis and con-

taining (x,y,z). Thus describe the families of surfaces r - constant, constant,
< as constant.

6. (a) Work out the details of the assertion made in 9-4 (c).

(b) Prove the assertion made in the final paragraph of 9-5 (d).

7. A membrane having all the characteristics of the membrane described in 9-3 is

subjected, additionally, to a nonconservative transverse force per unit area given by
the expression F(x,y,t). (That is, an clement of area dx dy experiences the externally

applied force F(x,y tt)dx dy perpendicular to the xy plane.)

(a) Use the extended Hamilton's principle of 6-7 to show that the equation of

motion of the membrane so influenced is

(b) Extend the method of 9-7 to show that the solution of (200), with w = on

C, is

where

rV 2
<; -f X;<T0y = in D, <, = on C,

and

,r,
=

ff F(x,y,t)t,dxdy.
dt*

'D

(Each <j>, is normalized in /) with respect to <r.)

8. Given the inhomogcneous boundary condition w = g(x,y) on C for the membrane

equation

ffW = r W>

show that we may write w? = w(x,?/,0 -f v(x,y) where t/ = and r = g(x,y) on C,

V 2v = and <m = rV 2
?/ in D. Thus we reduce a membrane problem with an inhomo-

geneous boundary condition to one having a homogeneous boundary condition, plus a

solution of the two-dimensional Laplace's equation with boundary values prescribed.

(The latter part of the problem is discussed in Chap. 12.)

9. Suppose that the tension constant r, introduced in 9-3(b), is replaced by the

continuously diflferentiable positive function r = r(j,?/).

(a) Derive the differential equation of motion (corresponding to (49)) for such a

membrane.

(b) Derive the equation satisfied by if w =
<t>(x,y)q(t) is a solution of this equa-

tion of motion.

(c) Prove that the eigen functions of the equation derived in part (b) form an

orthogonal set in D with respect to the weight function <r if they are required to satisfy

on C any of the homogeneous boundary conditions discussed in this chapter namely,

0=0, T(d<t>/dri) -f p0 = 0, or a mixture.

10. In 9-5 (^) it is pointed out that X = is an eigenvalue of the free-edge membrane.
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Return to 9-4 (a) to show that the time-dependent factor corresponding to the associ-

ated eigenfunction (a constant) is q A + Bt, where A and B are arbitrary constants.

11. (a) Derive the result (92) of 9-6(c).

(6) Use the Schmidt process to show that a set of three linear combinations of

l,,t/ which form an orthogonal set with respect to the weight function <r =* 1 in the

domain ^ x ^ 1, ^ y 1 is v\ =
1, t> 2

= x i, t> 3
= y \.

(c) Show that the Schmidt orthogonalization process is in general not unique in

its determination of the N orthogonal line'ar combinations.

(d) Prove that a set </>i,
< 2 ,

. . .
, $N of orthogonal functions is linearly independent.

12. (a) Modify the analysis of 9-7 to show that the results achieved are equally
valid in the case of the fixed-edge membrane (w = on C).

(b) Show that in the case of the free-edge membrane the term (A -f Bot) must be

added to the right-hand member of (107) of 9-7(a) (see exercise 10 above).

(c) Given that w(x,y,Q) = g(x,y) and w(x,y,Q) =
h(x,t/), show that the coefficients

in (107) have the values

Am = // <r<i>mg dx dy, Bm = ~=. I <r^mh dx dy.

Give the values of AQ and B in the case mentioned in part (6).

13. We consider, throughout this exercise, a circular membrane of radius R. We
use the polar coordinates (r,0) with origin at the center of the circle, so that r 72 is

the equation of the membrane boundary.

(a) Use (43) of 9-2 (e) to show that the equation

rV 2
< -f X<r< = (201)

is separable (in the sense of 9-8 (a)) if and only if <r is independent of 6.

(b) We must require that 4>
=

4>(r,0) be a single-valued function of position in D,

so that <f>(r,8 -f 2?r)
= 0(r,0). Show that, if a <r(r), equation (201) has solutions of

the form Hn (r) sin nO and Hn (r) cos n0, where n =
0, 1, 2, . . . .

(c) If <T <r
,
a constant, show that

where Jn (z) is the nth-order Besscl function of the first kind, provided we impose the

condition that be finite everywhere in D. HINT: Compare the r-dcpendent differen-

tial equation with (41) of 8-3 (c).

(d) If we impose the boundary condition </>
= for r R, show that the eigenvalues

are given by the scheme

= 0,1,2, . . .
;
k = 1,2,3, . . , independently),jo

where jnk is the fcth positive zero of Jn (z). Thus show that the two (unnormal-

ized) eigenfunctions which correspond to the eigenvalue Xn* (n 1,2,3, . . .) are

Jn(rjnk/R) cos nO and Jn (rjnk/R) sin nO. How many eigenfunctions are associated

with each of the eigenvalues X *?

(e) Show that the eigenfunctions associated with Xn* vanish on the circles whose

radii are given by (jni/jnk)R, for i - 1, 2, . . .
,
k - 1. (These are the so-called

nodal circles.)
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(/) Show that the vibration frequency associated with the eigenvalue Xn* is

V^~* (jnk/R).

14. Use the orthonormality of the eigenfunctions to derive the expression for cm

given in (94) of 9-6(d).

15. Show that (k 1) linear homogeneous equations among the quantities Ci, c*,

. . . , Cjt subject to the condition

always possess at least one solution. HINT: Consider the system of k linear homo-

geneous equations consisting of the original (k 1) equations and any one of these

repeated once. Evaluate the determinant of this system (see 2-8(6)).

16. List the physical consequences of theorems (i), (ii), (iii) of 9-11 which are direct

generalizations of the physical consequences drawn in the text from theorems (i), (ii),

(iii) of 9-10.

17. Prove the following extension of theorem (iii) of 9-1 l(d):

If the maximum of a^ is less than the minimum of <JB in /), then X^ > \(

k
B)

. HINT:

First show, from the differential equation, that the Arth eigenvalue of a constanW sys-

tem is inversely proportional to a.

18. It is required to extremize the integral

JJ
f(<!>*, <!> v)dx dy

with respect to functions which are continuous, with their first derivatives, in D
except for a finite number of smooth arcs which subdivide D, without gap or overlap,

into a finite number of subdomains; across these arcs, the eligible functions < may
exhibit finite discontinuities. Let the subdomains be denoted by D\, Z>2, . . .

,
Dr

and the respective boundaries by Ci, Ci t
. . .

,
Cr .

(a) Show that the "tn process" of 9-5(6) with the time integral suppressed, and

with extension to take care of the allowable discontinuities leads to the result

t-1

HINT: Apply Green's theorem (22) of 2-13 to each subdomain 7), separately.

(6) Show that the permissibility of discontinuities across each (7, of the eligible

functions </> allows us to choose i\ arbitrarily in the line integral along each C. Hence,

conclude that

-?~-f- onC< (
=

1,2, . . . ,r).
d<t>* as d<t>v as

But every point of the boundary C of D is a point of at least one of the C; thus we

have the result that the boundary condition satisfied by the extremizing <t> is the same

at each subdivision boundary as it is at the exterior boundary of the whole domain.

(c) Generalize the final result of part (b) to include cases in which <t> is required to

satisfy normalization and orthogonality conditions in D. Establish the assertion

made in 9-12(6) that any eigenfunction </>* of SB' which satisfies (dfa/dn) - on

C must satisfy the same relation on each of Ci, C2 ,
. . .

,
Cr .
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19. In 9-12(c) show that (6B + i \/2 OA) < (2/ir), and therefore that BB < (2/7r),

OA < (2 \/2Ar). HINT: First show that NBl (\) NAlW + (2fi
-

1).

20. We consider three membrane systems S, S', S" which involve the same physical

membrane; but S involves the boundary edge fixed, S' the boundary edge held

elastically, and S" the boundary edge free.

(a) If Xfc, Xfc, Xfc represent the fcth eigenvalues of the respective systems, prove that

xi' ^ xi ^ x*.

(6) Use the result of part (a) to extend tlie asymptotic results of 9-12 to the case of

the membrane with boundary held elastically.

21. (a) Use the orthogonality property to prove that a given membrane system can

possess at most one eigenfunction which does not vanish in the interior of 7).

(6) If a membrane eigenfunction changes sign anywhere in 1), continuity requires

that it must do so either across an arc which has its end points on the boundary or

across some closed curve in D. A curve across which an eigenfunction changes sign

is called a nodal line.

(c) Prove that the eigenfunction associated with the lowest eigenvalue of a fixed-

edge membrane system S can have no nodal lines in the interior of D.

PROOF: Assume the contrary: Suppose that the nodal line divides D into two or

more subdomains in each of which the eigerifunetkm <i has one sign, with a reversal

of sign between adjacent subdomains; let D* be one of these subdomains. Show that

the function <*, defined as equal to </n in D*, is an eigenfunction of the system S*

associated with Z>* (boundary edge fixed, same <r, r as for S} which corresponds with

the lowest (see (iv) of 9-1 1 (e)) eigenvalue Xi of S*, equal to the lowest eigenvalue of S.

Let D' be any subdomain of D such that D' contains D* as a subdomain. Prove, with

the aid of theorem (iv) of 9-1 l(e), that the lowest eigenvalue of the system S' associ-

ated with D' (boundary edge fixed, same er, r as for S) is also Xi; let <f> be the correspond-

ing eigenfunction. Show that the function which is equal to </> in D' and is identically

zero outside D' is an eigenfunction of S associated with the lowest eigenvalue Xi.

Construct a sequence D(, D'^ . . .
,
D'm of subdomains of the type D', where

/>',-_!

is a subdomain of D'- (j
= 2,3, . . . ,ra 1). Thus show that it is possible to con-

struct m linearly independent eigenfunctions <
(1)

, <>
(2)

,
. . .

, <j>

(m) with O) identi-

cally zero outside D^ of the system S which all correspond to the single eigenvalue XL
Since ra can be chosen arbitrarily, this result contradicts the conclusion of 9-1 2 (d)

that the multiplicity of any given eigenvalue is necessarily finite.

(d) Show that the lowest eigenvalue of a fixed-edge membrane is nondegenerate.

(e) Illustrate parts (c) and (d) by means of the rectangular and circular fixed-edge

membranes of uniform density.

22. (a) Return to Chap. 8 and derive, in the manner of 9-11, a maximum-minimum
characterization of the Sturm-Liouville eigenvalues.

(b) On the basis of part (a) prove that an increase of the function r T(X) cannot

decrease the nth Sturm-Liouville eigenvalue X; that an increase of a a(x) cannot

increase Xn .

(c) Prove the result analogous to (158) of 9-12(6) for the Sturm-Liouville eigen-

values, where the interval x\ ^ x ^ x-i is subdivided into r sections in the fixed- and

free-end-point cases.

(d) On the basis of parts (6) and (c) derive the asymptotic formula

Xn '
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in the case /u
= 0. HINT: Use the fact that An = [nW/cr^ -

Zi)
2
] if <r and r are

both constant, and compare 9-12 (e) with the use of the quantities (<r/r) m ,
and

(<r/r),v y
in place of (<rm} /r) and (<7-,u,/r), respectively; part (b) above is required.

23. Apply the final remark of 9-1 3 (a) to the approximation of the vibrating-string

eigenvalues developed in 7-6(r). HINT: Use exercise 22(a) above.

24. What change in the procedure of 9- 13 (a) is required if it is to be applicable to

the free-edge membrane?
26. Extend the work of the foregoing chapter to the three-dimensional analogue of

the vibrating membrane; that is, consider the case in which

T =
J III

aw* dx dij dz, V - \T llf (wl + w\ 4- w])dx dy dz,
fff

(

where T and V are respectively the kinetic and potential energies of the given system
which occupies the region R of three-dimensional space. Here cr = a(x,y,z) may be

interpreted initially as mass per unit volume, T as an clastic constant; w may be con-

sidered to measure some sort of displacement from equilibrium. We consider two
cases: w = on the boundary B of It, and w completely unspecified on B.

Work out the details of the following outline of procedure:

(a) Use Hamilton's principle to derive the differential equation

TV'10 = o ~- (202)

whereW is here the Mrrc-dimensional laplacian. Show that the eigenfunctions of

the problem satisfy

rr*</> -h \<r<j>
= in /?,

with either <j>
= on B or (rl0 <ln] = on B.

(b) Assuming the validity of an expansion theorem analogous to that given in

9-9(r/), prove a minimum, then a maximum-minimum, characterization of the eigen-

values of the system.

(r) If (r (r] = r 2
, a constant, solve the eigenvalue-eigenfunction problem for the

cube of side length b in the case = on B. Show that the eigenvalues are given by

Xm*, = ^ (* + fc -f J
2
) (m,A-j =

1,2,3, . . .).

Show that for the case (d<j>/dn) = on B (the free-boundary case) the eigenvalues

are given by the same formula, except that m, A-, j may each take on the value zero

(cf. 9-8(b,r)).

(d) Let NA^W be the number of eigenvalues less than or equal to X in the fixed-

boundary case in part (r) and let NR
{ (\) be the corresponding quantity for the cube

with boundary free. In the manner of 9-12(r) derive the expressions

~ X* -
\
V3 OA^ (0 < 0A < 1),

? + \/3 6B~ (0 < ** < 1).

(e) Use these last results, together with the maximum-minimum principle of part (6)

above, to derive the asymptotic formula (for the fixed-boundary case)
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*(X)~J^xi6?r
2C 3

for the number of eigenvalues less than or equal to X, where W is the volume of the

region 72; it is required that the eigenfunctions vanish on the boundary D of R. (The

proof requires merely a repetition of the steps carried out in the two-dimensional

investigation of 9-12. All the intermediate results which are required can be derived

from the maximum-minimum principle for the eigenvalues in the three-dimensional

problem.)

(/) Cavity (black-body) radiation. Show, as an adjunct to part (6) above, that w is

capable of varying periodically in time with frequency v = (l/27r)\/X, if X is an

eigenvalue of the problem; such values of v are termed "natural vibration frequencies,"

as in the case of the membrane. Thus show that if n(v) is the number of natural

frequencies less than or equal to v, we have, in the fixed-boundary case,

(203)
~

,

where W is again the volume of R.

This last result is of tremendous importance in the theory of thermal radiation in a

cavity so-called black-body radiation. In the theory of this radiation, which is

described by the differential equation (202) of part (a) above, it is required to deter-

mine the asymptotic distribution of radiation frequencies. In physics texts the

derivation is usually carried out for the cubical region and is followed by a statement

of its provable validity with 6 s
replaced by the volume W for volumes of arbitrary

shape. The proof is embodied in this exercise. (For application to cavity radiation

the right-hand member of (203) must be multiplied by the factor 2 because of the

two possible polarization directions which are associated with each electromagnetic
vibration. Here c is the velocity of light.)

The result (203) is also applied to the theory of vibrations of a crystalline solid.



CHAPTER 10

THEORY Of ELASTICITY

In the ensuing chapter we consider some phases of the mathematical

theory of elasticity in its relationship to the calculus of variations. The
first part of the chapter is devoted mainly to deriving the basic equations
of elasticity theory as direct consequences of the extended Hamilton's

principle (6-7). The latter portions focus attention on the problems of

the vibrating rod and the vibrating plate.

While this chapter should be of importance mainly to those individuals

who possess some background in the theory of elasticity, its subject

matter is meant to be sufficiently self-contained to be of interest to

persons not specifically studied in the field but who have mastered the

content of the preceding chapters of this book. The introductory dis-

cussion of the basic notions involved is necessarily held to minimal com-

pactness, however.

Throughout we limit consideration to the usual linear theory i.e., to

the study of deformations so small that the generally useful Hooke's lawr

(10-1 (d)) is applicable.

10-1. Stress and Strain

(a) We consider a deformable solid body under the influence of two

sets of force distribution : (i) so-called body forces, which in general act

through the entire extent R of the body whereby the force exerted upon

any volume element in the neighborhood of a given point is proportional

to the volume of the element; and (ii) so-called surface forces, which act

only at the boundary surface B of the body whereby the force exerted

upon any element of surface area in the neighborhood of a given surface

point is proportional to the area of the element.

The three cartesian (xi,x^x 9) components of the body-force density are

denoted by Fi, F 2 , Fs, respectively, so that the total body force acting

upon the given solid in the Xk direction is accordingly

* dxi dxz dx$ (k = 1,2,3),

where the integration is carried out over the entire region R occupied by
the body. In general F\, F2 ,

F 3 are functions of position in R.

199
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The three cartesian components of the surface-force density are respec-

tively denoted by 7\, 7
T

2, T^ so that the total Xk component of the sur-

face force acting upon the given solid is

Tk dS (k
=

1,2,3),

where the integration is carried out over the entire boundary surface B
of the body. In general TI, 7

7

2 ,
T 3 are functions of position on B.

The most usual example of a body-force distribution is the influence of

a gravitational field. Surface forces are in operation whenever a body is

subject to contact with external agencies at its surface.

(6) As the result of the application of body and surface forces to a

deformable solid body there occur, in general- in addition to the acceler-

ations considered in the study of rigid mechanics- -displacements of the

particles of the body relative to one another; i.e., a state of strain exists

within the body. If the body is elastic, the imposition of a state of strain

calls into operation forces which behave in such fashion as to resist the

deformation and so tend to restore the body to its unstrained state t'.e.,

to the state which would obtain in the absence of all body and surface

forces.

The elastic forces which tend to oppose deformation are described in

terms of a system of stresses defined in the following way: At any given

point of the body we draw an arbitrary plane element of area normal to

a direction denoted by n\ we consider the elastic force per unit area

exerted across the element by the material on the positive (with respect

to the n direction arbitrarily chosen) side of the element upon the mate-

rial on the opposite side. The three cartesian components of this force

per unit area the so-called stress vector are denoted respectively by
Tn \, Tn2, Tn z. In general the values of these components depend upon
the orientation of the element of area as well as the point of the body
under consideration. In particular, if we choose the n direction to coin-

cide with the cartesian Xk direction (k
=

1,2,3), the components of the

stress vector are denoted by

T*i, r, T (k =
1,2,3). (1)

The nine quantities appearing in (1) are called the elements of the

stress tensor evaluated at the point under consideration. They are

assumed to be continuous, single-valued, continuously twice-differenti-

able functions of position within and on the boundary surface of the body.
From the definition of the stress tensor it is clear that the

"
diagonal"

elements Tn, T2 2, ^33 represent pure tensions or pressures normal to

plane elements parallel to the cartesian coordinate planes tensions if
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positive, pressures if negative. An "
off-diagonal" element Tkj (j ^ k)

represents a shearing stress in the Xj direction and acting across a plane

element normal to the xk direction.

Elementary considerations 1 lead to the symmetry of the stress tensor

namely,

Tkj
= Tjk (k,j

=
-1,2,3 independently),

so that only six of the nine elements T^ are independent. Further,
2 the

stress vector across any elementary plane area of arbitrary normal direc-

tion n is related to the stress tensor at the point under consideration by
the set of three equations

Tnk = T lk cos (w,l) + T* cos (w,2) + T* cos (w,3) (k =
1,2,3), (2)

where cos (n,j) is the cosine of the angle between the J
;
direction and the

positive direction of the normal n.

(c) In the analysis of strain in a given solid body R we fix our attention

upon a single point of R, whose cartesian coordinates in the unstrained

state are x\, x, o*, and the close neighborhood of this point. We suppose
that in the strained jstate the cartesian coordinates of the same point have

become (x\ + 1/1), (.r 2 + u 2 ), (x 3 + MS), withf M* =
?u- (^1,^2,^3). We con-

sider also a close neighboring point whose coordinates before strain are

Xj, jc'fr
x'3 and whose coordinates under strain are (x[ + u\), (jc'2 + ?/

2),

(#3 + 7/3 ), with u'k ?u(.r 1,^0,0*3). Thus the components of relative dis-

placement of the two points in passing from the unstrained to the strained

state are

u(
- u k

= u k (x\,x^x'^
-

w*(ji,2-2,j3) (k =
1,2,3).

The definition of "close neighborhood" is such that the partial deriva-

tives (dui/dxi), etc., which appear in the analysis following may be con-

sidered as constant over the neighborhood and that only terms linear in

(xk Xk) need be kept in the expressions giving the relative displace-

ments (u'k uk ).

We develop the displacements uk
= ^(.r^j^^a) as Taylor series 3 with

neglect of quadratic and higher terms:

1 See Sokolnikoff, pp. 41-43.
*
Sokolnikoff, p. 39. An independent proof is called for in exercise 5 at the end of

this chapter.

f In general uk = Uk(xi tXt,X3,t) where t is the time variable. Since the analysis

immediately following applies to a single instant of time, we ignore the fact that

each Uk may vary with time.
8 See 2-10.
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, . t N , duk
Uk +

toi
Xl
~ Xl +

dxl
x*
~ *2) +

to.

(k =
1,2,3), (3)

since Uk(x\,xz,x^)
=

Uk, by definition. A useful rearrangement of the

(3) is

,
1 / dUk du%\ , . x ,

1 / dUk dlt,3\ , . x ,,,+
2U "

toJ (X^
- *> +

2U -
toj

- *) ^
for k =

1, 2, 3. With the definitions

<V*
=

**
=

5 ^g + ^ ) O'.fc
=

1.2,3, independently) (5)

and

the three equations (4) for the components of relative displacement may
be rewritten

xj
- x 3)

- w 8 (x'2
- x 2)

+ co 3(x;
-

xi)
-

coax's
- x 3), (7)

u'z w 3
= e 3 i(x'! Xi) + e 32 (x'2 x 2) + e 33 (xg x 3)

co^x'j Xi) + wi(x'2 X 2).

The quantities defined by (5) and (6) are assumed so small compared
with unity that squares and products for example, wj, ei 2co 3 ,

etc. may
be neglected in the linear theory to which we restrict our attention.

It is easily demonstrated
1

by means of the equations (7) that the change
which the distance between two neighboring points (xi,x 2,x 3) and

(xiXXg) undergoes as the result of strain is independent of the quantities

i,
w 2 ,

o) 3 ,
but depends only on the quantities ejk provided we ignore

squares and products of these quantities, as stipulated in the preceding

paragraph. For this reason we should expect elastic forces i.e., stresses

to develop only as a result of those relative displacements embodied in

1 See exercise 1 at end of chapter.
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the terms of (7) which involve the quantities ejk . The quantities e,k ,

defined by (5), are called the elements of the strain tensor evaluated at

(xi,x 2,x 3). According to (5) the strain tensor is symmetric that is,

Cjk
= ekj so that in general only six of its nine elements are independent.

These elements ejk are assumed to be twice continuously differentiate

functions of position in R and on B.

(d) The main body of the mathematical theory of elasticity rests upon
the assumption of a linear homogeneous relation between the elements of

the stress tensor on the one hand and the elements of the strain tensor

on the other. This type of relationship, known as Hooke's law, is gener-

ally applicable, provided the strain elements involved lie below certain

values characteristic of the material under consideration. The most

general form of Hooke's law is embodied in the six (since e,*
= ekj and

Tjk
=

Tkj) equations

(j,fc
=

1,2,3, independently), (8)

where the quantities C}

r

h
8 are elastic constants of the material to which

the law is applied.

If we limit our study to bodies which are elastically isotropic i.e.,

whose elastic properties at any given point are independent of direction

the number of independent elastic constants is reduced from 3G to 2, and

the Hooke's law equations (8) read

Tik
= A&jk (en + e 22 + e 33 ) + 2Bejk (j,k

=
1,2,3, independently), (9)

where A and B are experimentally determined positive elastic constants

of the material, assumed homogeneous as well as isotropic. (As in earlier

chapters, 5>* is the Kronecker delta zero for j ^ fc, unity for j =
fc.)

In the following sections of this chapter, wherever a relation between

stress and strain is required, we assume the validity of (9) Hooke's law

for a homogeneous isotropic elastic solid.

Solving the six equations (9) for the strain elements, we obtain

ekk = [Tkk
- *(T + JP)], ekj

= p Tkj (i * j * k * f), (10)

where the quantities

B(ZA + 2B) A
f

.

E -^^-5 ' ^ -
2(A + B)

(11)

are elastic constants known respectively as Young
9

s modulus and Poisson 9

s

ratio. The physical significance of E and a may be ascertained by sup-
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posing a long rod to be under tension in the x\ direction, the line of its

ixis, only, so that T22
= TM = 0. From (10), with k =

1, we obtain

Jn = (Tu/E), so that E is the stress per unit strain, both parallel to a

riven direction in the situation described. With k =
2, then A: = 3, in

[10) we obtain e 22 = 633 = (a/E)T\\\ that is, the strain of contraction

n any direction transverse to the lone direction of tensile stress is <r times

:he strain of extension in the direction of the stress.

Since A and B are positive, it follows from the second of (11) that

) < <r < i for all substances.

(e) It follows from the definition (5) of the strain-tensor elements e^

:hat these quantities cannot be completely arbitrary as functions 'of posi-

ion within a body if they are to be continuously twice differentiable as

Acquired i.e., if the components u\, u 2 , u* are to be continuously three-

iimes differentiable. Because the order of mixed partial differentiation

.s immaterial, it follows 1 from (5) that

1 I r. I \ ' \ I \" r ~
J ' "

' V r V I V,-*-^/

dXk \ vXk vX{ dXj /

md

3 K K J

The sets of equations (12) and (13) are known as "equations of oompati-

aility." It may be shown'2 that they are sufficient, as well as necessary,

sonditions for the existence of functions MI, M 2 , MS suitable for describing

the displacements of the points of an elastic solid in a state of strain.

LO-2. General Equations of Motion and Equilibrium

(a) In order to arrive at the equations of motion and of equilibrium

is a special case of an elastic solid, we make use of the extended Hamil-

ton's principle enunciated in 6-7. Playing the role of the generalized-
r

orce components are the body- and surface-force distributions, defined

in 10-1 (a), which act upon the solid as influences of external agencies.

The generalized coordinates are the components of displacement MI, M 2 ,
M 3 .

We proceed to obtain expressions for the elastic potential and kinetic

snergies of a solid in a given state of deformation.

As stated in 10-1 (c), only terms involving the elements of strain e& in

the expressions (7) for the relative displacement of two close neighboring

points of the body give rise to stresses in the body. For this reason any
[unction representing the potential energy of deformation must depend

1 See exercise 3 at end of chapter.
*
Sokolnikoff, pp. 24-28.
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only on the elements e
3-k of the strain tensor. In considering the existence

of such a function one must take into account the fact that the deforma-

tion of an elastic solid is accompanied by the development of heat energy
within the solid. There are, however, two limiting cases in which this

fact presents no difficulty and in which the existence of the strain poten-

tial-energy function may be established: (i) a state of vibration so rapid

that the time of a single cycle is too small for heat to flow out of the body

(adiabatic) and (ii) a deformation which occurs so slowly that the tem-

perature of the body remains uniform and equal to the temperature of

the surroundings (isothermal). The achievement of any equilibrium

state, for example, falls within the latter category. We assume in all

that follows that cither of the two situations obtains, so that we may
define the strain potential energy per unit volume 1

IF = ir(fn,r 2 2,<
>

3a,r 1 2,f23,C31,e21,C32,Cl3). (14)

(A specific form for the function IT is derived in 10-3(6) below.) Thus

the total potential energy of deformation is given by

V =

If p is the density (mass per unit volume) of the body, the kinetic

energy of a volume element c/.ri dx* </J':* is ^p(u\ + u\ + u\}dx\ dx-2. dx^ so

that the total elastic kinetic energy of the solid is given by

' -
*/// p ) irk dx\ (

R'

Since the components of the body- and surface-force distributions are

assumed to depend only upon the variables Ji, a* 2 ,
.r :{ ,

t and not upon the

displacements u\, w 2 , ^3, we may employ the form (GO) of G-7 for the

integral to be extremized according to the extended Hamilton's principle.
8

Since we deal with a continuous distribution of mass, the sum } GkQk in

(60) of 6-7 must be replaced by the sum of the volume and surface

integrals
3 3

FkUk dxi dx* dxz +
// X TkUk dS.

k^l B jfc-l

1 Although c 2 i
=

^12, ^32 =
23, eis 631, inclusion of the final trio of arguments of

the function W is useful below.
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Thus the integral which is extremized, according to the extended

Hamilton's principle, by the functions ui, Uzt u^ describing the actual

motion of an elastic solid body is

TkUkdS
}

fc-1

The extremization is carried out, according to 6-7, with respect to suf-

ficiently regular functions Wi, w 2 , u$ which describe the actual elastic con-

figurations at t = fa and t = fa. Moreover, there may be portions B' of

the boundary surface B at which the eligible functions u\, 7/ 2 , u$ may be

required to possess prescribed values. For an elasticity problem is gener-

ally posed as a boundary-value problem wherein at each point of the

boundary surface either the three components of the surface-force dis-

tribution or the three components of the displacement are given. At
those portions B" of B at which the components of the surface-force dis-

tribution are given, no restriction is made upon the surface values of the

functions eligible for the extremization; in fact, one result of the extremi-

zation process is the derivation of boundary conditions which must be

satisfied on B".

(6) To effect the extremization of (15) we replace each uk in the

integrand of / by the one-parameter family of comparison functions

Uk uk + crjfc (k
=

1,2,3) and so form the integral /(e). Here the

Uk =
Uk(xi,X2,Xs,f) are assumed to be the actual extremizing functions,

while the qk = rjk(xi,x^x^t) are arbitrary to within continuous differenti-

ability and restrictions based on the following considerations: Since,

according to the requirements of the extended Hamilton's principle, ui,

Ut, Us are prescribed at t = fa and t = fa, we must require T?I
=

i? 2
=

173
=

at t = fa and t = fa. Moreover, the three rjk must vanish over those por-

tions B' of the boundary surface B upon which the displacement com-

ponents are prescribed. (The values of the ijk may be chosen arbitrarily

over those portions B" of B at which the components of the surface-force

distribution are prescribed.)

Further, we introduce the notation

Ejk =
2 \dXj

+
~dxk)

**

2 \dx^
'

bxk)
'

'
2 \dxj

'

dxk;

by the definition of C/i, Uz, U$ above. We therefore have the result

*\ TJT 1

(jEjjk A

~& 2
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Thus when we replace (wi,w 2,w 3) by (U^U^U,) in the function W of (14)

i.e., when we replace each ejk by the corresponding Ejk we obtain

33 33
<W = 1 V V dW

fdrik
drjj\ = y y d\V

drjk^
dc 2 Li Z/ dE^ \dXj dxj Zj Lj dEjk dx/

since f Ejk = Ekj.

The integral /(<), formed as described above, is clearly an extremum
when =

0, so that we have

/'(O) = 0. (18)

With the definitions 33 3

/ =
-2"S^

+ S F^' '

'%*'*
<19)

introduced for the sake of brevity, we proceed to form the derivative

/'(), then set c = (which means: replace f
7
* by u k , Ejk by cjk ). Since

*d) =
rjk and (6Uk/di) =

77*, we have, with the aid of (17),

It = 0, (20)

because of (18).

Integrating by parts with respect to t, we obtain, since each 77*
= at

t = /i and t = 2 ,

-

rjk dxi dx-i dx z dt = / / / / 77* ,- ( -= ; )
dx i rfx 2 rfx 3 c?^. (21)

}uk Jtv JJJ dt \dUk/

According to Green's theorem (29) of 2-14(6) we have, further,

3 3

-f cos (n,j)dS, (22)
__, ^

t See exercise 4 at end of chapter.
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where cos (nJ) is the cosine of the angle between the Xj direction and the

outward normal to B, as a function of position on B.

With the results (21) and (22) equation (20) becomes

'"/ fff v r 9f d ( d/\ , v * fdw\i ,

{III / rjk \ I ) -r / I
"

I dXi
i 1 /// LJ du,k dt \dUk/ t-J dXj \deik/I \JJJ ' " T L * \ wf/ , ^^ "~J \ ~J K / -1

R A=-l j-1
3 3

//2+
~B" k = \

~
>-l

where the surface integral over J5 is replaced by the corresponding inte-

gral over B", because i?i
=

>72
= ^3 = on B', the remainder of B.

Since the t]k are arbitrary in R and on B", it follows from an obvious

generalization of the basic lemma of 3-1 (c) that 1

and
3

^ - V |- cos (n,j) =0 on E" (k =
1,2,3). (24)

OUk Lj 06jk
y-i

Since 1 and Z 2 are arbitrary, these results hold for all t. With the defi-

nitions (19) of / and g, equations (23) and (24) read respectively

and
3

* TT/

cos (nj) on B" (k = 1,2,3). (26)

With the aid of the boundary condition we show in (d) below that

Zy* O',fc
=

1,2,3, independently), (27)

the jfc element of the stress tensor defined in 10-1(6) above. With the

validity of (27) therefore assumed at this point the equations of elastic

1 The argument is essentially an extension of that which follows directly after

equation (54) in 3-8(a) or that which follows equation (72) in 9-5(6).
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motion (25) read

rr , 3T\k
,
dTu

,

dT3k 3*Uk . n /r. 1 O O\ /OQ\Fk +
~d^

+
-te;

+
-d^

= p -w mR (fc
= 1

>
2

'
3)' (28)

while the boundary conditions (26) become

Tk
= T lk cos (n,l) + T2k cos (n,2) + !T 8* cos (n,3) on B", (29)

for (fc
=

1,2,3). On the remainder E' of B it is assumed that u\, u 2 ,
tt

are prescribed. It may happen that B 1

(or B") coincides with B] that is,

tii, u 2 , u$ may be prescribed everywhere (or nowhere) on B, in which

event (29) holds nowhere (or everywhere) on B.

(e) The equations of equilibrium, of which we make some use in suc-

ceeding sections, may be derived from the equations of motion (28) by

setting the acceleration components (dhtk/df
1

) equal to zero for k =
1, 2, 3:

n + + J* + - = in A (* =
1,2,3). (30)

dx\ 0X2 ox$

The boundary conditions (29), in conjunction with the discussion which

follows (29), remain valid for the equilibrium case.

The solution of the equilibrium equations (30) subject to given bound-

ary conditions is uniquely determined, provided the equations of com-

patibility (12) and (13) of 10-1 (e) are also satisfied by the jk related to

the Tjk through the Hooke's law relations (10) of 10-1 (d).

In the work of the present chapter no use is made of the equations of

motion (28) as they stand; we employ, instead, a special method for

handling the dynamical problems (vibrating rod, vibrating plate) which

come under our consideration. In both cases the special method is

developed with the aid of results obtained in the study of problems
described by the equations of equilibrium (30). Fuller discussion of the

method, in its general aspects, is found in 10-3(a) below.

(d) To derive the relation (27) of (b) above we consider the arbitrary

elastic solid ft* whose boundary surface B* is everywhere interior to the

boundary B of a given solid K, of which R* is tlearly an interior portion.

Since ft* is completely surrounded by, and is everywhere contiguous

with, portions of /, we cannot prescribe the displacement components
on B*; instead, it follows from (26) of (6) that

3

-I 1,2,3) (31)

everywhere on B*, where T\ y
T 2 , T* are the components of surface-force

density exerted upon ft* by the contiguous portions of R.
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From the definition of the stress vector in 10-1(6) it follows that Tk

at any point of B* is identical with the xk component Tn* of the stress

vector computed with respect to an element of area of B* at the point;

the positive normal direction n is taken as outward from R*. For Tk is

by definition the x* component of the force per unit area applied to R*
across B*; but the force applied to R* across B* is exerted by the con-

tiguous portion of R on the positive (outer) side of B*. We therefore

have from the definition given in 10-1(6) that the Xk component of the

applied force per unit area is precisely Tn*; that is, Tk = Tnk, and thus,

according to (31),

3

Tnk = V^ cos (rcj) on B* (k
=

1,2,3). (32)

Since R* may be formed in any desired manner within the body #,

we may choose B* so that it passes through any point of R (exclusive of

the boundary B) with arbitrary orientation at the point. In particular

we pass B* through an arbitrary point P so that its (outward) normal

direction coincides with the positive xp direction. In this case we have

cos (n,p)
= 1 and cos (n,j)

= if j 9^ p] thus (32) reads

Tpk
= ~ at p (k =

1,2,3). (33)

Since we may successively choose p =
1,2,3, and since both members of

(33) are defined independently of the auxiliary surface B*, the relation

(27) of (6) is established for all interior points of R. The continuity of

the quantities involved furnishes the validity of (27) on the boundary
surface B, as well.

10-3. General Aspects of the Approach to Certain Dynamical Problems

(a) In a first study of the transverse vibrations of a thin bar or of a

thin plate we bypass the general dynamical equations (28) of 10-2(6).

The reason for doing this lies in the nature of the approximations we can

afford to make in such vibrational problems. The general equations (28)

describe every minute detail of displacement as functions of time and

position within a vibrating body, thereby providing (if we are able to

solve the equations!) a description far more detailed than is generally

required for the bar or plate. We can well afford, for example, to ignore

the distortion of the bar cross sections during vibrational motion if the

cross-sectional dimensions are negligible compared with the bar's length

and which is of no small significance especially when refusal to con-

sider such distortion leads to equations which are reasonably tractable
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and which describe the essential features of the vibration with a high

degree of accuracy. The transverse vibrations of a thin plate, for exam-

ple, are generally accompanied by elastic waves which travel in the plane
of the plate but which, if the plate is sufficiently thin, may be ignored;
the essential feature of the motion resides in the successive shapes into

which the plane of the plate is distorted during the motion.

In order to solve the dynamical problem involving a specific type of

motion of a given elastic body we first solve an equilibrium problem
which corresponds to the dynamical problem in the following sense: The

equilibrium strain configuration at any point must be representative of

the essential features of the instantaneous strain configuration at any

point of the body during vibration. Actually, solution of the equilibrium

problem needs to be carried only far enough to provide a calculation of

the strain potential-energy density as a function of the position and dis-

placement variables in terms of which the essential features of the

dynamical motion are to be described. Once an expression for the total

potential energy is available, together with the corresponding expression

for the kinetic energy, Hamilton's principle may be applied in order to

derive the pertinent equations of motion and boundary conditions.

The specific manner in which simplifying approximations (which ignore

all but the essential features of the motion under study) are introduced

is illustrated below in our studies of the vibrating bar and plate. We
merely state here the underlying principle by means of which the most

important approximations are effected: We make the very reasonable

(and successful!) assumption that the strain potential-energy density at any

point depends only on the essential features of the instantaneous configuration

of strain at the point and not upon the specific agencies which induce the

strain. The usefulness of this assumption is greatest, clearly, in those

cases in which the features of the strain configuration which are essential

to the problem at hand are easily distinguished from the unessential fea-

tures; the latter are thus readily ignored. (The validity of our assump-

tion, admittedly, is extremely weak in the close neighborhood of points

of application of a straining agency, but this fact is unimportant if cer-

tain linear dimensions of the vibrating body are large compared with the

distances over which straining agencies are applied. The limitation does

not concern us in our study of long, thin rods and thin plates.)
1

(b) From Hooke's law (10-l(d)) and the result

= Tjk (j,k
=

1,2,3, independently) (34)

1 Our assumption is very closely linked with the celebrated principle of Saint-

Venant. See, for example, Sokolnikoff, pp. 95, 99.
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derived in 10-2 (d) we may establish the general form of the strain-energy

function W. Since the stress elements Tjk are linear homogeneous func-

tions of the strain elements ejkj according to (9) of 10-1 (d), it follows from

(34) that W contains no terms in the e,* of higher order than quadratic

and no terms which are linear in the e&. Moreover, in requiring that

W vanish in the unstrained state, we set the arbitrary additive constant

equal to zero. Thus we conclude that W is a homogeneous quadratic func-

tion of the strain elements e^ (j,fc
=

1,2,3, independently), so that we

may apply Euler's theorem (2-5) to obtain

(35)

With (34) equation (35) thus becomes the explicit formula

3 3

W = *

A form of (36) more useful for purposes below is obtained by substi-

tuting for the Cjk from the Hooke's law equations (10) of 10-1 (d):

W =

Tu Tu). (37)

10-4. Bending of a Cylindrical Bar by Couples

(a) We consider a homogeneous isotropic bar of unstrained cylindrical

^ shape with plane end faces perpen-
dicular to the generators of the

cylinder. Any plane section of the

bar parallel to the end faces we
call a cross section. A cartesian

/"
8

coordinate system is set up so that

L_j one end face lies in the x\xi plane

p 10
- while the other is in the plane

x 3
= L > (see Fig. 10-1). The

origin is so located that the x% axis passes through the centroid of every

cross section; i.e., we have for each cross section

dxi dxz = X2 dxi dxi =
(x s

= constant), (38)JJ
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where the integrals extend over the domain D of the cross section. The
orientation of the x\ and Xi axes is such that each is parallel to one of

the two principal axes of inertia of every cross section; i.e., we have for

each cross section 1

// x\xi dxi dxi = (x*
= constant). (39)

(b) We proceed to investigate the elastic-displacement configuration of

the bar when the system of stresses

Tn = T 22 = T = 7'23 = 2
1

,, = 0, JTi, = Pxi (40)

prevails; P is a given constant, positive or negative. (If P > 0, the

stress distribution clearly describes tension in the #3 direction for rr 2 > 0,

pressure in the z 3 direction for x 2 < 0; there are no pressures or tensions

in the x\ or 0*2 directions and no shearing stresses anywhere. Thus the

portion of the bar lying on one side of the plane x 2
= is stretched, while

the remaining portion is compressed. The stress system obviously arises

as the result of the bar's being bent in the xtfz plane.) We completely

neglect body forces 2
(F\ = P\ = F 3

=
0), so that direct substitution into

(30) of 10-2(c) verifies that the distribution (40) is consistent with elastic

equilibrium.

To ascertain the surface-force distribution required to give rise to (40)

we note first that on the lateral (cylindrical) surface of the boundary we
have cos (n,3) =

0, so that, according to (29) of 10-2(6),

Tk
= Ti k cos (7i,l) + T 2k cos (w,2) =0 (k

=
1,2,3),

because of (40). That is, the lateral surface is completely free of external

agencies. Next, on the face 3*3
= L we have

cos (7i,l)
= cos (N,2) = 0, cos (;i,3)

=
1,

so that the general boundary conditions (29) read

Ti = T 3 i
=

0, T, = r, 2
=

0, T, = rM = Px, (xz
= L), (41)

because of (40). Similarly, on the face a* 3
= wre have

T l
= - r,i = 0, T 2

= - 7
T

32
=

0, 5T,
= -

r,, = -Px a (x t
= 0) ; (42)

1 The principal axes of inertia of an area are defined as a pair of perpendicular lines

in the plane of the area which intersect at the ccntroid and whose orientation is such

that the integral in (39) vanishes; x\ and x 2 are coordinates measured from the respec-

tive lines. The appropriate orientation can always be found, but it is not necessarily

unique; any pair of perpendicular diameters, for example, are principal axes of a circle.

2 The influence of gravity is generally negligible.



214 CALCULUS OF VARIATIONS [10-4

the change of sign results from the fact that cos (n,3)
= 1 on the face

z 3
= 0.

The total external force on the face rr s
= L is zero; for since T\ = T% = 0,

the force on # 3
= L is obtained by integrating the component T* of

surface-force density over this end face. But, with r 3 given by (41),

we have

dx 2
= P

ffx 2 dxi dx* =
(z 3

= L),

according to (38) as applied to the end cross section. Similarly, with the

aid of (42) we find that the total force on the end face x z
= is also zero.

The total effects of the surface-force distributions (41) and (42) are

best described in terms of their bending moments about the coordinate

axes. By definition the three components A/i, M 2 ,
M z of the moment of

a given surface-force distribution 7\, T*, T% are given by

M l
=

(43)

where the integrals extend over the surface B at which tho surface-force

distribution is applied. Thus the moment components of the distribu-

tion (41) on the end face z 3
= L are

Mi = P II x\ dx l dx 2
= PJi (teg

= L), (44)

D

where

Ji = //
* ^1 dx 2 (45)

D

is by definition the area moment of inertia of the face #3 = L with respect

to its principal axis parallel to the x\ axis;

Af 2
= P \\ x 2xi dxi dx 2

= 0,
JJ

because of (39) ;
and M 8

= 0.

It therefore follows that the total effect of the distribution (41) upon
the bar face x 3

= L is that of a bending moment of magnitude PJ\
directed along the x\ axis. Moreover, since the moment of the surface-

force distribution on x* = L is unchanged
1

by any translation of the

1 The proof is left for end-chapter exercise 6.
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Xi axis parallel to itself, the bending moment is termed a couple about
the Xi axis; the magnitude of the couple

1 is PJi. Similarly, we find that

the surface-force distribution (42) on the end cross section x3
=

gives
rise to an equal but oppositely directed couple PJ\ about the x\ axis.

We note that the quantity Ji, given by (45), is purely geometrical in

character and is a constant which is the same for every cross section

(z 3
= constant) of the bar.

(c) Using the Hooke's law equations (10) of 10-1 (d), we derive from

(40) the strain-tensor elements

aP P
tjk

=
(j 7* k), 611 = 622 = ~

-jj
x2 ,

e33 =
-p

a?2, (46)

which describe the state of strain within the bar under consideration.

Through direct substitution into (12) and (13) we verify that the strain

elements (40) satisfy the equations of compatibility and are therefore

suitable for the description of a physically feasible state of strain.

We now proceed to demonstrate that the bar in which the strain dis-

tribution is given by (46) is one which has undergone bending in the

z 2z 3 plane. Specifically, we show that every line parallel to the length

of the bar in its unstrained state -i.e., every line described by the equa-
tions x\ = constant, x 2

= constant -is in the strained state a parabolic

arc lying in a plane parallel to the .T 2.r 3 plane.

First, to prove that any line x\ = constant, x 2
= constant becomes a

plane curve parallel to the 0:2X3 plane, we must show that u\ is a constant

with respect to x 3 for given constant values of x\ and x 2 . That is, the

displacement ?/i in the x\ direction must be the same for every point of

the line in question. Second, if we prove that u* is, for given constant

values of x\ and x 2 ,
a quadratic function of .r 3 ,

we thereby show that any
line x\ = constant, x 2

= constant becomes a parabolic arc in a plane

parallel to the x 2xs plane; i.e., we have merely to show that (d-u^/dx\) is

independent of x 3 .

With the definition (5) of 10-1 (c) of the strain elements in terms of

the displacement derivatives the relations (40) read

l

4.
2 = *

4.
* = 3

4.
i = A

dx 2 dxi dz8 dx<t dxl dx z
'

dui duz ffP dtts P
, Q ,

d^
= ^ = --*" d^

=
E x*- (48)

1 The reference here to the concepts of moment and couple is
tactually unessential

to the continuity of this chapter. The reference merely aims to supply a physical

picture of the basis for the stress distribution (40) for the reader who is already

acquainted with the concepts.
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From (47), (48), and the reversibility of partial differentiation it directly

follows that

d (du^ d (du\ d ( <rP \

srAte-J
=

3̂ fe/
=
*r.v" *"*v

=
' (49)

_ A(^\ = _ j/
dx\\dxj dxi\E

whence

With the results (49), (50), and (51) we conclude that (du\/dxz) is a con-

stant independent of xi, x 2 ,
z 3 . By arranging the orientation 1 of the

strained bar in such fashion that (dui/dx*) at a single point, we
therefore have that

in R.

Or, along any line x\ = constant, x 2
= constant, we have u\ = constant;

this proves the assertion of the preceding paragraph that any line parallel

to the length of the bar in the unstrained state becomes a curve lying in a

plane parallel to the x 2Xs plane as the result of strain.

That this plane curve is a parabola follows directly from (47) and (48),

for

A (*
u*\ = _ A (<to*\ = _ P

dx z \dx 2 / dx 2 \dxj E

We thus have that u z is a quadratic function of x 3 .

(d) In accordance with the method outlined in 10-3 (a) we proceed to

compute an expression for the strain potential energy of the bent bar

which depends only on the strain configuration and not upon the agency
which gives rise to the strain. Substituting (40) of (6) above into (37)

of 10-3(6), we obtain for the strain potential energy per unit volume

1 The general solution of the six equations (47), (48) contains six arbitrary constants

which may be evaluated by specifying the position and orientation of the strained

bar as a whole. See exercise 7 at end of chapter.
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To obtain a quantity which is of direct use in 10-5(6) below we integrate

(53) over an arbitrary cross section D (x*
= constant) of the bar to

obtain the potential energy per unit length of the bar

!, (54)

where J\ 9
defined by (45) of (6) above, is the area moment of inertia of

the cross section with respect to its principal axis parallel to the xi axis.

Finally, to eliminate the dependence of WL on the constant P in favor

of a quantity which describes the local bending configuration of the bar,

we substitute from (52) into (54) to obtain

<55)

We employ the result (55) in 10-5 below in the study of transverse vibra-

tions of a bar; discussion of the validity of its use is reserved for that

section. (The product EJ\ is called the flexural rigidity of the bar with

respect to bending in the 0*23*3 plane.)

A fuller discussion of the bending of a bar can be found in the litera-

ture. 1 Further development of the foregoing results is left for the end-

chapter exercises.

10-6. Transverse Vibrations of a Bar

To derive the equations of motion and boundary conditions for the

transverse vibrations of a bar we appeal, as in the case of the vibrating

string and the vibrating membrane, to Hamilton's principle (6-2) as

applied to a system involving a continuous distribution of mass. It is

our first task, then, to obtain expressions for the kinetic and potential

energies of the bar.

(a) We consider a cylindrical bar, or rod, free from (net) longitudinal

pressure or tension, the linear dimensions of whose cross section are small

compared with its length. As in 10-4, we ignore the influence of body
forces. The only external influences to which the bar is subjected are

constraints which may be applied to one end, both ends, or neither. We
consider chiefly two types of constraint: (i) The "hinge," whereby the

effect is merely to hold in fixed position the end of the bar to which it is

applied; the orientation of the bar at this end is not influenced by this

type of constraint, (ii) The "clamp," whereby the effect is not only to

hold the end in fixed position but is also to fix the orientation of the bar

1
See, for example, Sokolnikoff, Chap. 4.
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at the end to which it is applied. We suppose that the vibration is

parallel to a principal plane of the bar i.e., to a plane which contains

one set of parallel principal axes of every cross section of the bar. 1

In considering the transverse, or flexural, vibrations of the rod, we

ignore the possible distortion of the cross sections and suppose that each

element of volume contained between two closely neighboring cross sec-

tions moves as a rigid entity. The validity of this simplification rests

upon the assumption of small cross-section dimensions made in the pre-

ceding paragraph. If the cross section is small, the contribution to the

bar's potential and kinetic energies owing to its distortion may be neg-

lected. It is this neglect which enables us to use the formula (55) of

10-4(d) for W L ,
the potential energy per unit length of the bar: The

potential energy is assumed to depend only on the configuration of bend-

ing in the plane of vibration.

In accordance with the assumption that each cross-sectional element

of volume moves as a rigid entity, we may employ a single variable to

describe the shape of the bar as a function of the longitudinal distance

from one end and of the time variable t. For this we employ u =
u(x,t)

to denote the transverse displacement of a point of the central line 2 rela-

tive to its equilibrium position; here x is the distance of the point from

the tod designated by x = 0; the other end of the bar is at x = L.

(b) If we denote by 7 the constant mass per unit length of the rod,

the translational kinetic energy of the volume element of thickness dx

at x is ?u
2
y dx, so that the total kinetic energy is

u* dx. (56)

In employing the expression (55) of 10-4 (d) which, in the notation

of the present section, reads

for the strain potential energy per unit length of the bar, we have for

the total potential energy
3

*4<*t. (57)

With (56) and (57) the Hamilton's integral (7) of 6-2(a) becomes

/ = i
/." fQ

L
(yu*

- EJ&Ddx dt. (58)

1 See footnote 1, p. 213, for the definition of principal axes of a cross section.

2 The central line is the locus of cross-section centroids.

8 As in preceding chapters, we employ subscripts to indicate partial differentiation.



10-5] THEORY OF ELASTICITY 219

According to Hamilton's principle (6-2) the extremum of 7 with respect

to functions u(x,t) which describe the actual bar configurations at t = ti

and t = 2 is supplied by the particular u(x y t) which describes the bar

configuration for all t.

Possible end-point conditions which must be satisfied by the functions

eligible for the extremization of (58) depend upon the physical constraints

which may be placed upon the ends of* the bar. We consider the follow-

ing possibilities:

(i) Free end: If either end of the bar is free, no constraint is made

upon the displacement u or the slope ux of the bar at that end. Accord-

ingly, both u and ux ,
evaluated at a free end, are completely arbitrary if

u is an eligible function.

(ii)
"
Hinged

"
end: Here the constraint is such as to prescribe the

value of w, whereas ux is arbitrary for the eligible functions u.

(iii) "Clamped" end: Here displacement and orientation (slope) are

both prescribed, so that the eligible functions u must be selected from

among those which have particular given values of both u and ux at the

end in question.

Any one of the conditions (i) to (iii) may prevail at either end of a

given bar, independently of which of the three applies at the other end.

For the process of extremizing (58) we form the integral 7(e) by

replacing ?/ in the integrand of (58) by the one-parameter family of

comparison functions U = u(x,t) + erj(x,f), where u(x,t) is assumed to be

the actual extremizing function and r?(a*,0 is arbitrary, with the exception

that ??(.r,/i)
=

r?(j,/ 2)
= a requirement of Hamilton's principle. Fur-

ther, TJ may be subject to end-point conditions, depending on which of

the conditions (i) to (iii) listed above happens to be imposed. Briefly,

we have at a

(V] Free end: t] arbitrary

(ii') Hinged end: TJ
= 0, TJ X arbitrary

(iii') Clampod end: TJ
=

0, t)x 0.

Clearly, /(e) is an extremum for e = 0, so that

/'(O)
= 0. (59)

Noting that (dU/dt) =
17 and (dUxx/dt)

=
17,., we form the integral

/'(e), then set c == by replacing U by u, Uxx by uxx . Thus, with (59),

we obtain

-*-* (60)

where, for abbreviation, we write
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Since rj
= at t = t\ and / = t z , integration by parts gives

n L
df . [* [

L
d (df\

: 17 dx dt = i /
i)

I ; J
dx dt* (62)du

tt J tl Jo dt \du/

Also, we have through twice-performed integration by parts

1*1 I" "17 /* / / \

=
\jji_

,x
_

,
A
(^-)r + r

r,
~^~ (-%-)

dx - (^

With (62) and (63) equation (60) becomes

for arbitrary choice of the function TJ(X,/) consistent with restrictions

placed above. Since (64) must hold for those 17 which, together with TJX ,

vanish at x = and x = L, it follows from a simple extension 1 of the

basic lemma of 3-l(c) that

Moreover, if T? and ryx are arbitrary at both x = and x = L, it follows2

that the coefficients of r?(0,0> ^(^,0) ^(fyO) i?*(^,0 all vanish separately.

By writing, accordingly,

(a;
=

'L) ' (C6)

we take into account the possibility that either or both of
TJ, TJ X may be

required to vanish at either or both of x =
0, x = L in which event the

corresponding coefficient in (64) need not vanish.

Substituting (61) into (65), we obtain the differential equation of

motion of the vibrating bar under consideration :

yW + EJl^ = (O^x^U- (67)

1 See exercise 10 at the end of this chapter.
2 The proof is left for the reader. See, for example, the argument leading to the

result (76) of 3-10(a); the argument must be slightly modified and extended for the

present case.
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The end-point conditions (66) read

S"<
=

' S" = (* =
>
L)- (68)

(c) The most important examples of constraint of the end of a vibrating
bar consist of hinging which renders the end-point displacement equal
to zero, and clamping which renders both the end-point displacement
and the end-point slope equal to zero; we confine our attention to these

types of constraint. With the aid of (68) we list the boundary conditions

which apply to these constraints as well as to the case of a free end of

the bar:

(i) Free end: Since both 17 and y x are arbitrary at an unconstrained end,

(68) implies that

S =
- S = (free end) - (69)

(ii) Hinged end: Since t]r is arbitrary, (68) implies that its coefficient

vanishes. Since, also, the displacement of the end is maintained at zero,

we have
<9

2
?/

2
=

0, u = (hinged end). (70)

(iii) Clampod end: Here, both displacement and slope are maintained

at zero, so that

^ =
0, u = (clamped end). (71)dX

10-6. The Eigenvalue-Eigenfunction Problem for the Vibrating Bar

(a) We begin the attack upon the vibrat ing-bar equation (67), subject

to any of the boundary conditions (69), (70), (71) applied independently

at x = and jc = L, in the manner in which we handle the vibrating-

membrane equation in 9-4(a); that is, we seek solutions of the form

u = +(x)q(t), (72)

where <(j) satisfies one from each of the two groups of end-point con-

ditions which follow:

(i) 0"(0) = 0"'(0) = (free) (i') 0"(L) = *"'(L) = 0;

(ii) 0(0) = </" (0)
= (hinged) (ii') <t>(L)

= 0" (L) = 0; (73)

(iii) </>(0)
=

<t>' (0)
= (clamped) (iii') <t>(L)

= <' (L) = 0.

(For example, if the end x = is clamped while x = L is free, <t>(x) satis-

fies both (iii) and (i').) For convenience we suppose that <f> is normalized
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so that

/Q
L

2 dx = 1. (74)

Substituting (72) into (67), we obtain, on dividing through by y<t>q,

l +"" - _ <?

Since the left-hand member of (75) is independent of t and the right-hand
is independent of x, the two members must be equal to a constant, which

we denote by \. Thus(75) implies the two ordinary differential equations

= (76)

and

q -f \q = 0. (77)

In (6) below it is shown that X > (with the excepted possibility of

X = if the bar is free at both ends or free at one end and hinged at

the other), so that the general solution of the time-dependent equation

(77) is

q = A cos \A t + B sin \A t, (78)

where A and B are arbitrary constants.

(6) The determination of the permissible values of X and thus,

according to (78), the list of natural vibration frequencies of the bar

is an eigenvalue-eigenfunction problem of the type encountered in the

three chapters preceding. That is, any value of X for which there exists

a function < which satisfies (76) and (74), together with the appropriate

set of end-point conditions from among (73), is an eigenvalue of X; the

solution <f> is the corresponding eigenfunction.

Explicit solution of the eigenvalue-eigenfunction problem for the bar is

left for the end-chapter exercises, but we prove here that there can be no

negative eigenvalues of X a fact used in arriving at (78) :

With the assumption that <t> satisfies (74) and (76), we multiply the

latter by <t> and integrate from x = to x = L to obtain

X = ih \ W' dx. (79)

After two successive integrations by parts (79) becomes

_ EJ l (
, _ , [

L
2 I

If, further, <t> satisfies any set of end-point conditions from among (73)
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one from among each of the two groups the integrated part of (80) is seen

to vanish; it therefore follows that X ^ 0, since #, /i, 7 are all positive.
1

(c) The sequence of eigenfunctions fa, fa, . . .
, fa, . . . for the

vibrating bar form an orthogonal set in ^ x ^ L with respect to a

constant weight function. That is, if </>y and <f>k are two different eigen-
functions of the problem, we have

L

tofadx =
(j ^ k). (81)Q

To prove (81) we multiply the equations satisfied by the two eigen-

functions namely, according to (76),

EJJ!" =
y\jto< EJrf'l" = y\ kfa (82)

by <j>k and <fe, respectively. Subtracting the results and integrating
om x to x = L we obtain

(82)

<>k <, .

from x to x =
L, we obtain

7(X;
-

X*) /
L

to fa dx = EJ l

I*' (tf'fa
-

to *"")dx

EJ\
[<t>j fa to<t>k + <t>j<l>k

~~
</ <hfc]o i (83)

as we find on twice integrating by parts each term of the integral on the

right. Hut if to an(l to- satisfy the same set of end-point conditions from

among (73) as they must, since they are assumed to be eigenfunctions

of the same problem- -it is clear that the final member of (83) is zero.

Thus, since X, ^ \ k if j ^ k a fact proved in exercise 14 at the end of this

chapter- --the orthogonality (81) follows directly.

A second proof of the orthogonality is based upon the fact that the

eigenvalue-eigenfunction problem for the vibrating bar is equivalent to

an isoperimetric problem. Namely, an extremum of the integral

K ')* dx (84)

with respect to functions </> which satisfy the normalization condition

is effected by a function <f>
which satisfies the differential equation (76).

To verify this fact we use the result of exercise 9, Chap. 4; namely, if

we introduce (y/EJi)\ as undetermined Lagrange multiplier, the extrem-

ization process leads us directly to (76). Further, if at a given end point

(x
= or x = L) no a priori restrictions are placed upon the functions <f>

eligible for the extremization of (84), the extremizing functions must

1 Proof that X can hold only in the cases of a bar with both ends free or one end

free and the other hinged is left for exercise 13(c) at the end of this chapter.
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satisfy <" = <'" = at that end; i.e., the free-end conditions (i) or (i')

of (73) must be satisfied. Similarly, we see that the appropriate end-

point conditions for a hinged or clamped end must likewise be satisfied

by the extremizing functions. For example, at a hinged end, the func-

tions eligible for the extremization must satisfy <t>
=

0, while </>' is arbi-

trary; according to exercise 9, Chap. 4, we obtain the additional condition

<" = at the hinged end for the extremizing functions- in accord with

(ii) or (ii
7

) of (73).

For the orthogonality proof we use the result (73) of exercise 9, Chap. 4.

Namely, we have

'

dx =
' (85)

where </>
is any extremizing function with X the corresponding eigenvalue

and rj is arbitrary, except that it must satisfy any a priori end-point
restrictions which may be placed upon the eligible functions 0. In (85)

we may therefore write
<f>
=

<fo, X = X; , 17
=

<j>k and then rewrite the same

result with the indices j and k interchanged (j ^ k). Subtracting the

two results thus obtained, we get

jt- (x,
-

X,) / 4,4* dx =
0,&J i Jo

whence the orthogonality
1

(81) follows, inasmuch as X, ^ X&.

10-7. Bending of a Rectangular Plate by Couples

The problem of the transverse vibration of a thin plate is most easily

approached through consideration of the bending of a rectangular plate

by couples applied at its edge surfaces. Just as the problem of the bar

bent by couples (10-5) leads to an expression for the strain potential-

energy function applicable to the theory of the vibrating thin rod (10-6),

so also does the study of the rectangular plate bent by couples lead to a

suitable potential-energy function for the vibrating thin plate. In both

cases the connection between the static problem and the corresponding

vibration problem is developed on the basis of the general principle

enunciated in 10-3 (a).

(a) We consider a rectangular plate of uniform thickness 2h situated,

in its unstrained state, with its middle plane in x 3
=

0; thus the faces of

the unstrained plate lie in the planes x* =
h, respectively. The bound-

1 The main advantage of the second proof is that no explicit mention of the boundary

(end-point) conditions is required an advantage of great significance in the demon-

stration (10-9(6) below) that the vibrating-plate eigenfunctions form an orthogonal

set.
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ary-edge surfaces lie in the planes x\ = 0, x\ =
LI, z 2

=
0, z 2

= L 2 ,

respectively (see Fig. 10-2). We neglect the influence of body forces.

With proper regard for the altered orientation of coordinate axes, refer-

ence to (40) of 10-4(6) reveals that a state of stress in which

T 22
= = constant), (86)

with Tn = T 33
= TU = T23 = Tn =

0, describes the bending of the

plate as if it were a bar extending in the x 2 direction. As described in

10-4 (c) every line Xi = constant,

(in0*3
= constant (in the unstrained

state) is strained into parabolic

shape in a plane parallel to the 2 3

plane. According to 10-4(6) the

bending results from a pair of equal

but oppositely directed couples

about the x\ axis.

Further, we superimpose upon
the bending of the plate described

in the preceding paragraph an ad-

ditional bending which arises from a pair of equal but oppositely directed

couples about the .r 2 axis. That is, we withdraw the condition Tn =
and replace it with

n = Pi.r 3 (Pi = constant). (87)

We proceed to investigate the condition of the strained plate under the

system of stresses given by (86), (87), and

TTI ni rn rn .. r\ /QQ\
1 33

== I 12
~

* 23
== ^31 U. V^o;

Substitution of (80), (87), (88) into (30) of 10-2(c) with FI, F 2 ,
F 3

set equal to zero, since we ignore the influence of body forces verifies

directly that the given stress distribution is consistent writh static

equilibrium.

(6) To ascertain the surface-force distribution which gives rise to the

stress distribution (80), (87), (88) we employ (29) of 10-2(6), from which,

together with (88), it follows that the plate is completely free of surface

forces on the faces x* = h. Further, we have from (86), (87), (88),

and (29) that

T 2
= T 22

= P 2;r 3 , Ti = r.

Ti = -Tn =

=
=
=
=

on xi =
LI,

on o* 2
= L 2 ,

on xi =
0,

on* 2
=

0,

(89)

since cos (n,l)
=

1, cos (n,2)
= cos (n,3)

= on x\ = Li, etc.
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The total force on the face x\ = LI is given by

J-h JO
1 2 3 l

) -h JQ '

according to the first line of (89) . Similar computations reveal that the

total force on each of the three remaining edge faces is likewise zero.

From the definitions given in (43) of 10-4(6) we find the effect of the

surface-force distribution on x\ = LI (first line of (89)) to be a bending
moment

about the x 2 axis, with an equal but oppositely directed moment arising

from the surface-force distribution on the face x\ = (third line of (89)).

In similar fashion we may show 1 that the surface-force distributions on

x<t = L 2 and x 2
= are respectively describable in terms of equal but

opposite bending moments of magnitude -P 2Li/i
3 about the Xi axis.

(It is left for exercise 17(6) at the end of this chapter to show that each

of the four moments is a couple, as defined in 10-4(6).)

(c) Using the Hooke's law equations (10) of 10-1 (rf), we derive from

(86), (87), (88) the strain-tensor elements

_ T [p }x

'
e

js
=

E

_ ,

' '

+

2

p̂
(9o)

Substitution of (90) into (12) and (13) of 10-1 (e) verifies that these strain

elements satisfy the compatibility equations and are therefore suitable

for the description of a physically feasible state of strain.

In the manner of 10-4 (c) with the details left for end-chapter exercise

18 we can show with the aid of (90) and the definitions (5) of 10-1 (c)

that every unstrained line x\ = constant, Xa = constant is bent into para-

bolic shape (in a plane x\ = constant) for which

= -
(P,

- ,PO. (9D

Also, the lines x* = constant, # 3
= constant become parabolas (in planes

x* = constant) for which

-
(Pi

- *>. (92)

1 See exercise 17(a) at end of chapter.
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Further, we obtain the result

from which we ascertain, by definition, that the planes of principal curva-

ture of any plane 0*3
= constant are respectively parallel to the 0*1X3 and

o; 2o*3 planes. This fact comes in for special consideration in the deriva-

tion in (d) below of the strain potential-energy function applicable to the

study of the vibrating thin plate.

(d) In accordance with the method outlined in 10-3 (a) we proceed to

compute an expression for the strain potential energy of the bent plate

which depends only on the strain configuration and not upon the agencies

which give rise to the strain. Since we wish to apply the result to the

vibration of thin plates of arbitrary shape, we must obtain an expression

for the strain potential energy which is independent of the orientation

of the x\ and o* 2 axes. Even in the case of a rectangular vibrating plate

we cannot be sure that the planes of principal curvature will at every

point be respectively parallel to the 0*10*3 and 0*22*3 planes a fact upon
which the results (91), (92), (93) of (c) above depend.

Substituting (80), (87), and (88) into (37) of 10-3(6), we obtain for the

strain potential energy per unit volume

W = ~
f, (p i + Pl

~ *>PiPJ*l

Integrating over the thickness of the plate from 0*3
= h to 0*3

=
A,

that is we obtain the strain potential energy per unit area of plate

surface

WA = f W dx 3
=

, (PI + PI
- 2aP,P 2). (94)

J -h on

Solving (91) and (92) of (c) above for PI and P 2 ,
we obtain

through substitution of the results into (94).

In order to free the result (95) from the specificity inherent in the

circumstance (93) of (c) above we replace the coordinates x\, x 2 by a

pair of cartesian coordinates x, y related to 0*1 and z 2 through the equations

x\ = x cos Q y sin Q, z 2
= x sin Q + y cos Q. (96)

Q, considered arbitrary, is the angle through which the x\ and x 2 axes

must be rotated about the 0*3 axis to be brought into coincidence with
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the new x and y axes, respectively. Using the results of exercise 2 (a,6),

Chap. 9, we have

dx\ dx\

~
dx*

and
d*u 3 d*us _ f d*u* V = a% d 2

^8 _ / d 2
^3 V

da:
2 ta2

\toi to 2/ "to 2
di/

2
\dz dy)

'

where both results are independent of the angle Q. Thus, because of

(93), we may rewrite (95) as

,
5 + w)

~
(
~

}

I^w ~
\te~di,) J)

(97)

with u written for w 3 and D Q for [2h*E/3(l a 2
)] and so obtain an

expression for the strain potential energy per .unit plate area which is

independent of the orientation of the coordinate axes lying in the middle

plane of the plate. The constant Z) is called the flexural rigidity of thq

plate.

We employ the result (97) in the section which follows directly.

10-8. Transverse Vibrations of a Thin Plate

(a) In considering the transverse vibrations of a thin plate, it is con-

venient as well as consistent with all of the simplifying assumptions

generally made in a first approach to the phenomenon - to suppose the

entire mass of the plate to be concentrated in the plane midway between

the parallel plane faces of the plate. We suppose that in its equilibrium

position the plate covers the domain D with boundary curve C in the

xy plane. The deviation from equilibrium during vibration is described

by the function u =
w(x,7/,0, where u is the transverse displacement of a

point located (in equilibrium) at (x,y). Thus, if the constant mass per

unit area of the plate is /x, the total kinetic energy of the plate is given by

T =
$nffu*dxdy. (98)

D

To obtain an expression for the potential energy of the plate, we employ
the assumption introduced in 10-3 (a) that the strain potential-energy

density at a point depends only on the strain configuration at the point.

With this assumption we may thus employ the expression (97) of 10-7 (d)

for the potential energy per unit plate area, so that the total potential

energy is given by

V = *><> [(V
2
u)

2 -
2(1

-
a)(u,xuvv

-
u*J]dx dy, (99)
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where V 2u is written for (uxx + uvv ) and the subscripts indicate partial

differentiation.

With (98) and (99) we have for the hamiltonian integral (7) of 6-2(a)

dy dt; (100)

according to Hamilton's principle (0-2 (o)), (100) is extremized with respect

to those functions w(.r,.v,/) which describe the actual plate configuration

at t = t\ and t t<i by the particular function u(x,y,t) which describes

the actual configuration for all t. Owing to possible physical constraints

placed upon the plate at its boundary edge C
T

the functions u eligible for

the extremization of / may be required to satisfy certain conditions on C;

explicit consideration of such conditions is carried out in (e) below.

(b) To effect the extremization of (100) we form the integral 7(e) by

replacing u in the integrand of (100) by the one-parameter family of

comparison functions

U =
u(x,y,t) + fiffojM), (101)

where u(jc,y,t) is the actual extremizing function and rj(x,y,t) is arbitrary

to within twice continuous differentiability and the requirement (accord-

ing to Hamilton's principle) that rj(xjj,ti)
=

rj(x,y,t^)
= 0. Further, both

TJ and/or its normal derivative (drj/dn) =
rj n (taken with respect to the

outward normal to C) may be subject to boundary conditions consistent

with restrictions on C imposed upon the functions eligible for the extrem-

ization of /; these are discussed in (e) below. It is clear that 7(e) is an

extrcmum for =
0, so that

/'(O) = 0. (102)

Writing

/(tV'WW**,/) = ifMii
2 -

/>o[(V
2
*/)

2 -
2(1

- a}(utluvy
-

<)]}, (103)

according to (100), and using (101) to compute

~dT
"

dc"
~ "" ~d

~ *"
de

"
'

we form /'(e) and then set = (replacing U by u, according to (101))

to obtain

tl

D

/'(o)

according to (102).



230 CALCULUS OF VARIATIONS [10-8

Through integration by parts over t we get

If
****- -ff '*(

D D

since y = for t = t\ and t = 2 . To transform the final three terms of

(104) we employ the forms of Green's theorem given in (25), (20), and

(27) of 2-13 (e), respectively:

> ( , \

'

(/-) ta - (* . (106)
2 Jc \_dx\duxyj dij\d

J

Further, we have direct use for the result

. -

dx 2
\dux dy* \duyy/ dx dy \duxy

-r^ f d*u . rt d*u . ^- -Do L^ + 2
to^r

+ ^ = -

as we find 1 on direct computation from (103). From (103) we also obtain

d

di

With the results of the preceding paragraph we may rewrite (104) as

/;

f i r
s fjL\ j-

i d f.*L\\ -
Jc i" L^W/ +

2 dx \duj\

(106)

the explicit expressions for the integrands of the line integrals along C
are obtained from (103) in (d) below. Since (106) must hold for arbi-

1 The expression V*u is merely an abbreviation for
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trary rj, it must, in particular, hold for those t? for which 17
=

v\x
=

t\v
=

on C. For such r?, (106) reduces to the integral over D (in turn inte-

grated from t = t\ to / = tz) ;
an obvious extension of the basic lemma of

3-1 (c) yields the result

= in D (all (107)

FIG. 10-3.

as necessary for the fulfillment of (106). The fourth-order partial differ-

ential equation (107) is thus, accord-

ing to Hamilton's principle, the

equation of motion of a vibrating
thin plate.

Derivation of the various sets of

boundary conditions for the vibrat-

ing plate depends upon the integrals

over C which appear in (106). The
treatment of these integrals is greatly

facilitated by the transformations

carried out in (c) following.

(c) While the use of the cartesian coordinates x and y may be con-

tinued with profit in a problem involving a rectangular plate, it is essen-

tial for more general purposes to introduce as coordinate variables the

arc length s of the boundary curve C of D and the distance n measured
from C along the normal to C. Given a point (r,y), we determine its

(n,s) coordinates by drawing the shortest normal to C through (x,y); the

intersection of this normal with C determines the s coordinate of the

point, while the n coordinate is the distance from (a*,?/) to C along the

normal (positive if (.r,t/) is exterior to 7), negative if interior). (See Fig.

10-3.) Clearly, it is necessary that through each point (x,y) there be a

uniquely determined shortest normal to 0, which is the case if (x,y) is

not separated from C by the ovolute of (locus of centers of curvature).

Since our purpose here is merely to transform the line integrals along C
of (106), this condition of nonseparation may be considered fulfilled inas-

much as we employ the (n,s) system in the evaluation of quantities on

C only "that is, for n = O.
1

If we represent C in the parametric form x = :r (s), y = y (s) and let

a. = a(s) be the angle made by the tangent to C with the positive x direc-

tion,
2 we derive from Fig. 10-3 the transformation equations

1 At a corner of C the normal direction is undefined. We assume that C consists

of a finite number of smooth arcs and therefore possesses at most a finite number of

corners.
1 We measure counterclockwise from the positive x axis to the positive direction

(direction of increasing s) of the tangent. With this definition a is surely a continuous

function of s (0 a < 2w), except, possibly, at a finite number of corners.
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x = xo(s) + n sin (),

2/
=

2/o(s) n cos a(s).
V '

With the use of the elementary relationships

GuZ/O ^2/0 ttOt Tf/ \ Stf\f\\= cos Of,
== sin QJ. 5

== zVio). tiuyj

whereX is the curvature of C, we obtain from (108) the partial derivatives

dx . dy= sm a,
- = cos a,dn dn

^ (no)

^ =
(1 + nK) cos a,

^ =
(1 + nK) sin a.

Thus the jacobian
1 of the transformation (108) is

A(sv *t\

(111)

We further obtain from (110) the equations of transformation of first

partial derivatives

un = ux sin a uy cos a, ut
=

(1 + nK)(ux cos a + % sin a).

Solving these equations for ux and Uy, we get

. cos a.
,

sin a /- 10 \wx = i/n sm a + w,
^^>;

z/y
= wn cos a + w,

1
, ^ (112)

(We have occasion below to employ the relations (112) with u replaced

by the function 17; the replacement is valid because (112) hold for any
differentiate function u.)

To transform second partial derivatives to the (n,s) coordinate system
we employ the result of 9-2(6), with the identification n 7*1, s = r 2 and

the suppression of the third independent variable r3 . With the use of

(112) we successively substitute

cos a
2

/\ * 1 9 1
i

sn a
00 / =

2<
=
2(-

M cos + MT+l
7 ... x - 1 1 I . . cos a | f

(m) / = 5 11,11,
=

^ (^
sm + w

-rr^( (

~ . sn
cos a + tt-

into (22) of 9-2(6), with the jacobian denoted by D in 9-2(6) given by

(1 + nK), according to (111). The results of these substitutions are

1 See 2-8(/). Also see exercise 20 at the end of the present chapter for a discussion

of the required nonvanishing property of this jacobian.
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respectively

,.^ o i
c s

2 a
. o sin cos a

(i)
= Wnn sm* a + ..

-

j^
cos 2 a [2K sin a cos a n7' cos 2 al

n ITI^
~ W '

L (1 + ~nA)
2

~~ +
(1 + n#)

,.. N ,
sin 2 a rt sin a cos a

(n) m. . Mnn cos* a + M..

(j-^y,
~ 2u.n

l + nR

,
sin 2 a

, f2A sin a cos a nA' sin 2 a

X...X . . sin a cos a . sn 2 a cos 2
a.

(in) ^^xv
= -7/nn sin a cos a + u, g -r-

"Z~^)2
+ M -

r+~nK

, jr
sin a cos a TA"(cos

2 a sin 2
a) nK' sin a cos a

-h Aun
- +

where A'' = (dK/ds) == (d^a/ds
2

). In all that follows, our use of the

results (113) is restricted to the boundary curve C that is, for the special

case n = 0.

(d) In applying the results of (c) to the transformation of the line inte-

grals of (106), we first note that along C we have n =
0, dn 0, so that,

according to the second line of (110),

dx = ds cos a, dy = ds sin a (along C). (114)

Further, we have on direct (although somewhat lengthy) computation
from (103), with the aid of (114), that

_dy\duyuj 2dx\duzy/] [_dx\du xx/ 2dy\duxv

sin a (?/xx + Wyy) cos a (uxx + wvv ) ds
dx oy J

'*; (H5)

the final form of (115) springs from the fact that

d dx d . dy d . d d=
1

^-r = sin a ~ cos a '

dn dn dx dn dy dx dy

according to the first line of (110).

Setting n and replacing u by ry in (112), we obtain

yx = Tjn sin a + r;, cos a, rjv
=

rjn cos a + rj, sin a (along C). (116)

Another lengthy computation, with the aid of (116), (114), and (103),

brings us to the result
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D {r)n[V*u (1 <r)(uxx cos 2 a + 2uxv sin a cos a + uvv sin 2
a)]

+ (1 <r)rja[uxy (s\n
2 a cos 2

a) + (^*z ?O sin a cos a]}ds

, (117)

where the final form is achieved through the transformations (113) with

n set equal to zero.

Still another aid to the transformation of the line integrals of (106) is

the integration by parts

/ y*(utn Ku)ds = /
17

-

Jc Jc ds
(118)

The integrated term vanishes because C is a closed curve, and it is assumed

that each factor of [ri(u8n Kit,)] is a single-valued continuous function

of position along C. 1

(At a corner point of discontinuous normal direc-

tion of C the required continuity of (usn Ku8) involves special con-

sideration; in the case of the rectangular plate with boundary edge free

( 10-10 (e) below) such consideration leads to a new boundary condition.)
2

With the results (115), (117), and (118), in conjunction with (107),

we may write (106) of (6) above as

+ rj n[(l
-

ff)(uM + Kun )
- V 2

M] ds dt = 0. (119)

The interpretation of this result becomes meaningful only on the basis of

discussion of the various types of physical constraints which may be

imposed at the boundary edge of the plate; this discussion follows directly:

(e) The most important types of physical constraint which may be

imposed along C are (i) clamping, (ii) simple support, (iii) complete
freedom.

(i) At a clamped edge not only is C constrained to remain in the equi-

librium (u = 0) plane, but, in addition, the normal derivative un of the

transverse displacement is held to zero at the boundary. Thus the func-

tions u eligible for the extremization of (100) of (a) above must satisfy

1 Although the subscript s of 17, indicates partial (n held constant) differentiation

with respect to s, the fact that n along C reduces partial differentiation with

respect to 8 to ordinary differentiation in this case.

2 See also exercise 21 at the end of this chapter for a proof that (u,n Ku) cannot

be discontinuous along C even if the restriction to continuity is not made a priori in

the free-edge problem.
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u = un = along C. It therefore follows that

i?
=

i?n
= along C (clamped edge). (120)

(ii) At a simply supported edge the only constraint is the holding of C
fixed in the equilibrium plane; no condition is imposed upon the normal

derivative of the transverse displacement. The functions u eligible for

the extremization of (100) must therefore satisfy u = (with un arbi-

trary) along C; that is,

rj
=

0, T? n arbitrary along C (simply supported edge). (121)

(iii) At a free edge there are no physical constraints, so that the eligible

functions u are required to satisfy no special conditions. Thus we have

both of

17, T/ n arbitrary along C (free edge). (122)

Because of (120) equation (119) reduces to a triviality in the case of

the clamped-edge plate (i). The boundary conditions, therefore, are

those which are imposed from the outset namely

u =
0, u n

= along C (clamped edge). (123)

With (121) taken into account (119) directly implies that the coef-

ficient of Tin vanishes 1

along C. Together with the condition imposed at

the outset this result gives us for the simply supported plate (ii)

u = 0, (1
-

<T)(UM + Ku n )
- V 2u - along C. (124)

The second condition may be simplified as follows: From the first two

identities of (113), with n =
0, it follows that

V 2u = uxz + u yy
= Mnn + MM + Kun along C. (125)

But since u = along f, it follows that u,, and therefore MM ,
must

vanish on C. In view of (125), (124) thus reads

u 0, KffU n + wnn = along C (simply supported edge). (126)

Because of (122) the relation (119) implies the separate vanishing of

the respective coefficients of r? and rj n in the case of the free boundary

edge (iii):

I + (i
-

,) ..
-

.
-

along c (free edge) (12?)

(1
-

CT)(MM +

We may, of course, deal with a plate whose boundary conditions are

mixed whereby, that is, one of the three sets of conditions above may
i See 3-1 (c).
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apply to certain portions of C while one or both of the other two sets

may apply to the remaining portions.

10-9. The Eigenvalue-Eigenfunction Problem for the Vibrating Plate

(a) As in the case of the vibrating-membrane problem (9-4 (a)), the

first step in the solution of the vibrating-plate equation (107) of 10-8(6),

in conjunction with any one of the sets of homogeneous boundary con-

ditions (123), (120), or (127), is to seek a solution of the form

u =
4>(x,y)q(t). (128)

Substituting (128) into (107), we obtain, on division by Do^,

Since the left-hand member of (129) is independent of t and the right-

hand member depends upon t alone, it follows that the two members are

equal to a constant, which in view of the proof in (b) below that this

constant cannot be negative we denote by /3
4

. We therefore conclude

that (129) implies two separate differential equations,

/3*<i>
= (130)

and

q + u*q =
0, (131)

where we write

- ?. (132)

The general solution of the time-dependent equation (131) is

q = A cos (j^t + B sin w, (133)

where A and B are arbitrary constants.

Since the sets of boundary conditions (123), (120), and (127) of 10-8(c)

are all homogeneous, substitution of (128) involves cancellation of the

time-dependent factor q(t) and thus directly yields the three sets of

boundary conditions for <t>(x,y):

(i)
=

0,
= along C (clamped edge),

(/7t

(ii) =~0, K<r ~ h 32 = along C (simply supported edge),*"

uTl uTl

(134)

along C
(free edge).

a) (
-

os \ds on
- K^} =

dsdn
"

ds
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Inasmuch as the equations which must be satisfied by <t> namely, (130)

and one set from among (134) -are homogeneous, we can without loss of

generality impose the convenient normalization condition

tfdxdy = 1. (135)
D

The problem of solving the fourth-order partial differential equation

(130) in conjunction with any one (or combination) of the sets of bound-

ary conditions (134) constitutes an eigenvalue-eigenfunction problem of

the type encountered in connection with the vibrating string, membrane,
and rod. Any value of ft for which there exists a function

</>, normalized

according to (135), which satisfies (130) and the single required set of

boundary conditions from among (134) is an eigenvalue of ft] < is the

corresponding eigenfunction. There may, in some cases, exist several

linearly independent eigenfunctions corresponding to a single eigenvalue

of ft', that is, the eigenvalues of the vibrating plate may exhibit degeneracy.

According to (128), (133), and (132), it is clear that each eigenfunction

</> describes a mode of single-frequency vibration which the given plate

(under given boundary conditions) is capable of executing. The fre-

quency (a>/2?r) of each mode is related to the corresponding eigenvalue

of ft through (132). The degeneracy of a given eigenvalue implies the

existence of more than one independent mode of vibration associated

with the given frequency.

(b) We may characterize the eigenvalue-eigenfunction problem for the

vibrating plate as an isoperimetric problem:
The extrema of

//

with respect to functions <f> which are four-times differentiate in D, which

satisfy the normalization condition

</>

2 dx dy =
1, (136)

and which, in the case of the

(i) Clamped plate, satisfy <f>
= (dj/dri)

= on C,

(ii) Simply supported plate, satisfy $ = on C,

are supplied by the eigenfunctions of (130) taken in conjunction with

the appropriate set of boundary conditions from among (134).

The proof of the above characterization is left for exercise 24 at the
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end of this chapter. At an early stage of this proof we achieve the result

-
\<t>v]dx dy =

0,

(137)

where < is an extremizing function and y is arbitrary to within twice

differentiability and, in the case of the

(i) Clamped plate, rj
= (dy/dri) = on C,

(ii) Simply supported plate, rj
= on (7;

the constant X, originally introduced as a Lagrange undetermined multi-

plier, is at a later step in the proof shown to be identical with the param-
eter /3

4 which appears in (130). That is,

X = 4
. (138)

Because of the arbitrary character of the function rj we may set y =
</>

in (137) to obtain, after solving for X,

X =
// [(VV)

2 -
2(1

- *)(*, -
iliftdxdy, (139)

D

with the aid of (136). The integrand of (139) may be rewritten as

1 2 i o A. ^L J j>2 i o/1 \ j.2
T'XJB ~\ ('<pxx*P'Ui/ l~ *ri/w T~ ^\*- ^/ *?/

sincet < <r < ?. It therefore follows from (139) that X ^ and,

through (138), that the substitution of 4 for the common value of the

two members of (129) in (a) above is justified.

We may also use the result (137) to establish the orthogonality of the

plate eigenfunctions: If <
0) and <

(fc) are cigenfunctions associated respec-

tively with a pair of distinct eigenvalues of /3
4

which, in accordance with

(138), we denote by X, and \k we replace <t> by <
0) and therefore X by

Xy in (137), along with the substitution (fc) for the arbitrary^ ry. We
effect a second substitution of the same type into (137) by reversing the

indices j and k in the initial substitution. Subtracting the two special

cases of (137) so obtained, we achieve the result

t See 10-l(d), final paragraph.

J In those cases (clamped or simply supported plate) in which 17 is required to

satisfy special conditions (T; ijn - 0, or T;
= 0) on C, the eigenfunctions <j>

(k) and
<

(j>) must satisfy these same conditions, so that the substitution y <
(fc) or t; <f>

( >)

into (137) is justified.
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xdy = 0.

Since Xy 5^ X&, the integral must vanish, and the orthogonality follows.

In the case of degeneracy the existence of more than one linearly

independent eigenfunction corresponding to a single eigenvalue of ft

the orthogonalization process delineated in 9-6 (c) is applicable. With
the result of the preceding paragraph, therefore, we conclude

II *>*'*> dx dy =
(j * k),

for the plate eigenfunctions <
(1)

,
<

(2)
,

. . .
,

<
(* }

,
. . . associated with

any one of the three types of boundary conditions considered here.

(c) The isoperimetric characterization of the vibrating-plate eigen-

value-eigenfunction problem may be sharpened into a minimum charac-

terization which reads as follows:

We arrange the totality of eigenvalues of /3
4 associated with the plate

problem, for any one of the three types of boundary situations considered

above (clamped, simply supported, or free edge), in the ascending order

0\ ^ 0J ^ ... =: Pk = -
j
each degenerate eigenvalue appears con-

secutivoly in the list a number of times equal to the number of inde-

pendent iMgenfunctions associated with it. The kth eigenvalue /3j[
is the

minimum of the integral

2(1
- *)(* -

4>ly)]dxdy (140)

with respect to those functions </> which satisfy the normalization condition

>- dx dy = 1 (141)
1)

and the (k 1) orthogonality relations

. dx dy = (m =
1,2, . . . ,fc 1),

z>

where <
(m) (m =

1,2,3, . . .) is the eigenfunction which satisfies

=

and the appropriate set of boundary conditions from among (134). Fur-

ther, the functions < eligible for the minimization of 7 must be, together

with their first partial derivatives <t>x and < y ,
continuous everywhere in D;
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the higher order partial derivatives may exhibit finite discontinuities at

an isolated number of points or across a finite number of smooth arcs in D.

For the plate with boundary edge clamped the additional restrictions

<t>
=

(d<t>/dri)
= on C must be imposed on the eligible functions; for the

plate whose edge is simply supported the eligible functions are restricted

to those which satisfy </>
= on C. No special boundary restrictions are

imposed upon the eligible functions <t> if the edge of the plate is completely
free,

The minimum /3% of I under the stated restrictions is achieved when

<t>
=

<*><*>.

The proof of the above characterization of the plate eigenvalues runs

along the lines of the corresponding proof of the minimum characteri-

zation of the vibrating-membrane eigenvalues which appears in 9-9(6).

It thus depends upon the validity of an expansion theorem for the plate

eigenfunctions analogous to the expansion theorem for the membrane

eigenfunctions stated (without proof) in 9-6(d). Explicit statement of

the required expansion theorem is found in exercise 25 at the end of this

chapter; proof of the minimum characterization of the plate eigenvalue-

eigenfunction problem is reserved for the same exercise.

(d) Finally, it is possible to characterize the eigenvalue-eigenfunction

problem for the vibrating plate in terms of a maximum-minimum princi-

ple which corresponds to the maximum-minimum characterization of the

membrane eigenvalues demonstrated in 9-11 (a). Explicit statement of

the principle for the plate, together with the proof, is reserved for exercise

26 at the end of this chapter.

10-10. The Rectangular Plate. Ritz Method of Approximation

As compared with the success in solving the vibrating-membrane prob-

lem in several cases, there are relatively few examples of the eigenvalue-

eigenfunction problem for the vibrating plate which have been solved

rigorously. The problem of the circular plate, considered in end-chapter

exercise 29, is the one case in which a complete solution has been achieved

for each of the three types of boundary situations (clamped, simply sup-

ported, free) introduced in 10-8 above. For the rectangular shape, how-

ever, only the problem of the simply supported plate has been completely

solved. Partly responsible for the lack of solutions for the free- and

clamped-rectangular-plate problems is the easily verified fact that the

partial differential equation (130) of 10-9(a) the equation satisfied by
the plate eigenfunctions is not separable

1 in rectangular coordinates.

In the absence of a method for obtaining a precise analytical solution,

1 The meaning of separability in this sense is given in 9-8 (a), second paragraph.
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W. Ritz 1 was the first to employ the minimum property enunciated in

10-9 (c) as an aid to approximating the eigenvalues and eigenfunctions

of the free-edge-rectangular-plate problem. (It is for this reason that

any method of eigenvalue-eigenfunction approximation based upon the

direct minimization of integrals such as those employed in 7-6, 9-13,

11-5, as well as below in the present section is generally termed a "Ritz

method. ")
2 Because of the ready accessibility of Ritz's monumental work

but especially because of the almost overwhelming amount of detailed

computation involved we limit ourselves to merely a few remarks con-

cerning the problem of the rectangular plate with boundary edge free;

these are found in (e) below. The main portion of this section is devoted

to the Ritz method as applied to the square plate with boundary edge

clamped.

(a) By setting?/ =
rj
= 0and/ =

(<t>Zx<t>vy <t>ly) in the trio of Green's-

theorem results (105) of 10-8(6), we transform the integral (140) of 10-9(c)

as follows:

(<M>yv
-

<t>IV <t>v)dy + (<t>t <t>zv
-

<t>v <t>zz)dx]. (142)

Further, we employ the relations (112) and (113) of 10-8 (c)-- -with the

function ?/ replaced by <f> and with n = (along C) together with (114)

of 10-8(rf) to bring (142) into the form

/ = // (V-V)
2 dX dy -

(1
-

<T) / [0n( M + K>) + </>.(#</>
-

*.n)]d*

D

-(l- a) I

[
*(*.. + A>n )

- ~ (K*. - 0.n)
J
ds;

(143)

the final form is reached through an integration by parts.
3

In the case of a clamped plate the functions </> eligible for the minimi-

zation of (140) of 10-9(c), which is the original form of (143), must satisfy

<f>
= n = o on C. Thus, in this case, the line integral of (143) vanishes,

so that the integral whose successive minima, in the sense of 10-9 (c), are

the eigenvalues of the clamped-plate problem is simply

1 Annalen der Physik, Bd. 28, p. 737, 1909; or Gesamelte Werke Walther Ritz, p. 265,

Paris, 1911.
1 Such a method is frequently called a "Rayleigh-Ritz method."
8 See discussion directly following (118) of 10-8 (d), with accompanying footnote.
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*4>)*dxdy.
-

(144)

(6) The method we employ for the approximation of the successive

eigenvalues of a given clamped-plate problem is completely analogous
to the method developed in 9-13 for approximating the eigenvalues of a

given membrane problem. Thus w<> replace the class of functions <t>

eligible for the minimization of (144) by the subclass of functions ^ which

exhibit the form

* = ci*i + c 2<l> 2 + + c.*., (145)

where &i(x,y), $i<(x,y), . . .
,
$f (x,y) are s given functions, continuously

differentiable in />; Ci, 02, . . .
,
c 8 are arbitrary constants consistent with

the required normalization condition (141) of 10-9 (c) with
<j> replaced by ^.

The functions <J>i, $> 2
,

. . .
,

<i 8 satisfy the clamped-platc requirement of

vanishing, together with the normal derivative of each, on the boundary
curve C.

We denote by \J/\, i/% . . .
, ^s the first s approximate cigenfunctions

1

sought, and the corresponding approximate eigenvalues (of the parameter

|0
4
) by A i, A 2, . . .

, A,. In accordance with (145) we write

I <r (m =
1,2, . . . ,s), (140)

so that the problem of finding each minimizing \f/m is equivalent to that

of determining the set of values c
{

\ c 2
m)

,
. . .

,
c'

m)
for the coefficients

Ci, c 2 ,
. . .

, c, respectively, in (145), for each m. Since the functions ^

eligible for the fcth minimization of (144) must be orthogonal in 1) to the

first (k 1) approximate eigenfunctions \f/\ y ^2, . . .
, ^t-i, we have,

because of (145) and (146),

<*fW = (m =
1,2, . . . ,fc

-
1), (147)

i ;-'i

where we define

Ix dy. (148)

Substitution of (145) for < in the normalization condition (141) gives,

further, the requirement

y
1 See 7-6 (6).
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Finally, if we define

Fyt
= T

tJ
= I!V^V 2^ dx dy,

D

substitution of (145) into (144) gives

243

(150)

for the quantity whose successive minima we seek.

Comparison of the foregoing paragraph with 9-13(a) reveals that the

problem of minimizing (151) with respect to the set of Cj, c 2 ,
. . .

,
ct

which satisfy the subsidiary conditions (147) and (149) is identical wTith

the minimization of (19f)) of the earlier section under the restrictions

(192) and (194) of that section. For this reason we may repeat, in

essence, the paragraph of 9-13 (a) which follows the equations referred to:

The first s approximate eigenvalues AI, A 2 ,
. . .

, A< of the clamped-

plate problem are given by the s roots of the equation in A

\<r ls

T 8g

= 0. (152)

The coefficients c\
k
\ c

(

2

A)..... c
(

g

k
\ which when k ranges over the values

1, 2, . . .
,

s supply, through (140), the corresponding approximate

eigenfunctions ^i, ^ 2..... \f/8 ,
are obtained by solving the system of s

linear homogeneous equations

=0 i = 1,2, ... ,5)

in conjunction with the normalization requirement

for each fc. The constants aa are computed by means of their definition

(148); the I\y are computed from (150).

As in the case of the approximate membrane eigenvalues obtained in

9-13 (a), each approximate plate eigenvalue is an approximation from

above; that is, 0J g A*, for all k. This fact is a direct consequence of

the maximum-minimum characterization of the plate eigenvalues stated,
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but not proved,
1 in 10-9 (d). The larger we choose the value of s, clearly,

the greater is the accuracy, in general, of each approximate eigenvalue.

(c) We apply the method outlined in (6) above in order to approximate
the eigenvalues (of the parameter /3

4
) associated with the clamped square

plate of side a. For the sake of simplicity of the computation involved

we confine our attention to the degree of approximation achieved by the

value s = 3. (In order to keep in focus the wider generality of the

method, however, we do not specify the value of s until the very point

at which it is quite necessary to particularize to the value s =
3.)

An almost obvious choice2 for the set of functions <f>i(.r,?/), 3>2(x,i/),

. . .
,
$8 (x,y) in linear terms of which we seek to express the approxi-

mate eigenfunctions ^i, ^2, . . .
, t* is the set of products of eigen-

functions of the clamped-vibrating-bar problem; namely, if w q (x) is the

gth of the orthonormal eigenfunctions for the clamped bar of length a

along the x direction so that wr (y) is the rth such eigenfunction for the

clamped bar of length a along the y direction we employ the products
wq(x)wr(y) in the following fashion:

and, in general,

$V
= wq (x)w r (y) [j

= ite + r - 2)(q + r - 1) + q], (153)

where

j =
1, 2, . . .

, 0; r = 1, 2, . . .
, *(VsFTl -

l)j_
q =

1, 2, . . .
, (\/8s + 1 + 1)

- r.

(Thus we restrict the choice of s to values for which (8s + 1) is the square

of an integer.) Since wq (x) and w'
q (x) both vanish for x = and x =

a,

and since wr (y) and w'
r (y) both vanish3 for y = and y =

a, it follows

that the products of the form (153) satisfy tho required conditions of

vanishing, together with their normal derivatives, on the boundary
4 of

the square plate of side a.

If we write p
4

q
for (y/EJ\)\ q and w q for </> g ,

it is clear from (82) of

10-6 (c) that the orthonormal clamped-bar eigenfunctions w q satisfy the

differential equation

= PX (ff
= 1A3, . . .), tt = x or y), (154)

1
See, however, end-chapter exercise 26.

1 See end-chapter exercise 32 for still another choice.

8 These properties of wq (x) and wr (y) spring from the fact that they are eigenfunc-

tions of the clamped-b&r problem (see (73), line (iii), of 10-6(a)).
4 See the final sentence of the opening paragraph of (6) above.
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together with the end-point conditions

ti>(0)
= w q (a)

=
0, w'

q (0)
- w

q (a)
= 0. (155)

The explicit form of w q (%) is given in (102) below.

In accordance with the parenthetic portion of (153) we write

i = ifa' + r' - 2) (g' + r
f -

1) + q', (156)

where q' and r' run through the same sets of values as do q and r, respec-

tively. Thus, with (153), we obtain from (148)

fa fa
ji
=

a
=

J
w q(x)w q>(x)dx

JQ
w r

because of the orthonormality of the bar eigenfunctions. It further fol-

lows, since i j if and only if both q q' and r =
r', that

ji
=

ij
=

fy,. (157)

Since it follows from (153) that

V 2*
;
= w'

q (x)w r (y) + w q (x)w';(y),

we have from (150), with the aid of (156),

'

q (x)w r (y) +w q(x)^(y)}^^ dy

= b rr ,

fj
w'

q (x)rf'q,(x)dx + 5 qq ,

fj tf(y)w'}(y)dy

w"(x)w Q>(x)dx
Jo

w T(y)w"(y)dy

w q (x)u/'q'(x)dx /Q
a

w';(y}w r,(y)dy

= drr*H qq> + b qq>H rri + L q
f qLrri -f- L^g/Lr/r, (158)

where we define

a

(159)

the Kroneckcr deltas appearing in the second line of (158) arise from the

orthonormality of the functions uv(). If we twice integrate by parts

each of the integrals appearing in (159) we find, on using (155), that

f a
f?*w C a

Hmm . =
/ ^ tiwtt)d{, L =

\
<()^'(C)d; (160)

Jo d? JQ

that is, Lmm' = Lm,m . Also, with the aid of (154), we obtain

Hmm, = p
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With the last two results (158) reads

pj) + 2L qq,Lrr,

(161)

since i = j if and only if both q =
9' and r = r'. It -thus remains to

evaluate the quantities Lmm> defined in (159) ;
for this we require an explicit

expression for w^) .

The orthonormal clamped-bar eigenfunctions, which satisfy (154) and

(155), are given explicitly by
1

/-V o sin

cos p (1

cos

sinh p q ( ^

sinh

cosh
i

cosh -

p v f f
-

^

cos j

j ?*

,1 >' 102)
sin- -

qir
f

for g
=

1, 2, 3, . . .
; (ap Q) is the qth positive root of the transcendental

equation
tan 2

(^ap) = tanh'2

(^ap) (103)

or of the equivalent equation cosh (ap) = sec (ap).

For the purposes of the computation carried out below we require that

the quantities Lmm> Lm/m be evaluated only for m, m' =
1,2, independ-

ently. These cases are fully covered by the following results:

(2\
I
-

] vm c
\<V

-'

Lmmf
=

0t
2
apm

tan

if (m + m') odd,

2
apm

-
p^ tan 2

P^

(104)

(105)

(m odd),

the computations of which are left for exercise 10 at the end of this

chapter. (Both (164) and (165) may be obtained directly from (102)

and (100) as follows: (104) results from the fact that wf

^(^)wm>(^) is an

odd function with respect to = -a if (m + m') is odd. Direct inte-

gration yields (165) on use of the fact, which follows from (103), that

tan %apm =
( l)

m tanh -*apm .)

(d) At this point we specify the value s = 3; that is, i and j take on,

independently, the values 1, 2, 3. By means of the parenthetic part of

(153) and (150) we establish the following tabulation of correspondences:
1 See end-chapter exercise 15. This result may, of course, be verified by direct

substitution into (154) and (155).
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j = 1: r = q =
1; j = 2: r = 2, g =

1; j = 3: r = 1, g = 2;
i = 1: / =

9'
=

1; i = 2: r' = 2, ?'
=

1; i = 3: r' = 1, (?'
= 2.

From (161), with the aid of (164), we thus obtain

rn = 2pJ + 2L2

n ,
T 22

=
(pj + p\) + 2LnL 2 2

= F 33 ,

r 12 = r 21 = r 13
= r 8l = 2LnL 12 = o, r 23

= r 32 = 2L* 2
= o.

With these results taken in conjunction with (157) of (c) above, the

determinantal equation (152) of (b) above (with s = 3) assumes the

particularly simple form

(A
-

2pJ
- 2L?0(A -

p\
-

p\
- 2LnL 22)

2 = 0. (166)

The numerical values of (ap\) and (ap 2 ) are given by
1

api = 4.7300408, ap 2
= 7.8532046,

to seven decimal places. Use of these figures gives (with somewhat less

accuracy), according to (165),

a 2Ln = -12.31, a 2L 22 = -46.05.

Thus (166) becomes

so that we achieve the following approximations to the three lowest eigen-

values (of the parameter
4
) of the clamped square plate:

A
1304

A A
5438 n<vnAl = _, A 2

= A 3
=
-^-- (167)

Without further analysis we cannot, of course, estimate the degree of

accuracy of the approximations (167). It is beyond the scope of our

study, unfortunately, to consider a method which has been developed
2

for approximating from below the eigenvalues for the clamped square

plate. This method gives the results

., 1295 , ,
4910

A! =
-^->

A 2
= A, =

i- (168)

1 See Rayleigh, Vol. I, pp. 277, 278.

1 A. Weinstein, Memorial des sciences mathtmatiques, Vol. 88, "fitudes des spectres

des Equations aux d6riv6es partielles de la th6orie des plaques 41astiques," Gauthier-

Villars, Paris, 1937. The figures quoted in (168) are derived from Weinstein's

Memorial volume, in which he has given the results of computations for a = w (pp.

54, 56).
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as approximations from below to the first three eigenvalues of 4
. From

(167) and (168) we therefore conclude

1295 1304 491 5438

According to (132) of 10-9(a) we have coj
= (D /n)Pt(k =

1,2,3, . . .),

where (w*/27r) is the frequency of the plate's kih natural mode of vibra-

tion, /z is the mass per unit urea,

and DQ is the flexural rigidity (de-

A fined just following (97) of 10-7 (</)).

-J Thus we have for an approximation
to the fundamental frequency of

the clamped square plate

coi 5.75 /Do
2^
=

~a * V M
;

x j) according to (167); according to

t
n the result (109) this approximation

FIG. 10-4. has an accuracy of better than 0.4

per cent. Approximate computa-

tions of the second and third natural frequencies may be similarly com-

puted from (167).

(e) In accord with the opening remarks of the present section (page

241) consideration of the rectangular vibrating plate with boundary edge

free is limited here to an enunciation of the boundary conditions which

are satisfied by the eigenfunctions of the problem. We note, first, that

the curvature K, introduced in (109) of 10-8(c), is zero along the four

edges of the plate. Further, if the rectangular domain I) is given by

^ x ^ a, g y ^ 6, we have the following set of relations between

the coordinates x, y, and the n, s variables introduced in 10-8(c) : If we

measure the arc length s from the origin that is, if s = at x =
0,

y = it is clear from Fig. 10-4 that

along y =
0, s = x, n = -?/;

along x =
a, s = a + y, n = z-a;

along y =
6, s = 2a + 6 z, n = y b]

along x =
0, s = 2a + 26 -

y, n = -x.

With the aid of (170), and K =
0, we apply the general boundary con-

ditions (134,iii) of 10-9(a) to the rectangular plate:
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dx \dx dy/ , n ,x *"
along y =

0, y = b;

=

along x =
0, x = a.

(i
-

Since V 2
<
= <** + 4>UI,, the second of the two pairs of bracketed equa-

tions may he replaced by < + <r<#>zz
= and <f>zz + <j<bvv

=
0, respectively.

An additional boundary condition arises from the required continuity
of the mixed partial derivative <,n , pointed out in 10-8 (d) above. 1 From
(170) we perceive that <t>9n assumes the successive forms < zy , <f>vx , <t>xv ,

</>yx on the four sides of the rectangle as we traverse C counterclockwise

from the origin. Since the order of partial differentiation is immaterial,
we therefore conclude </>xv

= <,, or

<t>xv
=

0, at the four corners. 2

EXERCISES

1. Let (x\,x,x*) and (x^x^x^) be two neighboring points of an unstrained solid, in

the sense of 10-1 (r); after strain the points are loeated respeetively at , -f ?/ t and
x

i + u
'i 0"

~ 12,3). Use (7) to show that the change of the distance between the

points which results from the strain is independent of the quantities wi, w 2 ,
co 3 pro-

vided we neglect squares and products such as tof, o>io>3, ^12^2, etc. (Thus coi, o>2, wi

are called components of rotation.} HINT: The change involved is

4 _Jf [(j
. + 1,. )

_
(x

<

+!/ )]
, Jv <,._,',,\ /^

* * \
/j,

*

but we may here approximate [(.r, 4- MI) (*,- -f ?/
t )]

2 by

(xi a\)
2 + 2(i x<) (?/ wj).

3

From (7) it follows that / (x> Z<)(MI
-

?/^) is independent of i, co 2 ,
cos .

Zw

2. Use (7) to prove that a diagonal element Ckk of the strain tensor represents an

extension per unit length in the Xk direction. Show also that an off-diagonal element

1 The quantity (?/, n A?/.) is originally required to be continuous along C. Here,

however, A = 0, and ?/,, differs from <, merely through a factor which depends

upon the time t alone, as in (128) of 10-9 (a).

2 A brief account of the controversial history of the boundary conditions appli-

cable to the plate with free edge may be found in Raylcigh, Vol. I, pp. 369-371. It

is interesting to note that not even Rayleigh's derivation and statement (Vol. I, pp.

352-357) of these conditions are completely correct.
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tjk (j T* k) represents a shear in the x,-Xk plane, whereby lines parallel respectively to

the Xj and Xk axes in the unstrained state are each rotated through an angle e ik in oppo-
site senses, so that in the strained state the angles between the lines are ($TT 2e ,*)

HINT: In each proof, set equal to zero wi, w2 ,
w3 and all strain elements, except for the

one on which attention is focused.

3. (a) Employ the definitions (5) to verify the equations of compatibility (12) and

(13).

(b) Show that (12) and (13) represent 'exactly six independent relations for all

possible choices of i'J,fc, so that there arc six equations of compatibility in all. (By
"all possible choices" is meant the inclusion of combinations of i, j, k which violate

the parenthetic inequalities of (12) and (13).)

4. Prove the equality of the second and third members of (17). HINT: Consider

the second member as the sum of two double sums and reverse the indices of sum-

mation in the second of these; use the fact that (dW/dEjk) == (OW/dEkj).
5. Obtain an independent proof of the elementary relation (2) on the basis of the

results (32) and (33) derived without the use of (2) in 10-2 (d).

6. (a) Show that the component of bending moment (arising from a given surface-

force distribution) about the line z 2 x2 , Xz = x'
3 (arbitrary line parallel to x\ axis, if

x'2 and x'i are arbitrary constants) is given, according to the deflnition (43), by

's(X2
~ X2 ) 7

T

2 (Xs 3)HS.

HINT: Translate the x\ axis so as to coincide with z2
=

2 ,
x 3

= x^

(b) Use the result of part (a) to prove the assertion made in 10-4(6) to the effect that

the surface-force distribution (41) on x 3
= L gives rise to a bonding moment PJ \ taken

about any axis parallel to the original x\ axis; J \ is defined by (45). HINT: Use (38)

of 10-4 (a).

(c) Similarly prove that the distribution (42) on xa = gives rise to an equal, but

oppositely directed, moment along any such axis. (It is thus shown that the bar of

10-4 is bent by equal and opposite couples applied at the two end faces, as stated in the

text.)

7. (a) From (49), (50), and (51) it follows that

g = C, (,71)

(In this exercise Ci, C2 , (7a, 61, 62, bz are used to denote arbitrary constants.) In the

manner of achieving (49), (50), (51) use (47) and (48) to derive that

<<te 2

and therefore that

g=-f,,-C, (172)

Derive, with the aid of (171), (172), and (48), that

_ -~
E

(b) Use (47) and (48) to derive

du, P r
ST.- -g"- c"
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From (47) and (172) show also that

With the aid of (174), (175), and (48) derive the result

(c) From (171), (174), and (47) derive

duz _ _ ^,
du a _ P_ |

and therefore, with the aid of (48), that

ui -
^ x 2x, -f dxi - C2x l -f 6,. (177)

(d) Substitute the solutions (173), (176), (177) back into the differential equations

(47), (48) and so verify that the constants Ci, C 2 ,
C3 , b\, 6 2 ,

6 3 are mutually independent.
8. () Prove that the cross sections x$ = constant of the bar of 10-4 remain plane

in the strained state described in that section. HINT: Use cither (47), (48), or the

results of exercise 7 to prove that (d
2M 3 /tte?)

= (d*u*/dx\) = 0.

(b) For the same bar prove that any line 2
= constant, x 3

= constant is strained

into a parabolic shape whose curvature is oppositely directed from that of the strained

shape of a line x\ constant, x 2
= constant. HINT: Use either (47), (48), or the

results of exercise 7 to prove that (d*?/ 2 /dxJ)
= (aP/E)\ complete by using part (a) and

comparing with (52).

9. Derive, for the bar of 10-4, the relation

dxl

~"

EJi

where M\ is given by (44) and J\ is defined in (45). (This result, known as the Ber-

noulli-Kuler equation, is the usual starting point of the "engineering theory" of the

bending of thin rods: M \ is interpreted as the total bending moment exerted by the

portion of the bar to the right of (x 3 larger) a given cross section upon the portion of

the bar which lies to the left of (x 3 smaller) the cross section. The axis with respect

to which M i is computed (see exercise 6(a)) passes through the centroid of the cross

section and is parallel to the x\ axis. Thus unlike the case of the bar of 10-4 M \

may be a function of #3.)

10. State and prove the extension to the basic lemma of 3-1 required for the deriva-

tion of (65) and (66) of 10-5(6).

11. Derive the differential equation of motion for the vibrating rod of 10-5 if, in

addition to (56), we take into account the kinetic-energy term

'

u\ dx

which arises from the rotational motion of the various cross-sectional volume elements;

here p is the mass per unit volume of the rod. ANSWER:

EJ\- -\- TT^
~~

fiJi -
= 0-

dX4 dt*
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12. Derive the equation of motion for the vibrating rod (neglecting the rotational

kinetic energy introduced in exercise 11) for the case in which both (EJ\) and y are

functions of x. (Assume the validity of (58).) ANSWER:

13. (a) Prove that tf>
M (x) + N(x) js the solution of (76), with p

4 written for

(y\/EJ\), where

- p'M =
0, + pW = 0; (178)

and, further (if p 5^ 0),

Thus derive the general solution of (76) :

<f>
= A cosh px + B sinh px -\- C cos px -f- /> sin px, (180)

where A, 5, C, Z> are arbitrary constants.

(b) Prove that, if M(0) = 3/(A) =
0, then M must vanish identically in ^ x ^ L.

Thus use (179) and the second of (178) to prove that the eigenfunctions of the hinged

vibrating bar are identical with those of the uniform vibrating string whose ends are

fixed (see exercise 9 (a), Chap. 7). HINT: For the hinged bar, M(Q) = M(L) =
0, so

that 4 = N.

Show, however, that the ratios of successive vibration frequencies of the hinged bar

are different from the corresponding ratios for the string of equal length.

(c) Solve (76) with X = and show that no such solution is an eigenfunction except
in each of the two cases

(i) ^"(0) = $"'(0) </>"(L)
- 4>'"(L) - (both ends free),

(ii) 0"(0) = 4>'"(0) ^(L) -
<#>"(L)

- (one end free, the other hinged).

Show that case (i) violates the general rule (exercise 14 below) of no more than one

linearly independent eigenfunction per bar eigenvalue. Use the Schmidt process of

9-6(c) to obtain a pair of orthonormal eigenfunctions corresponding to the eigenvalue
X = for the bar free at both ends. ANSWER (not unique):

The eigenvalue X = is of no interest in the study of vibration.

14. (a) Fill in the details of the proof of the following theorem:

// p is an eigenvalue of the differential equation

g = PV (181)

with the end-point conditions

*'(L) -
0, (182)

there exists only one linearly independent eigenfunction <t>(x) satisfying both (181) and

(182).
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Suppose that there are two linearly independent functions <f>\(x) and 02(0?) which

satisfy (181) and (182). Consider also

\l/i(x)
= sinh px, \t/ 2 (x) = sin px,

which satisfy the differential equation (181) but not all of (182). We notice

iMO) = \MO) = 0. (183)

We have that there exist constants Ai, A 2, B\, B^, not all zero, such that

identically; for the wronskiari (see 2-8(e))

01 02 ^1 ^1
/ f i i

0i 02 y\ $\

0i 02 V^i \^j

0i 2 t[ ti

may be shown to vanish identically. (Form the derivative (dw/dx) by using the rule

(2-8(</)) for differentiating a determinant, and use the fact that each of 0i, 2 , V'l, ^2
satisfies (181): (dw/dx) = 0, so that w = constant. But w = at x = because of

(18:*) and (182) as satisfied by ^i and 02.)

Since (181) holds identically, we have, because 0i and 02 satisfy (182),

#i^J(0) -f 7^^2^) = Oi #i^itfO ~H Brfi(L) = 0.

But this implies, it is easily shown, either cos pL = cosh pL an impossibility for

p 7* (why?) or

Thus, from (184), there exist AI and A 2, not both zero, such that

identically; that is, 0i and 2 are not linearly independent.

(/>) Prove the theorem corresponding to that of part (a) for the eigenfunctions of

(181) with each of the following sets of end-point conditions:

(i) 0"(0) = 0"'(0) = <i>"(L)
=

<t>'"(L) =0 (p T 0)

(ii) 0(0) = 0"(0) = 0(L) = <i>"(L) =

(iv) 0(0) 0"(0) =
<t>(L)

= 0'(L) =

HINT: For (ii) use the result of exercise 13(6) together with the theorem proved in

exercise 3, Chapter 7. For (iv) use ^ = sinh p(L x), 4>i
= sin p(L x).

16. (a) Determine explicitly, to within a multiplicative factor, the eigenfunctions

for the vibrating bar clamped at x = and x = L. HINT: Use (180) of exercise 13 to

obtain the solution of (181) with the end-point conditions (182).

Show that

= A (cosh px cos px) -f B(sinh px sin px) t

where

_ A sinh pL sin pL ^ cosh pL cos pL
y (185)

B
~

cosh pL cos pL
**

sinh pL -f sin pL
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whence

JL 8ff 6ir222
Each value of pL at which the two curves

intersect is a solution of (186).

FIG. 10-5.

-1.0

Each value of \pL at which an intersection

occurs is a solution of (187).

FIG. 10-6.

cosh pL = sec pL, or sech pL cos pL.

Show that (186) is equivalent to

tanh 2
(JpL) - tan 2

(JpL).

(186)

(187)

(6) From the graphical solution of (186), Fig. 10-5, ascertain the following relation

involving (pqL) y
the qih positive solution of (186):

pqL - (2q
- 1,2,3, . . . ), (188)

where

< otq < > ai > . . ,
aq 0.

Thus show, with the aid of (187) and its graphical solution, Fig. 10-6, that

tanh (ip flL) - (-l)tan (189)
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(c) Show, with the aid of (186), that (185) reads, with p pQ ,

T |
sin pL\

A COS pL L
-:
~

A_ sin pL_ _

255

sin pL

(q
= 2,4,0, . . .

,
whence sin pL > 0),

(

tan JpL
cot ipL (</ 1,3,5, . . .

,
whence sin pL < 0),

as we find with the aid of (188). Thus show, with p = pq ,

Cg

(cosh px cos px) sin
^-

(ginh px sin px) cos^
^
(cosh px cos px) cos t~ 4- (sinh px sin px) sin ~-

(190)

where Cq is constant : The upper form is taken if q is even, the lower if q is odd.

With the aid of (189) bring (190) into the form

sin p(x \L) __
sinh p(x j- \L)

sin \pL sinh %pL
cos p(x \L] _ cosh p(x \L]

cos ipL cosh }pL

(</ evren) I

(q odd)
j

(191)

with C^ constant and p = pq .

(d) Show that

supplies the normalization condition

(192)

(f) Obtain (191), together with (189), ab initio by considering the bar which is

clamped at x = -}L and x y>. HINT: Use (180), with = ^' = at x = JL
and x = |L; then shift the origin of x.

16. Evaluate the integral

L

where
<f><,

is given by (191) and C\ by (192). HINT: Write <t>q
= it q

- vq ,
where

< - -PX^' - PX^and M,(0) r
fl (0), w,(L) -

t>,(L), u^O) -
^(0), ti^L)

- v
q(L)

because of (182). Use the differential equations to show that

and, for example,

etc -
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ANSWER:

cot

L(p\>
-

pi)
- yy tan

(pj'
-

Pj)

j p q cot -
pqL -

pj cot 2 -
pqL

tan - pfl
L -

p\ tan* -

(q + q' odd),

(q,q
f

even),

(q,q
f

odd),

(q even),

(q odd).

17. (a) Show that the surface-force* distributions (80) on the surfaces z 2 L 2 ,

Z 2
= of the plate of 10-7 give rise to equal and opposite bending moments of magni-

tude IP^Lih* about the x\ axis. HINT: Use the definitions (43) of 10-4(6).

(b) Show that the bending moments of part (), as well as those which arise from

the distributions (89) on x\ = L\, x\ =
0, are indeed couples. HINT: See exercise 6

above.

18. Use (90) in conjunction with the definitions (5) of 10-1 (c) to derive the results

(91), (92), and (93) of 10-7(c). HINT: Proceed in the manner of attaining (52) of

10-4 (c) from (47) and (48).

19. State and prove the extension of the basic lemma of 3-1 required for the deriva-

tions of (107) of 10-8(6) and the boundary conditions (12(>) and (127) from (119) of

10-8 (d).

20. Prove that the jacobian (1 4- nK) given in (111) of U)-S(r) is positive if the

point (n,s) is riot separated from C by the evolute (locus of centers of curvature) of

C. (It is required to investigate the geometric factors which determine the sign of A',

defined in (109).) Show that (1 -f nK) if (u,.s) lies on the evolute.

21. (a) Suppose that the quantity (?/, Ku,) is allowed a jump discontinuity of

magnitude 5 at a single point of C. Show, by making the appropriate change in (118)

of 10-8(t/), that a term (1 <r)?o6 is introduced into the time integral (but exterior

to the integral along C) of (1 19) ;
that is, (119) reads

J [
(1
-

<r)ijo6 +
I

(integrand unaltered)^! dt -
0, (193)

where 770 is an arbitrary constant in the free-edge problem and zero in the clamped and

simply supported cases.

Show that (193) implies, in the free-edge case, that 6=0.
(6) Extend the argument of part (a) to cover the case in which (u tn Ku) is

allowed an arbitrary finite number of jump discontinuities along C; that is, show that

(uan Ku,) must be continuous along C in the free-edge case.

The validity of (118) is thus proved without a priori assumption of the continuity

of (u,n Kug ), for in the two cases not covered clamped and simply supported

edges we have t\ (and therefore 7/
= 0) along C. (Tacit in the above proof is

the assumption that (utn Ku g ) approaches a finite limit as any point of C is

approached along C from a given direction that no discontinuities other than jump
discontinuities are allowed, that is. Such other discontinuities are ruled out from

the start, however, by the physical nature of the problem.)
22. Write down the boundary conditions (134) as they read in the following special

cases:



THEORY OF ELASTICITY 257

(a) Circular plate (r a) clamped. ANSWER: <j>
=

0, (d<j>/dr) = at r = a.

(6) Rectangular plate (0 ^ x ^ a; ^ t/ ^ 6) simply supported. ANSWER:
</>
*

0, (d*<t>/dx
2
)
= on x and a; - a; < =

0, (d*<j>/dy*) = on t/ and j/ 6.

Note also that (d*<i>/dy*) 0onx=0, x=a; and (d*</>/dz
J
)
= on y 0, t/

= b.

Why?
(r) Semicircular plate (r ^ a; 0^05^*-) simply supported. ANSWER: Since

K = (I/a) on r * a,

* =
'

r f^ = "n =

(</) Circular plate (r g a) free. ANSWER:

<? ,_,,. ,
,. .

1

dr
{VV) + " ~ "'

a

where

on r - a,

_
J (

rg) +
> g

23. (Compare exorcise 13.) (a) Trove that =
of (130), whore

VW - 0M/ =
0, r*A" -f

and, further, if ^ 0, that

N(x,y) is the solution

0;

(6) Prove that, if M = everywhere on the boundary (\ it follows that ^f

identically in I). HINT: Use (Ireeifs formula (23) of 2-13.

(r) Show that, if we deal with a simply supported rectangular plate, we have M =
on the boundary and, therefore, </>

= \ in I). HINT: See exercise 22 (J>).

Thus show that the eigonfunotions for the rectangular simply supported plate are

identical with those associated with the uniform vibrating membrane of the same size

and shape (see (10S) of (

.)-S, with <r = <T O and /3
2 = (X T)).

(r/) Compare the relationship between the various natural vibration frequencies

of the hinged rectangular plate and those of the corresponding rectangular membrane.

HINT: Use (132) of 10-9(n), (57) of <M(a), and (1 18) of 9-8(6).

24. Use the "? process" essentially the same as that which is employed in 10-8(6),

but with the integral over t suppressed to prove the isoperimetric character of the

plate eigenvalue-eigenfunction problem, as enunciated in 10-9(6). In particular

derive (137) of that section.

25. (a) We assume the validity of the following expansion theorem: Let <
(1)

,
<

(2)
,

. . .
,

<
(m

\ ... be the totality of the orthonormal eigenfunctions associated with a

given vibrating-plate problem. Let g(x,y] be an arbitrary bounded function defined

in the plate domain D; <7(-r,/y) is such that D may be divided into a finite number

of subdomains by a finite set of smooth arcs such that g, together with all its first and

second partial derivatives, is continuous in each subdomain. Then if we write

(cm

m-l
(194)
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the series converges uniformly to g(x,y) in every subdomain of D in which g(xty) is

continuous. Further, in every subdomain of D in which a given partial derivative

(first or second order) of g is continuous we may form that derivative by term-by-term
differentiation of the series (194); the differentiated series converges uniformly in the

subdomain to the corresponding derivative of g.

(b) Use the orthonormality of the eigenfunctions <
<m) to derive the parenthetic

formula for cm in (194). (Assume, of course, the validity of the series expansion in

(194).)

(c) Use the expansion theorem of part (a) above to establish the following expres-

sion for the general solution of the equation of motion (107) of 10-8(6) for the vibrating

plate (if j8
4 = is not an eigenvalue) :

_
m cos -

fct + Bm sin

where </>
(m) is the with eigenfunction of the corresponding eigenvalue-eigenfunction

problem. HINT: Use the method of 9-7 (a) by substituting

into the hamiltonian integral (100) of 10-8(a); proceed to extremize with respect to

the functions cM (0* A tremendous simplification is effected by first using the

transformation

// (uxxu vv
-

ul v)dx dy ^ Jc I Un(u.. -f Ku,) - u ^ (Ku. - u, n ) \ds
9

D

which is derived in the manner in which (143) of 10-10(a) is achieved. It is readily

seen that the part of the hamiltonian integral embodied in the lino integral around

C vanishes on substitution of (196) when we take into account the boundary condi-

tions satisfied on C by the <t>
(m)

(x,y).

How must (195) be modified if /3
4 =0 is an eigenvalue?

(d) Use the expansion theorem of part (a) above to establish the minimum charac-

terization of the vibrating-plate eigenvalues enunciated in 10-9(r). HINT: See the

proof of the corresponding theorem for the membrane eigenvalues in 9-9(6). Sim-

plicity is greatly served by employing the form (143) of 10-10(a) for the integral (140)

of 10-9(c).

Take especial note of the point in the proof at which it is essential to require con-

tinuity everywhere in D of the first partial derivatives of the functions < eligible for

each minimization.

26. State and prove a maxirmim-minimum characterization of the eigenvalue-

eigenfunction problem for a vibrating plate. This characterization bears the same

relationship to the simple minimum characterization of 10-9 (r) as does the maximum-
minimum characterization of the membrane eigenvalues (9-11) to their minimum
characterization (9-9).

27. (a) In the membrane problem the functions eligible for the minimization of the

integral / (given by (123) of 9-8(a)) need not have first partial derivatives which are

continuous everywhere in D. For the vibrating-plate problem, on the other hand, only
functions whose first partial derivatives are continuous everywhere in D are eligible

for the minimization of / (given by (140) of 10-9 (c)). To what physical difference

between a plate and a membrane does this fact correspond?
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(b) It has never been proved that the eigenfunction corresponding to the lowest

eigenvalue of the clamped-plate problem for arbitrary domain D has no nodal lines

in D. Any attempt at a proof along the lines of the one given in exercise 21 (c), Chap. 9

(for the corresponding theorem concerning the first eigenfunction of the general fixed-

edge-membrane problem), breaks down because of the required continuity everywhere
in /) of <t> x and </> for the functions <f> eligible for the minimization in the plate problem.
Demonstrate the occurrence of this breakdown.

28. By the direct substitution <
= X(x)Y(y) show that the equation (130) of

10-9(a) for the plate eigenfunctions is not separable (in the sense of the second para-

graph, 9-8(<i)) in rectangular coordinates.

29. We consider, in this exercise, a circular plate of radius a; we employ the polar
coordinates (r,0) with origin at the center of the circle, so that r a is the equation
of the plate boundary.

(a) With the aid of exercise 23() and the identity (43) of 9-2 (e) show that the

solution of VV /3
4 * which is independent of 6 is given by

*(r) = // + (r) +W-(r), (197)

where H* and // satisfy the differential equations

d~r

where upper signs (or lower signs) of the ambiguities (
+

) are taken together.

(b) \Ve impose the requirement that < be bounded for r fS a in particular, for

r - 0. Show, with the aid of 8-3 (r), that (197) becomes

0(r) = /U (0r) -f #Ju(i'0r) (?
J = -1), (198)

where .4 and /f are arbitrary constants and JQ(Z] is the zero-order Bessel function of

the first kind.

(r) Show that ,/ (?'/3r) is a real function since and r are real. HINT: Use (42) of

./ n (jr) is generally denoted by i
n
l*(z) where 7n is the so-called modified nth order

Bessel function of the first kind. Thus we may rewrite (198) as

*(r) = AJ 9(0r) 4- fl/o(0r). (199)

Use (182) of 8-7 (d) to prove that

J' (z]
= -/,(), I'M - /,(*), (200)

where the prime (') indicates differentiation with respect to the argument of the

function involved.

(d) Show that, if (199) is an oigenfunction of the circular-clamped-plaU1 problem,

we must have
A ~
B

"

HINT: Use exercise 22 (a) together with (200).

The final equation (equality of the second and third members) has for solutions

an infinite unbounded set of positive values of pa. These supply the list of eigenvalues

for the circularly symmetric (independent of 6) modes of vibration of the clamped

circular plate.
1

1 For numerical results involved in the circular-plate problem, see Philip M. Morse,

"Vibration and Sound," 2d ed., p. 210, McGraw-Hill Book Company, Inc., New York,

1948.
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(e) Write down the equations which correspond to (201) if (199) is an eigenfunction

of (i) the circular-simply-supported-piate problem and (ii) the circular-free-plate

problem.
30. We subject a clamped plate to a nonconservative transverse force per unit

area given by the expression F(x,y,t). (That is, an element of area dx dy experiences

the externally applied force F(x,y,t)dx dy perpendicular to the xy plane.)

(a) Use the extended Hamilton's principle of 6-7 to show that the equation of

motion of the plate so influenced is

M^i +/>oVu -F(x,y,t). (202)

(6) Extend the method of 9-7 to show that the solution of (202), with

u = (du/dn) on C, is

y
ro-1

where

y-i^m) __ 04 0(m)
-. o in D, </>

(m) = - = on C,m On

and

d*cm
4 _ /7 *

.

z>

(Each <
(w) is normalized in D.)

(c) If the applied transverse-force density is F(x,y) independent of t, that is

show that the equation of equilibrium for the clamped plate is given by

D V 4w = F(x,y) in D, with u = -^ = on C.

HINT: Apply to (202) the condition of equilibrium namely, that u is independent of

the time t.

(d) Make the required modifications of statement in parts (), (6), (r) if a simply

supported plate is substituted for the clamped plate.

31. Prove the assertion made in 10-10(6), final paragraph, that
/3jJ ^ A*. HINT:

Use exercise 26 above to develop the same sort of argument as that given in the final

paragraph of 9-1 3 (a).

32. (a) Apply the method developed in 10-10(6) for approximating the eigenvalues

of the square-clamped-plate problem, with 8 =
2, using

-
( -:)(' -!)

ANSWER: Ai - (1296/a 4
), A 2

- (5793/a 4
).

(6) In place of the functions employed in part (a) use, with 1,

ANSWER: Ai (1385/a
4
).



CHAPTER 11

QUANTUM MECHANICS

Of the tremendous body of theory known as quantum (or wave)

mechanics, we consider in the present chapter a narrow segment impinged

upon by the ideas and methods of the calculus of variations as developed
in the preceding sections of this work. Roughly speaking, quantum
mechanics may be described as the mathematical theory developed in

the years following 1925 which has had success in describing accurately
the great bulk of extranuclear atomic phenomena. The exceptions to

this success the phenomena not correctly described by the present

development of quantum mechanics -although notable in importance,
are few in number.

Historically, the role played in the origins of quantum-mechanical

theory by the calculus of variations is signal. The Schriklinger differ-

ential equation, a cornerstone of the theory, was discovered and first

applied by the man whose name it bears as the result of a problem he

posed calling for the extremization of an integral with respect to an

unknown integrand function. While Schrodinger's proposal of the prob-
lem was purely arbitrary in its lack of motivation grounded in physical

considerations, it found a posteriori justification through its immediate

success, with suitable interpretation, in describing the radiation spectrum
of the hydrogen atom. Soon after the first discovery of his equation,

however, and again with the aid of the calculus of variations, Schrodinger
was able to provide insight into the physical basis of the new atomic

mechanics and so derive "his'* equation anew with some degree of a priori

physical justification.

In its present form the science of quantum mechanics is based upon a

set of simply stated postulates leading to results which include the all-

important Schrodinger equation merely as a special case. Nevertheless,

the fact that this equation is derivable from a variational problem makes

available the calculus of variations as a valuable tool for the approximate
solution of many atomic problems. The present chapter treats a few

such problems in addition to offering an exposition of the essence of

Schrodinger's early work.

In all that follows we avoid consideration of refinements to the ele-

mentary theory which take into account relativistic effects and the influ-

261
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ence of "spin" (the intrinsic angular momentum of the fundamental

particles of matter).

11-1. First Derivation of the Schrodinger Equation for a Single Particle

(a) In his initial paper
1

Schrodinger considers the reduced Hamilton-

Jacobi equation (6-5(c)) associated with a single particle of mass m moving
under the influence of an arbitrary 'force field described by the potential

energy V(x,y,z); the instantaneous position of the particle is denoted by
the cartesian coordinates (x y y,z). According to (38) of 6-5 (c), this equa-
tion reads

where E is the constant total energy of the particle.
2 With the change

of dependent variable S* = K log ^ with K a constant open for experi-

mental determination 3
(1) becomes, on multiplication by ^

2
,

2m i i ;a~ i ' v *, i
'

\ z~ i \
(^ ^)^ 2

0.

Ignoring the problem of solving (2), Schrodinger instead considers the

volume integral
4 of the left-hand member carried out over all space:

He then poses the question: What differential equation must the func-

tion
\l/ satisfy if /*, given by (3), is to be an extremum with respect to

twice-differentiable functions ^ which vanish at infinity in such fashion

that /* exists? The answer to this question lies in the result of 9-1(6):

We substitute the integrand
6

/ = ~ (^ + *2 + ) + (V- EW
1 There is available an English translation of the set of Schrodinger's first papers

published under the title "Collected Papers on Wave Mechanics," Blackic & Son,

Ltd., Glasgow, 1928.
2 The significance of the dependent variable *S>*, of no immediate importance at

this point, is given in 6-5.

8 The reader familiar with quantum theory should soon recognize the identity of K
with the well-known (h/2ir).

4 In this chapter we uniformly omit explicit indication of the limits of integration

whenever a multiple integral is carried out over all space.
6 As in preceding chapters, we employ subscripts to indicate partial differentiation.
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of (3) into the Euler-Lagrange equation (9) of 9-1(6), with w replaced

by ^. We thus obtain

~
(*xx + ** + *M) + (v "

or, in abbreviated notation,

*

0, (4)

as the differential equation the so-called Schrodinger equation for a

single particle which must be satisfied in order that \f/ render (3) an

extremum.

(6) For a given potential-energy function F, solutions
\l/

of the Schro-

dinger equation (4) which vanish sufficiently rapidly at infinity (for the

existence of (3)) exist, in general, for only a privileged discrete set of

values of E] that is to say, the solution of (4) under the "boundary"
condition that (3) exist is an eigenvalue-eigenfunction problem in which

the eigenvalues of E are to be determined. Schrodinger's early assump-
tion that, namely, the eigenvalues of E in (4) are the physically realiz-

able values of the total energy of a particle under the influence of the

potential energy V- is maintained in the theory as it stands today.

On the other hand the physical interpretation of the Schrodinger eigen-

functions ^ the so-called wave functions was not uniquely assigned in

the first days of quantum mechanics; the interpretation which has even-

tually become accepted universally is elucidated in ll-3(c) below.

The fact that E cannot in general be assigned arbitrarily provides an

equivalent, but more useful, extremum problem which leads directly to

(4), as Schrodinger points put in an addendum to his first paper: If we
extremize the integral

=
Iff [jm

(+l

with respect to functions
\f/
which satisfy the normalization

dxdydz =
1, (6)

we are led, according to 9-1 (c), directly to (4), provided we denote by E
the undetermined Lagrange multiplier of the problem. Thus the Schro-

dinger eigenvalue-eigenfunction problem is equivalent to the above iso-

perimetric problem a fact which, following a more precise statement in

ll-4(d) below, is applied to the approximate solution of certain atomic

problems.
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(Discussion of the constant K which appears in the Schrodinger equa-
tion is reserved for ll-2(d) below.)

11-2. The Wave Character of a Particle. Second Derivation of the

Schrodinger Equation

Prior to the discovery of the Schrodinger equation, De Broglie had

developed an approach to the theoretical study of the atom which is

based upon what he considered a fictitious wave character associated with

a material particle. The theory was presented as a physically plausible

basis for certain inherently arbitrary rules of procedure in the older

(1913), narrowly successful, atomic theory of Bohr. Inasmuch as Schro-

dinger's application of "his" equation to the hydrogen atom (11-3 below)

yielded the same (experimentally verified) energy levels as the Bohr

theory, he sought to develop a connection between his own work and

the wave theory of De Broglie. He found the desired connection with

the aid of Fermat's principle (Chap. 5), the principle of least action (6-0).,

and the form of classical mechanics embodied in the Hamilton-Jacobi dif-

ferential equation (0-5). The extreme importance of this connection

achieved full recognition with the almost simultaneous establishment of

the physical wave character of electrons through the experiments of

Thomson, Davisson and Germer, and others.

(a) In order to develop the essence of the connection between the

Schrodinger equation and the wave character of material particles we
consider briefly a few aspects of the subject of wave phenomena in general.

For our present purpose we may define a wave as a
"
disturbance

"

S = SF (:r,i/, 2, )t which is propagated through space so as to be described

by the equation
i

where u is a positive constant. (In the case of a plane-polarized light

wave, for example, ^ may represent the associated electric field intensity

as a function of position and time. For a sound wave traveling through

a gaseous medium, ^ may represent the longitudinal displacement from

equilibrium of the gas particles as a function of position and time, etc.)

An important type of solution of the wave equation (7) is that which

can be written in the form

* = *(x,y,*)<r", (8)

where

e
-iat = CQS 01 _ ^ gm ut (f2

= 1) (9)

t As usual, t denotes the time variable.
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and w is a positive constant. Substituting (8) into (7), we obtain

as the equation which must be satisfied by the position-dependent func-

tion \l/
if (8) is a solution of the wave equation.

(The fact that ^ is a complex furtction (of real variables) should not

be disturbing. Each of its real and imaginary parts taken separately is

a solution of the wave equation
1

(7); either may thus be used to charac-

terize a real physical quantity.)

The equation (10) for
\//
we call the time-independent wave equation.

With the aid of (9) we see that the function ^ given by (8) is a periodic

function of time with frequency (w/27r). Such a solution of the wave

equation is generally termed monochromatic. A more general solution

may be constructed as a linear superposition (either sum or integral) of

monochromatic solutions involving more than a single frequency.
To simplify the discussion we temporarily limit consideration to the

case in which the disturbance ^ is a function of only one of the three

space variables j, for the sake of dcfiniteness. In this case we have

VV = (/V/<fa
2
K so that (10) becomes

Of this equation wo choose the particular solution

(p
=

where T is an arbitrary constant, real or complex. With (8) we thus

have for a monochromatic solution of (7) which depends on x and t only

= ?Y (ID

As stated above, we may employ either the real or the imaginary part of

(11) to represent the physical disturbance which constitutes the wave.

We note the following properties of the disturbance described by (11):

(i) The disturbance is the same at all points lying in any plane

x = constant; ^ is thus said to represent a plane wave.

(ii) The amplitude (maximum value with respect to time) is the same

at all points of space.

1 See end-chapter exercise 1 .
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(iii) The value of the disturbance is the same, at any instant t, on

any pair of planes x = constant which are separated by the distance

X =
(2ir/p)

=
(2iru/u>) or any integral multiple thereof. The quantity

X is called the wavelength of the disturbance.

(iv) If an observer moves in the x direction with a velocity such that

(px ut) remains constant, the disturbance as seen by him at his posi-

tion is the same at all instants of time; the required velocity such that

(d/dt)(px (at) is clearly (dx/df) = (w/p) = u. Since u is a con-

stant, it is thus evident that the entire disturbance pattern is propagated
in the positive x direction with velocity u. The quantity (px wt) is

called the phase of the wave; surfaces of constant phase travel in the

positive x direction with velocity u, the so-called phase velocity. We note

in passing that the direction of the wave motion is normal to the surfaces

of constant phase.

(6) In (a) above we consider the phase velocity to be constant, the

same at all points of space. To generalize we suppose that u = u(x) t

a slowly varying positive function of x in the sense that 1

du

dx

U - "
:

x
~
27

With this restriction on the magnitude of (du/dx) it is meaningful to

assign an essentially constant phase velocity u and a corresponding wave-

length X = (2wu/w) =
(2ir/p) within any region over which the phase

(with t = constant) varies by no more than a small integral multiple of

2ir] that is, we may speak of a "local" phase velocity and of a "local"

wavelength. The frequency (co/27r) is assumed strictly constant.

A second generalization is to replace the constant C by a slowly vary-

ing function C(x), with the restriction

dC
dx

we may thus also speak of a "local" amplitude. Of especial significance

is the fact that (11) with C, u, and p = (u/u) functions of or is approxi-

mately a solution of the wave equation (7) in so far as we may neglect

the derivatives (dC/dx) and (du/dx).

For a final generalization we return to the case in which ^ (and there-

fore $) may depend upon all three space variables x, y, z. For this pur-

pose we consider the monochromatic disturbance

*-*i
(<t> real), (12)

1 The symbol <C is read "is small compared with."
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in which C and the first partial derivatives of <f> are slowly varying func-

tions of position; i.e., the relative variations of C, (d0/dx), (d<f>/dy),

(d<t>/dz) are all small in any region over which the phase \<t>(x,y yz) co]

with t = constant varies by no more than a small integral multiple of

2w. We maintain the strict constancy of the frequency (co/27r).

We observe, by direct substitution, that (12) is an approximate solu-

tion of the wave equation (7) in so far as we may neglect the first partial

derivatives of C and the second partial derivatives of <t> provided that 1

u =

The direction of wave motion at any point is defined as that of the

normal to the surface of constant phase (with t constant) through the

point, in the sense of increasing phase. For the disturbance (12), there-

fore, the direction of wave motion is clearly in the direction of the gradi-

ent2 of namely, V0. For an observer to travel in the direction of the

wave motion so that the phase as seen by him at his position remains

constant (along a curved path, in general), his velocityof which the

three components are (dx/dt), (dy/dt), (dz/dt) must be such that

d
( A d<t> dx d<f> dy d</> dz--

The first throe terms of the middle member of (14) constitute the scalar

product
3 of V0 and the observer's velocity; since this velocity has the

same direction as V</>, the scalar product must be equal to its magnitude

(ds/dt) multiplied by the magnitude of V<. That is, (14) gives

ds -
- (15)

dt
- U5j

Comparison of (15) with (13) demonstrates the equivalence of u with

(ds/dt), the speed with which a point of a given surface of constant phase

travels in the direction of the wave motion. We thus conclude that

u = u(x,y,z) also plays the role of a local phase velocity in the general

case represented by (12).

Under the assumption of an essentially constant |V</>| made here, we

may, as in the preceding case, define a local wavelength by means of the

relation X =
(27rw/o>) first introduced in (iii) of (a) above. Thus, accord-

1 See 2-12 for the definition of V<.
2 The direction of V< at any point (see 2- 12 (a)) is normal to the surface <j>

= constant

through the point, in the sense of increasing <.

See 2-12(&).
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ing to (13), we have

>, _.
27T

It is directly verified that \, so defined, is the distance between surfaces

<t>
= constant for which the difference of phase in (12) is equal to 2x (with

t = constant).

The results of the preceding paragraphs are of use in the derivation of

the Schrodinger equation which follows.

(c) The discovery and development of a new mechanical theory which

would be applicable to the atom was made necessary in the first quarter

of the twentieth century by the failure of classical mechanics to provide

a description of atomic phenomena consistent with the tremendous body
of experimental results which had been compiled. Classical mechanics,

completely successful in the description of macroscopic events, broke

down in the attempt to apply it to phenomena occurring within the con-

fines of atomic dimensions.

This fact calls to mind the analogous failure of geometrical optics:

While it is completely adequate so long as one deals with large-scale

optical phenomena, geometrical optics fails to describe the behavior of

light in the presence of apertures or obstacles whose linear dimensions

are comparable with the wavelengths of light. That is, the phenomenon
of the diffraction of light is not at all comprehensible within the frame-

work of geometrical optics. In order to describe and understand dif-

fraction one must appeal to the wave theory of light, which, in essence,

has its mathematical formulation in the wave equations (7) and (10) of

(a) above.

Schrodinger, in one of his early papers, projects the idea of the possible

need for a wave theory of mechanics to describe the submicroscopic realm

of phenomena in which classical mechanics has broken down. In the

development of this idea he sets forth the following double analogy: The

relationship of geometrical optics to classical mechanics is the same as

that of wave optics to the required "wave mechanics/' In mathematical

terms the analogy is set in the form: Fermat's principle (Chap. 5) bears

the same relation to the least-action principle (G-6) as does the time-

independent wave equation (10) for light to the required "time-independ-
ent wave equation for mechanics."

The development of Schrodinger's double analogy toward the dis-

covery of a time-independent wave equation for mechanics runs essen-

tially as follows:

Fermat's principle, according to 5-2, requires the extremization of the

integral
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with respect to paths connecting two given fixed points. Here
u =

u(x,i/,z) is the local phase velocity of the light the quantity which

also appears in the wave equations (7) and (10). According to 6-G(c)

the least-action principle, applied to a single particle of mass m, requires

the extremization of

7 2
= x/2"^

.
VE - V ds (18)

with respect to paths connecting two given fixed points. Here E is the

actual constant total energy, and V =
V(jr,?/,2) is the potential energy of

the particle. Thus we may effect the analogy between the optical and

mechanical principles by "assigning" to the motion of the particle a local

phase velocity which is, according to (17) and (18), inversely propor-

tional to \/E V. With Schrodinger, therefore, we define the particle

phase velocity as

u = = => (19)V '

where A is a constant whose determination is made directly.

If the phase associated with the particle motion is denoted by (<#> a>t),

it follows from (13) and (19) that < must satisfy the partial differential

equation

Equation (20), we notice, is identical in form with the reduced Hamilton-

Jacob! equation (1) of ll-l(a). This fact makes natural the assumption
that

j L" C* AO1 \
q> A. 10 , \^*-)

from which it follows, according to (1) and (20), that

,.,2

(22)

here K i is a constant whose determination is left to experiment.
1

The Schrodinger double analogy is completed by substituting into the

time-independent wave equation (10) the phase velocity given by (19),

1 The effect of the relation (22) is merely to replace, in the work following, one

undetermined constant (A) by another (A'i). The reason for this replacement is

subsequent convenience; K\ turns out to be an easily identified universal constant.
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together with (22) : We obtain

W + 2mK?(# -
V)\p = (23)

as the required time-independent wave equation associated with the

motion of a particle of mass w, having total constant energy E arid

moving in a field of force described by the potential-energy function

V = V(x,y,z). .

_

By identifying the constant K\ with the reciprocal of the constant K
introduced in 11-1 (a), we indeed observe the identity of the particle wave

equation (23) with the Schrodinger equation (4), derived independently in

11-1 (a). (For reference below we record the equivalence

(24)

The success of the Schrodinger equation in the description of atomic

phenomena thus justifies the optical-mechanical double analogy set forth

by Schrodinger as well as the wave concept of matter first conceived by
De Broglie and further developed by Schrodinger along the lines indi-

cated in the foregoing paragraphs.
It is to be kept in mind that the above derivation of the Schrodinger

equation based upon the analogy of optics with mechanics is purely heu-

ristic, by no means rigorous. In particular it is assumed throughout that

the first partial derivatives of the function <t>(x,y,z) are slowly varying

functions of position; yet no such assumption underlies the validity of

the Schrodinger equation in its application to specific atomic problems.
The merit of the Schrodinger equation resides in its description of atomic

phenomena consistent with the results of experiment and not upon any

particular method of^its derivation.

(d) The experiments of Thomson, Davisson and Germer, and others

on the diffraction of electrons, executed more or less simultaneously with

Schrodinger's early research in quantum mechanics, provide a justifica-

tion of the line of argument of (c) above even more direct and more

striking than the stated success of the Schrodinger equation. The wave

character of material particles manifested in these electron-diffraction

experiments made necessary the assignment of a numerical wavelength
to an electron moving with given speed. From (16) of (6) above, together

with (20), (22), and (24) of (c), we have

X = . , (25)
\/2m(E - V) mv

where v is the "classical" speed of the particle under consideration. 1

1 According to 6-6(c) we have (E V) im 2
,
whence the final form of (25).
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The equation (25), derived first by De Broglie on an entirely different

basis, is precisely the relationship between wavelength and speed required

by the results of the electron-diffraction experiments! The consequent

experimental determination of the constant 2irK shows it to be identical

with the Planck constant of action (usually denoted by "h"), a universal

constant which made its first appearance (1900) in the Planck theory of

black-body radiation 1 and soon after (1905) appeared as a fundamental

quantity in the Einstein theory of the photoelectric effect (see (e) below).

The validity of (25) as applied to atomic and subatomic particles (in

addition to electrons) and even to molecules is well established by

experiment.

(e) A direct extension of the portion of the argument of (c) above

which employs the reduced Hamilton-Jacobi differential equation leads

to the assignment of a specific value to the frequency (co/2?r) associated

with the motion of a material particle. Following the success of the

assumption (21) namely, that the space-dependent term < of the phase

(<t> <jit] is proportional to the solution S* of the reduced Hamilton-

Jacobi equation it appears natural to assume the phase itself to be pro-

portional to the solution S of the full (time-dependent) Hamilton-Jacobi

equation (33) of 6-5 (a), with the same constant of proportionality.

According to (30) of 6-5(6) we have S = S* Et, so that the stated

assumption reads

* - w/ = 7vi(S*
-

Et),

whence, because of (21) and (24),

E = tfco. (26)

The relation (26) is identical with the Einstein equation (1905) relating

the frequency (w/27r) of a light wave to the energy E of each associated

light corpuscle (photon). Since the frequency, unlike the wavelength X,

associated with the motion of a particle cannot be measured directly,

there is no direct experimental verification of (26). The validity of (26)

is intimately connected with the validity of quantum mechanics as a

whole, on purely theoretical grounds, however.

11-3. The Hydrogen Atom. Physical Interpretation of the Schrodinger

Wave Functions

(a) In applying the Schrodinger method to a system consisting of a

fixed atomic nucleus and a single electron (of which the hydrogen atom

is an example), we limit ourselves to the derivation of only those solu-

tions which possess spherical symmetry. That is, we use spherical coordi-

1 See exercise 25(/), Chap. 9.
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nates (r,0,<t>) and seek only those wave functions ^ which are independent
of the angles 6 and <. An analysis more complete than ours shows that

the lowest energy state the so-called ground, or normal, state, in which

our interest mainly lies possesses this symmetry, so that we do not miss

consideration of it through the restriction

We start here with the extremization problem rather than with the

Schrodinger differential equation to which it leads. That is, we seek to

extremize the integral (3) of 11-1 (a) with the appropriate potential-

energy function V inserted with respect to functions of the form (27).

For this purpose we employ the three identities (27) of 9-2 (c), with w ^;

squaring and adding, we obtain

(ft

u/ \
'

1 /OQ'^

since, according to (27), \l/e
= ^> = 0.

If the magnitude of the fundamental electronic charge measured in

electrostatic units is denoted by e, and if the charge on the atomic nucleus

under consideration is Zt, the potential energy of an electron moving
under the influence of this nucleus is

(29)
/

where r is the distance from the nucleus (considered fixed in position)

to the electron; both are considered as point charges. With (28) and

(29) the integral (3) of 11-1 (a) becomes

7* =

(In accordance with (26) of 9-2 (c) the jacobian of the transformation

from cartesian to spherical coordinates is r 2 sin 8, so that dx dy dz in (3)

is replaced by r2 sin 8 d8 d<t> dr in (30).) Since ^ is a function of r alone,

integration over the angle variables in (30) is carried out directly:

We seek the functions
\f/ which extremize /*.

We introduce into (31) the new independent variable

(32)
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where a is a positive constant whose value we determine directly. Fur-

ther, We introduce the auxiliary constants

2ma*E 2maZe 2

a =
^y- and j8

=
2~' (33)

so that, with (32), equation (31) becomes

/* = --
fj [*v 2 -

( + ')m, (34)

where the prime (') indicates differentiation with respect to .

The possibility of bringing (34) into the form exhibited by (35) of

8-3(6) suggests the substitution

t = Qe-, (35)

whereby (34) becomes

(36)

= -'---
fj

c" {
JIQ'

2 -
[(

+
5)

+ (/-
D]

Q s

j

df, (37)

]oo
must

vanish in ord(r to ensure the existence of /*.

Comparison of (37) with (35) of 8-3(/>), with A* = 1, makes evident the

convenience served by giving to the constant a that value for which

a = \ or, according to the first of (33),

(38)

Thus, according to the second of (33), the problem of determining the

eigenvalues of E is reduced to that of determining the eigenvalues of 0,

with the correspondence

E - - mZV
, (39)E ~ 2W2 ( }

as we find with the aid of (38). (The fact of restricting the eigenvalues

of E to negative values only by choosing a < is justified by physical

considerations: The energy levels of an electron "bound" to a nucleus
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must be negative, since a positive amount of work is required to remove
the electron to a position of rest infinitely far from the nucleus in which

state its energy is zero.) With the choice a =
-J-

the integral (37)

becomes

/* = ~-
fj e-ifoQ'*

-
(0
- D<m. (40)

Reference to 8-3(fr) reveals that for nonnegative integer values of

(ft 1) there exist extremizing functions Q for which the integral 7*

exists; i.e., we have for the eigenvalues of ft

ft
= n =

1,2,3, .... (41)

The corresponding eigenfunctions are, according to 8-3(6),

Q = Qn = C.ie.Cf) (n =
1,2,3, . . .), (42)

where L"Ii() is the Laguerre polynomial given explicitly by

L -ia) =
(n
- Bit |S (e~^n) (n = 1

'
2

'
3

'
' ' 0; (43)

Cn is determined in accordance with the requirement of normalization

1 =
Jo

"

JTf * r2 sin * d& d<t> dr = 47r
/o

"

^"r2 dr = 47ra '

/o

"

^"f2 rf$

c-MU'lit*)]^* d{. (44)

With the aid of (43) we evaluate 1 the final integral and so obtain

Cn = J:-- (45)

We note, further, that the constant a depends upon E, according to

(38), and therefore upon the index n, according to (39) and (41) ; that is,

we have
*

IAF\
(46)

Finally, we have for the normalized eigerifunctions which depend only

on r, according to (32), (35), (42), (45), and (46),

<47)

See end-chapter exercise 3.
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for n =
1, 2, 3, .... The corresponding energy levels are, according

to (39) and (41),

En = -

In particular we have for the lowest energy state (n =
1) the ground

state of the system consisting of a fixed nucleus and a single electron

L / r
N

O-.T,,, / ' 1 I \

X^gX

(as we find with the aid of (43), with n =
1) and

F - mZV
El ~ "

T/t*
'

(6) Consideration of possible 6 and <f> dependence of the wave func-

tions yields the same set of energy levels as the set given by (48). The

ground state is nondegenerate; i.e., there is but a single eigenfunction

namely, (49) which corresponds to the lowest energy eigenvalue given

by (50). The higher energy levels are all degenerate, with 6- and

(^-dependent eigenfunctions, in addition to the spherically symmetric
function (47), arising for each value of n ^ 2. (In the sections follow-

ing in particular, in ll-5(a) -we have occasion to use only the eigen-

function (49) for the ground state.)

The energy levels (48) are precisely those given by the old Bohr theory

(1913) and are found to agree with the levels obtained by experiment

upon hydrogen atoms (Z =
1) and singly ionized helium atoms (Z = 2)

to within the refined corrections which are accounted for by considering

the intrinsic angular momenta (spin) and magnetic moments of the elec-

tron and nucleus. (If, instead of assuming the nucleus to be at rest, wre

take into account its translationul motion, the mass m must be replaced

by the so-called reduced mass ju
= [mM/(m + 3/)], where M is the

nuclear mass, in all the results of (a) above. Since for hydrogen the

ratio (m/M) is (1/1837) and is about one-fourth as large for helium, the

ratio [(m + M)/M] of m to M is quite close to unity; the difference

between m and M is sufficiently large, however, to be detectable in meas-

urements of the energy levels of hydrogen and singly ionized helium

atoms through the determination of spectral frequencies.
1

)

(c) While the meaning of the eigenvalues of E was understood immedi-

ately on the first application of the Schrodinger equation, it was, for some

time after, uncertain \vhat physical interpretation should be assigned to

the corresponding eigenfunctions. The interpretation of the wave func-

1 See exercise 7 at the end of this chapter,
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tions whose eventual universal acceptance has been completely justified,

because of theoretical consistency as well as through successful compari-
son with experiment, reads as follows:

We suppose \l/
=

\{/(x,y,z) to be an eigenfunction, corresponding to a

particular eigenvalue of E, of the Schrodinger equation involving a given

potential-energy function V = V(x,y,z). The quantity f ^ 2
,
a function

of position, is interpreted as the position probability-density function of

the particle whose potential energy is F; that is to say, if we seek to

locate the given particle within a volume element dx dy dz at the point

(z,i/,z), the probability of our finding it there is given by \(/

2 dx dy dz.

The probability of our locating the particle within a given region of space

having extended dimensions is, accordingly, the volume integral of

the function ^ 2 carried out over the given region. In particular the

normalization

//J>
2 dx dy dz = 1

takes on special significance:
1 The probability of locating the particle

somewhere in space is unity; the particle is assumed to exist, that is.

We note two salient features which distinguish quantum mechanics

from the classical mechanics studied in Chap. 6:

(i) In classical mechanics a conservative motion may have associated

with it any value of the total energy greater than the absolute minimum
of the potential-energy function. By continuously varying the initial

conditions of a given problem, it is possible to obtain a continuous vari-

ation of the total energy associated with the problem. In quantum
mechanics, on the other hand, we find problems in which the total energy
is confined to sets of discrete values the eigenvalues of the parameter E
in the corresponding Schrodinger equation. In such cases the energy is

said to be quantized.

(ii) The solution of a problem in classical mechanics consists of a

detailed description of the motion of the particles of the system involved;

t.e., the solution gives the position and velocity of each particle for all

instants of time once the initial positions and velocities are prescribed.

In quantum mechanics, however, no such description is possible. All

that one obtains in a solution to a problem is the relative probability of

the existence of various position configurations
2 of a given system.

t In a more complete study of quantum mechanics than the present one the admissi-

bility of complex eigenfunctions ^ is generally shown to he necessary. If \f/
is complex,

the quantity M 2 is employed as the position probability-density function inasmuch as

^ 2 is not restricted to real nonnegative values. If ^ is real, we of course have |^|
2 = ^ 2

.

1 The integral is carried out over all space.
2 A more extensive development than the present one affords a velocity, or momen-

tum, probability distribution as well.
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The fundamental physical ideas underlying the above features which

distinguish quantum mechanics from classical mechanics are embodied in

the so-called principle of indeterminacy, or uncertainty principle. This

principle takes into account the fact that the experimental determination

of the position or velocity of a particle involves a disturbance of the

particle's motion by the agency of measurement and that this disturb-

ance is necessarily indeterminate in both magnitude and direction. The

degree of indeterminacy is negligible when one deals with large-scale

events; but w"hen the objects of measurement are atomic or subatomic in

size, the indeterminacy assumes full significance. Accordingly, since

one cannot determine, by experiment, the precise location and velocity

of an atomic or subatomic particle, it is in a certain sense meaningless to

speak of its precise location or velocity; one should treat only of the

probability distribution of its locution or of its velocity. Quantum
mechanics supplies only such information as is verifiable by experiment,
and so avoids such "

meaningless
'*

concepts as orbits, position as a func-

tion of time, etc. 1

11-4. Extension to Systems of Particles. Minimum Character of the

Energy Eigenvalues

(a) Extension of the Schrodinger theory to a system of s particles may
be carried out in the manner in which the Schrodinger equation for a

single particle is derived in 11-1 (a). In place of (1) of that section we
consider the reduced Hamilton-Jacobi equation for a system of s particles,

whereby the simple trio of terms

M!V + /^Vl% / \ d*J ) J

2m

in (1) is replaced by the sum

1

;-"i

where Xj, T/J, Zj are the cartesian position coordinates and w, is the mass

of the jth particle. The potential-energy function V which depends,

in general, upon the 3s coordinate variables describes the system of

forces which influence the motion of the particles of the system.

1 For amplification of this necessarily brief discussion of the principle of indeter-

minacy the reader is referred to the abundant literature on modern atomic mechanics.

See, for example, Max Born, "Atomic Physics," pp. 85-90, Hafner Pub. Co., New

York, 1936.
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The procedure of 11-1 (a) is followed 1 until we arrive at the 3s-tuple

integral carried out over the infinite range of each of the coordinate

variables:

(V - E)** dx> diji dZj . (51)

The extremization of (51) leads to the Schrodinger equation for the given

system of s particles namely,

i

(52)

y-i

where we write

W-g +g +
f

->,'.....* (53)

(The derivation of (52) is left for exercise 4(6) at the end of this chapter.)

As with the single-particle equation (4), the solution of (52) presents

an eigenvalue-eigenfunction problem : Any value of E for which there is a

solution \(/ such that the integral (51) exists is an eigenvalue of E\ the

solution \l/
is the corresponding eigenfunction.

(b) The physical interpretation of the eigenvalues of E in (52) is

identical with the interpretation in the single-particle case: The eigen-

values of E are the physically realizable values of the total energy of the

system under the influence of the potential energy V.

Similarly, the physical interpretation of the eigenfunctions of (52) as

applied to a many-particle atomic problem is a direct generalization of

the interpretation of the single-particle wave functions which is presented

in ll-3(c): The quantity f ^2
fl dxj dy, dZj is the probability of simultane-

y-i

ous location of the first particle of the system within the volume element

dxi dyi dz\ at the point (#1,2/1,21), the second within the element dxz dy* dz*

at (#2,2/2,22), >
the *th within the element dx, dy, dzt at (x a,y8,z). Or

if we wish to regard the position configuration of the entire system as

described by the 3s coordinates of a single point in a space of 3s dimen-

1 The details are left for end-chapter exercise 4 (a).

t See footnote, p. 276: If ^ is complex, we must replace ^ J by M 1 as the position

probability-density function.
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8

sions, we have the equivalent statement that ^2
f] dxj dyj dzj is the prob-
>- 1

ability of the system's location within the (3s-dimensional) volume ele-

s

ment \\ dx
} d\jj dz}

at the point (zi,2/i,2i,z 2,2/2,Z2, . . .
9x.,y, 9

z9 ). Since it

j - 1

is assumed that the s particles of the given system are located somewhere

in space or, in the equivalent description, that the single point describing
the position configuration of the system is located somewhere in the space
of 3s dimensions we must require the normalization

8

//
' ' JV El dxidyjdZj = 1. (54)

;-i

(c) We consider briefly the special case in which the potential-energy

function V which describes the forces influencing the motion of a system
of s particles can be written as a sum of terms each of which involves the

coordinates of only one particle. That is, we deal with potential-energy

functions of the special form
9

(55)

If V has the form (55), the many-particle Schrodinger equation (52)

possesses solutions which are products of functions each of which involves

the coordinates of only one particle namely,

For if we substitute (56) together with (55) into (52), we obtain on

noting from (53) that V
;V = (^/^

(;)
)V ;V 0) and on dividing through by \f/

E =-

We transpose to the right-hand member a single term the A:th, say

of the sum over j in (57) :

V' ( K* V
;V< v

2/ fe>:>"
- ^

(The prime of S' indicates omission of the term j =
fc.) Since the right-
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hand member depends only on the independent variables #*, yk , z*, and

since the left is independent of these variables, we conclude that each

member is a constant, which we denote by E (k)
. Since this result is

independent of the choice of fc, it must be true for all j =
1, 2, . . .

,
s:

-
v, =

\&fn,j Y '"

or

+ (JBO)
- 7,)* =0 (j - 1,2, . . . ,). (60)

Moreover, by substituting (59) into (57), we conclude that

8

E = #</>. (61)

We thus have the special result: If V exhibits the form (55), the many-
particle Schrodinger equation (52) possesses solutions which may be

written as a product of factors ^ (y)
fe,2/>,2/)> where each ^ 0) is a solution

of a single-particle Schrodinger equation (60), for j = 1, 2, . . .
,

s.

According to (61) the corresponding energy eigenvalue of the many-
particle equation is the sum of the energy eigenvalues of the s single-

particle equations (60). In particular if an eigenvalue of E in (52) is

nondegenerate, such a product solution is the eigenfunction,
1
if (55) gives

the form of F.

(d) It is shown in 11-1(6) that the single-particle Schrodinger cigen-

value-eigenfunction problem is equivalent to a certain isoperimetric prob-

lem. In similar fashion it may2 likewise be shown that the many-particle

Schrodinger problem may be so characterized. Namely, the extremiza-

tion of (51) of (a) above is equivalent to the extremization of

+ TV 2

dxjdyjdzj (62)

j-i

with respect to functions ^ which satisfy the normalization condition j

8

//"/ +* II dxj dyj dZj
- 1. (63)

j-i

1
Explicit justification of this final statement is left for end-chapter exercise 8.

1 See end-chapter exercise 4(c).



11-5] QUANTUM MECHANICS 281

Moreover, the successive eigenvalues of
, arranged in the ascending

order

El ^ El g ^ En ^ En+l ^ ,

are the successive minima of (62) in the following sense: The nth eigen-

value En is the minimum of (62) with respect to sufficiently regular func-

tions ^ which satisfy (63) along with the (n 1) orthogonality conditions

//'/ W* II dxjdftdzi = (k = 1,2, . . . ,n
-

1),

>-i

whore \//k is the eigonfunction of the problem corresponding to the eigen-

value Ek. Discussion of the proof of this assertion is reserved for exercise

6 at the end of this chapter.

Application of the minimum characterization of the Schrodinger energy

eigenvalues is found in 11-5 below. We omit discussion of a maximum-
minimum characterization such as that which appears in 9-11 (a) in rela-

tion to the membrane eigenvalues.

11-6. Ritz Method : Ground State of the Helium Atom. Hartree Model
of the Many -electron Atom

(a) To illustrate the approximate solution of a quantum-mechanical

problem through the direct minimization of the integral (62) of ll-4(d)

we consider the problem of finding the lowest energy eigenvalue for the

helium atom. As in the one-electron problem of 1 l-3(a), we suppose the

nucleus to bo in fixed position at the origin of coordinates; the two elec-

tron positions an 1 described by the sets of cartesian coordinate variables

(2*1,1/1,21) and (.r 2 ,f/2,2 2 ), respectively. The potential energy is given by

r = \\ + r, + r 12 , (64)

where

Vj = - ^ (j =1,2), F 12
=
^, (65)

with

and
___ _ ______'''

(22
-

zi)
2

. (67)

The term Vj of (64) represents the interaction between the nucleus and

thejth electron (j
= 1,2) ;

the term Y\i represents the interaction between

the two electrons. The quantity is the fundamental electronic charge,

as introduced in 11-3 (a).

In place of the Schrodinger problem defined by the relations (64) to
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(67) we consider temporarily the problem in which (65) is replaced by

^ = - ^ (J
=

1,2), 7i2 =
0; (68)

i.e., we suppose no interaction between the electrons and leave unspeci-

fied the electric charge (Zc) on the nucleus. In this problem the result

of ll-4(c) is applicable, so that we may obtain a solution of the form

t = * ( (Xl,yi,*lW(x*,y^, (69)

where ^ 0) is the solution of a Schrodinger problem involving the coordi-

nates (xj^y^Zj) only, for each of j =
1,2. According to (60) of ll-4(c), ^0)

is an eigenfunction of the equation

j =
1,2), (70)

with the aid of (64) and (68), and since m\ = m 2
= m, the electronic mass.

Careful reference to the work of ll-3(a) reveals that each of the
"
separated

"
problems embodied in (70) is equivalent to the problem

handled in ll-3(a) with (x,y,z,r) replaced by (zi,2/i,2i,ri) in ono case

and with (z,i/,2,r) replaced by (2,?/2,z 2,r 2 ) in the other. The eigenfunc-

tion corresponding to the lowest energy eigenvalue of the problem is given,

accordingly, by (69) and

as we find from (49) of 11-3 (a). Also, from (50) of 11-3 (a), we have

(j
=

1,2) (72)

for the lowest eigenvalue of (70), and thus corresponding to the eigen-

function (71). We note, in passing, that the eigenfunction (71) is normal-

ized namely 1

JJJ(^) 2
dxj dyj dzj

= 1 (j
-

1,2). (73)

(b) Returning to the Schrodinger problem defined by (64) to (67), we
substitute the product function (69) into the integral

1 See end-chapter exercise 9.
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+ (V l + F 2 + F 12)^
2

dx, dpi dzi <fa2 <fy 2 &,, (74)

whose minimum with respect to functions ^ which satisfy the normaliza-

tion

*i di fei d* 2 dp, <fe 2
= 1 (75)

is the lowest energy eigenvalue of the helium atom, according to (62) and

(63) of ll-4(d). With the stated substitution we obtain 7 as a function

of Z; subsequent minimization of / with respect to Z supplies an approxi-

mation from above to the actual minimum of 7 to the lowest helium

energy eigenvalue, that is. We proceed, in the paragraphs following, to

the achievement of this approximation. (We note that (75) is fulfilled

by the product function (69) by virtue of the normalization (73),)

We have, from (69), that (ty/dxi) = t(W/dxi), etc., so that we

may write

with fc = (2/j). We therefore obtain, with the aid of the normalization

(73) with j replaced by k and Green's formula (32) of 2-14(e),

- V
jif

^O)y2^( dx . dy . fa.

l + (^w)s dx' dVi dZi> (76)

y-i
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where the final form is obtained with the aid of (70) and partial use of

(72). Further, we have use for the relation

If]
(* (fc))2 dXk dyk dZk

III F>(* ))2 dx' dljj dZj
(*

= ~

Xjdyjdzj (j
=

1,2), (77)

as we find with the aid of (69) and (73).

Since the dependence of ^ (1) on the variables x\, yi, z\ is identical with

the dependence of ^ (2) on x 2 , 2/2, z 2 , according to (71) and ((Hi), the two

terms of the final member of (76) are identical;
1 we may therefore replace

j by 1 (or 2) and the summation sign by the factor 2 in the final member
of (76). For the same reason, and because the dependence of Fi on

-PI, yi, z\ is identical with that of F 2 on # 2 , 2/2, 2 2 , according to (05) and

(66), we may similarly replace the index j in the final member of (77) by
1 (or 2). Thus, on applying the results (76) and (77) to the substitution

of (69) into (74), we obtain, with the definition

Q = JJ/J//^i2(^
(1)

)
2(^ 2)

)

2 dx l dyi dz, dxi dyi dzi, (78)

the simplified expression

7 = 2
III

(^ (1))2
\

l + ^ + Fl
)

dXl dUl dZl + Q

CCC ^(1)^2= 2E, + 2(Z -
2)e

2

JJJ

^
r^ dx l dy l dz, + Q, (79)

as we find with the aid of (73) and (65).

We evaluate the middle term of the final member of (79) by intro-

ducing the spherical coordinates (r,0,<) -with omission of the superfluous

subscript 1 as variables of integration. With (71) we obtain

fff A^ 1
))

2
1 f

* r2*
f* <r (r/ai)

///
^ L dx 1 dy 1 dz l

=
g-^z / / /

-- r*sm6d6d<l>dr
JJJ TI OTraJ JQ JQ JQ T

=
ZZ <80)

We evaluate the multiple integral (78) in the following manner: We
first hold Or 2,2/ 2,2 2) fixed and introduce a change of variables from (xi,yi,Zi)

to the cartesian set (#i,2/iX)> whose origin is the original origin of coordi-

1 The integration is carried out over the infinite range of the variables involved in

both cases.
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nates but whose z{ axis passes through the point (22,2/2,22) ;
the orientation

of the x( or y{ axis is immaterial. The jacobian of this transformation is

unity.
1

Moreover, we have r\
= x? + y(

2 + zf, so that we may intro-

duce the transformation to spherical coordinates

x{
= TI sin 0i cos <i, ?/j

= r l sin 0i sin
</> x , zi

= n cos 0i.

We thus have (see Fig. 11-1), according to (65) and (67),

r 12

with the aid of the law of cosines. Since ^ (1) is a function of TI alone,

Fin. 11-1.

according to (71), it therefore follows that

^V" ^r ' d^i dz i
= f f* f

2

= 2 r w^)v
Jo

sin 0! dfr dd, dr,

_- 2r 1 r 2 cos0

47TC 2

_

)
2
rf dr, + f (*<)*?-! drj

Jr, |

2 (l T 8

=
^r"3 I- /

c- (

2a? (r2 Jo

1 See end-chapter exercise 1 1 for the proof.
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With this result the evaluation of (78) is completed by means of the

transformation

#2 =
?*2 sin 02 cos fa, 2/2 7*2 sin 02 sin fa, z% = r% cos 2 .

After integration over the angles fa and 2 which results in affixing the

factor 4?r we obtain

<

-) + i

- ' (81)

With the results (80) and (81) equation (79) reads

X

!v (82)

according to (72) and (71). In accordance with the procedure outlined

above we minimize (82) with respect to Z\

dl 27\ m* _ 27-' z -

substituting into (82), we obtain for our approximation to the lowest

energy eigenvalue of the helium atom

j _ /27Y m(4 - 9 r,
mc4

(QO\1 = ITT* I ^2
"" ^o^-j2* v 4 '

This value is within 2 per cent of the ground-state energy Ei of helium

as determined by experiment. Although we have no theoretical criterion

for the accuracy of the result (83), its derivation as an approximation /row
above validates the inequality EI ^ 2.85(rne

4
//C

2
) for the helium atom.

(c) The larger the number of electrons per atom, the more complicated
is the problem of determining the energy eigenvalues and corresponding
wave functions of the atom. We proceed to discuss one of the standard

methods of approximation, the so-called Hartree method, which has been

applied to many-electron atomic problems with great success.

We consider an atom with nucleus assumed at rest at the origin of

coordinates, with 5 electrons associated with the cartesian coordinates

(#1,2/1,21), (# 2,2/ 2,z 2), . . .
, (x8,y8,zg), respectively. The total electric

charge on the nucleus is sc, so that the atom as a whole is uncharged.
The potential energy of the system is given by
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Vfi, (84)
k^l k^lf^l

where
*2

Vk
= - ?L

(r*
= V*2 + yl + *D (85)

represents the interaction between the nucleus and the fcth electron, and

fa* = VW^W'-T&i - ytf + (zy
-

**)*) (86)

represents the interaction between the jth and the fcth electron. (The
factor ^ appearing before the double sum in (84) takes care of the fact

that each Vjk Vkj (j ^ k) apj>ears twice, but must only be counted once.)

The Hartree method is based upon minimization of the integral (62) of

ll-4(d) with respect to normalized functions ^ which exhibit the special

form
a

t =
II ^(WiA). (87)

The normalization (63) of ll-4(d) is fulfilled by requiring that each ^0) be

normalized- -namely, that

SnW^dXjdyjdZj = 1 (j
=

1,2, . . . ,). (88)

We substitute (87) into (62) of ll-4(c/) and proceed to effect the mini-

mization of this integral with respect to s sets of normalized functions

^ (1)
, ^ (2)

,
. . .

, ^ (t)
. Upon substitution there occur several simplifica-

tions which are embodied in the results directly following:

From (87) we have that 1

(89)

because of (88). Further, from (85) and (87) we have

1 We use n' to indicate the absence of the factor for which
.;'

= k.
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8

// /W 11 dxjdyjdZj

8

c* dy* <fe* FT
j-1

xk dyk dzk (k = 1,2, . . . ,), (90)

because of (88). Finally, we obtain in similar fashion, for each pair of

values of j and k (j ^ fc),

8

//
'

'/W [I dxp dyp dzp
P-I

as a result of (87), (86), and (88).

Using the results (89), (90), and (91), we substitute (87) and (84) into

(62) of ll-4(d) to obtain

7 ' '"12m

x,. dy> d^- dxk dyk dzk (92)

for the quantity whose minimum we seek. (We set

mi w 2
= = m, = m,

the electronic mass.)

For the purpose of minimizing (92) we proceed in the following manner:
We suppose all the functions ^ (l)

, ^ (2)
,

. . .
, ^ (a) with the exception of

one say \l/
(i) to be correctly determined for the minimization; we are

thus left with the problem of choosing \f/
(i)

correctly for the minimization.
To do this we need to consider only those terms of (92) which involve the

particular \f/

(i)
viz.,

(93)j dyj
cfe,] J

dxi dVi dz f .
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(Omission of the factor before the summation over j in (93) arises from

the fact that (^
(0

)
2
appears twice in the double (j,/c) sum in (92), once as

coefficient of Vjt and once as coefficient of F,-*. Since j and A: run through
all values from 1 to s independently, and since FJt

=
F,-y, the two terms

in which (^
(i)

)
2
appears in (92) are lumped together in (93).)

Since Ftt
=

0, according to the definition (86), the term j = i does not

appear in the sum over j in (93) ;
thus'since all the ^0)

(j ** i) are assumed

determined, the triple integrals over a"y, t/y, 2y may be regarded as known
functions of x,-, yiy 2, within the integrand of /,. In fact comparison of

(93) with (5) of 11-1(6) together with comparison of (88), for j = t,

with (6) of 11-1(6) shows that the extremization of /, with respect to

normalized functions
\f/

(l] is identical with the sin<//e-particle Schrodinger

problem with the potential-energy function

V =

Thus, according to (4) of 11-1 (a), with obvious notational modification,

we have

V
tV< + E< - Vi - v^^dxidyjdz *> =

(v\V
(i) = *&, + *&.. + *&,), (i

=
1,2, ...,) (94)

for the differential equation which must be satisfied by the function

^ (l) which minimizes /;. (Since the result (94) holds for any value of

i from 1 to s, the designation i = 1, 2, . . .
,
s is affixed.)

(d) From the viewpoint of obtaining a solution for the functions ^ (l) in

precise analytical form, the s equations (94), a system of nonlinear integro-

differentiul equations, are of little use. They do, however, lend them-

selves to a procedure of numerical solution which, although formidably

laborious, has yielded results of high accuracy and of wide utility. The

procedure, roughly, is the following: First, one makes a simple reasonable

assumption as to the potential energy represented by the sum over

j in (94) and then solves the resulting Schrodinger equation for each

]f,w(i
=

1/2, . . . ,s). These solutions are then inserted into their proper

positions in the sum over j in (94) and a new solution of the resulting

linear differential equations for the various ^(0 is effected. The process

of solution and substitution is reiterated until the successive sets of solu-

tions for the ^(0 differ sufficiently little from one another. (Treatment

of such simplifications as the assumption of spherical symmetry, restric-
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tions according to the so-called exclusion principle, and other details of

the Hartree method are necessarily omitted from the discussion here.)

The physical interpretation of the sum over j in (94) is of some interest.

According to (86) a representative term of this sum is

r*

the potential energy of a point charge of magnitude e at (x t ,y iyZi) as the

result of its interaction with a continuously distributed charge of mag-
nitude density e(\l/

(

^)
2 which has the same sign (+ or ) as that of the

point charge. If, then, we regard ^ (i) as the wave function associated

with the ith electron, we may split its potential energy, according to

(94), into the following s independent parts:

(1) nuclear influence represented by the term Ft ,

(2,3, . . .
, s) the influence of (s 1) continuous distributions of

charge of densities 1

(^
0)

)
2 for j =

1,2, . . .
,
s (j ^ i), each of which

is associated with one of the remaining (s 1) electrons of the atom.

But if ^ (y) is the wave function associated with the jth electron, (^
(;)

)
2

is the probability-density function of the jth electron's position in space,

according to ll-3(c). Thus, in its electrical influence upon each of the

remaining (s 1) electrons of the atom, the jth electron behaves as if it

were a continuous distribution of charge of total value 2
* whose density

at each point is proportional to the probability density of locating the

jth electron there.

The foregoing model of the many-electron atom the so-called Hartree

model is surely oversimplified, for it is based upon the restricted form

(87) for the electronic wave functions. It does, however, appear suffi-

ciently accurate to yield results in excellent agreement with a wide

variety of experiments.
EXERCISES

1. Show that each of the real and imaginary parts of any solution of the wave

equation (7) of 11-2 (a) is also a solution of the same equation (7).

2. In a given direction of space, superimposed plane waves whose frequencies are

confined to a narrow range are propagated with velocities which depend slightly upon
the wave frequencies. It can be shown that any measurement of the velocity of

such a group of waves yields the so-called group velocity U, given through the formula

I . 27T
rf(1/X)

.

Show that the "matter waves" discussed in ll-2(d,e) are such that the group velocity

is identical with v, the classical velocity of the particle with which a given wave is

associated. HINT: Use (25) and (26).

1 The charge on the electron, of magnitude e, is negative.
*
Integrated over all space, that is (see (88) of (c) above).
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3. Use (43) of ll-3(a) to evaluate the final integral of (44). HINT: Substitute (43)

for one factor of the integrand and integrate by parts (n 1) times. Take note

that the factor [(-L^U)] is a polynomial of degree n, so that (n - 1) differentiations

"destroy" all but two of its terms.

4. (a) Carry through the procedure of ll-l(a) in order to derive (51) of ll-4(a).

(6) Use 9-1(6) to derive (52) from (51).

(c) Use 9-1 (c) to prove the statement in the opening paragraph of ll-4(d).

5. (a) Prove the orthogonality relation .

ffftitk dx dy dz = (95)

for the Schrodinger eigenfunctions if Ej j* -E*. HINT: Use (4) with
\f/
=

^/, E = Ej,

then with ^ = ^*, E Ek', compare 9-6(6).

Further, extend the validity of (95) to include the case Ej E* (j

'

^ k) by means
of the argument (Schmidt orthogonalization process) of 9-6(c).

(6) Extend the results of part (a) to include the eigenfunctions of the many-
particle Schrodinger equation (52). HINT: In the absence of a many-dimensional
Green's theorem use direct integration by parts.

6. (a) On the basis of an expansion theorem completely analogous to the theorem

given in 9-6((/) give a formal proof of the asserted minimum characterization of the

Schrodinger eigenvalues given in 1 l-4(d). HINT: Compare 9-9(6). Note in particular

the condition which must be imposed on the "expanded" functions at infinity.

(6) The validity of the expansion theorem mentioned in part (a) may not obtain

if the potential-energy function V is not sufficiently well behaved. Inasmuch as one

has very often to deal with potential-energy functions in quantum mechanics which

exhibit singularities (for example, (29) of ll-3(a) at r = 0), the question of the expan-
sion of arbitrary functions is an exceedingly difficult one more so, for example, than

the corresponding question as related to vibrating-membrane eigenfunctions. For

the problems considered in the foregoing chapter, however, there is no question as to

the validity of the minimum property of the Schrodinger eigenvalues.

7. (a) With the nucleus regarded as free (and not fixed, as in 11-3) the integral

whose extremization results in the Schrodinger equation for the hydrogen atom is,

according to (51),

2

|V2* |S + (v ~ E}^} n dxi d^ <**<

t i

where

(it!/i2i) &nd (25,1/2,22) are respectively the coordinates of electron and nucleus; m is

the electronic mass, and M is the mass of the nucleus; and V depends only on the

distance

between the electron and the nucleus. Effect the transformation

-
2/2,

-
i
-

22 (97)

v xim x* t/iw -f y*M z\m -f *X " ~' Y " ' Z " (98)
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to bring (96) into the form

7 =
IIIIII J2(7n+

2

M) |V^ |Z +S IW|2 + (V "" E}
**}

where M 2 = *i 4- *
2

r + *i, N* - *i + *; + *;,

and
"mM

f* -
srnr (100)

HINT: First show that the absolute value of the jacobian of the transformation is

unity. Then derive^ = t* + [m/(m + M)]t,, tx t
- -** + [Ml(m + M)tyx, etc.

(6) Carry out the extremization of (99) to derive the Schrodinger equation of the

problem. HINT: Use 9-1(6).

Show that an eigenfunction ^ of this equation may be written in the form

where ^ (c) satisfies the equation

(101)

the Schrodinger equation for a free (zero-potential-energy) particle and ^ (<)

satisfies the Schrodinger equation for the hydrogen atom with stationary nucleus

(11-3), but with m replaced by /* HINT: Use the fact that V depends only on x, y, z\

compare ll-4(c).
* '

(The variables X, Y, Z, defined by (98) are the coordinates of the center of mass of

the atom. The result (101) may thus be interpreted that the atom as a whole is to

be considered, in its translational motion, as a free particle located jit its center of mass.

The final result of the preceding paragraph justifies the parenthetic remark made at

the conclusion of 11-3(6). What do the variables x, y, z, defined in (97), represent?)

8. Give explicit justification for the final statement made in 1 l-4(c).

9. Verify directly the fact that ^ ( > } of (71) is normalized. (This is of course a very

simple special consequence of exercise 3 above.)

10. Suppose that a single (approximate) eigenfunction

( 102 )

has been obtained for a given s-electron atom by means of the Hartree method

(ll-5(c)); each $ (i) is properly normalized. Let, further, E (l)
, E^\ . . . E be the

corresponding set of eigenvalues obtained by solving the equations (94). Show that

the total (approximate) energy of the atom which corresponds to (102) is given by

E - tf> -
i VjkWtywpdXjdyjdzidxkdykdzk. (103)

-l *-!;-!

HINT: Compare (92), whose minimum is E, with (93), whose minimum is E(i)
.

What is the physical significance of the appearance of the double sum in (103)?
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11. (a) Show that a linear homogeneous transformation

3

6,,z' (t - 1,2,3) (104)

from a cartesian system (21,22,23) is a pure rotation of axes to a second such cartesian

system (x^x'^x^) if and only if the six relations

(j,k
= 1,2,3, independently) (105)

hold. HINT: The necessary and sufficient condition that the transformation be a pure
rotation is that

3 3

si
2

(106)

i

for all values of the 2, and x\. Derive (105) directly from (104) and (106).

(6) Use (105) to show that the absolute value of the jacobian of the transformation

(104) is unity. HINT: Use the rule for multiplying determinants (2-8(c)) to form the

square of the jacobian.



CHAPTER 12

ELECTROSTATICS

12-1. Laplace's Equation. Capacity of a Condenser

(a) To say that there exists an electrostatic field in a given region of

space is equivalent to asserting the existence of a vector whose cartesian

components Ex ,
Ey,

Ez are, in general, functions of the position coordi-

nates x, y, z (but not of the time t) such that a point charge Q located at

(x,y yz) experiences a force whose cartesian components are QEZ , QEy , QEZ .

The vector (Ex,Ev,Eg) is called the electrostatic intensity. The electro-

static field is conservative in the sense of 6-1
;
that is, there exists a func-

tion <t>(x,y,z) with continuous second partial derivatives from which the

components of the electrostatic intensity are derivable as

151
d<

I?
d< d<t> /JN

JtL x = -r > fry
=

> L Z
= -

(1;dx dy dz
^

The function <, which is actually the potential energy of a unit charge

(Q 1)> is called the electrostatic potential function or, simply, the

potential of the field. The component of the electrostatic intensity in

any given direction is the negative of the derivative of the potential taken

with respect to that direction.

For the sake of simplicity we may define a metallic conductor -or,

briefly, a conductor as a body in which the electrostatic potential has

the same value at all points; in particular the surface of a conductor in

an electrostatic field is characterized by a constant potential. (From (1)

it thus follows that the electrostatic intensity is everywhere zero in the

interior of a conductor and has a zero component in every direction tan-

gential to the surface of a conductor.)

We consider the three-dimensional region R which is exterior to a given
number of isolated fixed conductors and interior to a single closed con-

ducting surface; the region R is unoccupied. Owing to the assumed

presence of an electric charge on at least one of the conducting surfaces

the region R constitutes an electrostatic field. The potential energy per

unit volume associated with such an electrostatic field is given
1 by the

1 A demonstration of this result is far beyond our present scope. See, for example,
Max Abraham and Richard Becker, "The Classical Theory of Electricity and Magne-
tism," pp. 81-84, Blackie & Son, Ltd., Glasgow, 1932.

294
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expression (I /Sir) (El + El + El). Integrating this quantity over the

region R occupied by the field, we obtain, with the aid of (1), the total

potential energy of the field namely,

This field potential energy not to be confused with the potential func-

tion <f>
=

<t>(x,y,z) represents the amount of mechanical work which

would be required in order to bring the electric charges which give rise

to the electrostatic field from infinitely great mutual distances to their

actual distributions on the conductor surfaces.

The principle which characterizes a system in stable equilibrium as

possessing a minimum of potential energy consistent with its constraints

applies to an electrostatic field as well as to a mechanical system. We
may thus expect to derive the differential equation satisfied by the poten-

tial function by rendering the integral (2) a minimum with respect to

continuously differentiable functions < which possess a prescribed con-

stant value on each of the conducting surfaces which constitute the

boundary B of R. The boundary condition for the functions </> eligible

for the minimization of (2) springs from the definition above of a con-

ductor; thus a different constant value is in general assumed on each

isolated conductor.

To extremize (2) we may employ the general Euler-Lagrange equation

(9) of 9-1 (a), with w =
<t> and 1

We thus obtain for the extremizing function namely, the actual poten-

tial function of the electrostatic field the partial differential equation

zx + * + * =
0, or W = 0. (3)

The equation (3) so-called Laplace's equation finds applicability not

only in electrostatic theory but also in the studies of classical (Newtonian)

gravitation, hydrodynamics, heat flow, and other physical phenomena.
In exercise l(a) at the end of this chapter a proof that the </> which

extremizes (2) is actually a minimizing function is called for. Further,

in exercise 2(6) it is proved that the solution of (3) under the given

boundary conditions is uniquely determined. (Adequate hints are pro-

vided in each case.) The question of the existence of the minimum of

1 From this point forward we employ subscripts to denote partial differentiation,

as in preceding chapters but not in (1) above!
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(2) is discussed in 12-4 below; we make the generally valid assumption
of its existence.

(6) The problem of finding the solution of Laplace's equation (3) in a

given region R, with </> required to assume specific values on the boundary
surface B of /?, is called the Dirichlet problem for R. The solution of the

Dirichlet problem in closed analytical form has boon accomplished in

several cases; these are discussed adequately in the literature on potential

theory.
1 We direct our attention, rather, to the possibility of effecting

approximate solutions through the direct minimization of the integral

(2) for cases in which a solution in closed form cannot be achieved. One

general method of such approximation is completely analogous to the

Ritz method as applied in 7-6, 9-13, 10-10, 11-5, etc.: A class of functions

<t> is defined by the various sets of values of a finite number of parameters
borne by a single analytical expression which assumes the required values

on B for all values of the parameters. The parameter-laden expression is

substituted for </> in the integrand of (2), and the minimum of ]]
r

with

respect to the parameters is effected. The minimizing values of the

parameters thus define that function of the given class which gives the

"best" in the sense of rendering W the smallest approximation to the

actual potential.

The method described in the preceding paragraph is in general quite

laborious in its execution. Justification for the amount of labor required

can of course lie only in the degree of urgency attached to the (approxi-

mate) solution of any given problem. For the purpose of illustration we

carry out the method for a problem of nontypical simplicity one in which

the procedure leads us directly to the known precise solution:

We choose for the region R the exterior of a given sphere of radius 6;

the outer boundary of R may be considered to be "a sphere of infinite

radius concentric with the given sphere ." We set up a system of spheri-

cal coordinates 2
(rA^) with origin at the center of the sphere. Tho class

of functions with respect to which we choose to minimize (2) is defined by
the single parameter p in

/~\ /

(P < 0), (4)

where </>i is the potential on the sphere and the ''potential at infinity" is

taken to be zero.

In spherical coordinates (2) reads, on substitution of (4) with the aid

of (36) of 11-3 (a),

1
See, for example, Kellogg.

2 Because of the use of <j> for the potential function, we substitute the symbol ^ for

the usual <j> as third spherical coordinate.
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w = i
'"

r*"2r
' sin 9 d* de dr (p < 0)

2(2p + 1)

To minimize W we form

dlF 1 .= - -
b^

dp 4

whence p =
0, -1. Since (d*W/dp*) > for p =

1, JF is a minimum
for this value of the parameter, and the best approximation to the poten-

tial, as supplied by (4), is

//A

(5)

(We must reject the solution p = in advance because of the necessary

requirement p < 0.) It happens that (5) actually satisfies Laplace's

equation (see end-chapter exercise 3(a)) as well as the given boundary
conditions and is thus the precise solution of the problem.

(c) We devote the remainder of this section to the consideration of

regions R of the type which lie exterior to a single given closed con-

ducting surface B\ and interior to a second given closed conducting sur-

face # 2 ; the two conductors are then said to constitute a condenser. The
essential quantity associated with a condenser is its capacity, which is

defined by the formula

-*)' III
R

where <f>\ is the constant potential on B\, < 2 the constant potential on B*,

and <t>
=

<K.r,//,2) the potential in the intervening region R.

In view of the minimizing character of the potential function enunci-

ated in (a) above, and since the integral in (0) coincides with that iu (2),

an equivalent definition of the capacity of a condenser is the minimum of

(0) with respect to continuously difYerentiable functions which satisfy

</>
=

</>i on #1, <f>
=

<j>>2
on 7? 2 . The merit of this minimum definition lies,

of course, in its usefulness for the approximation of the capacity of a

given condenser along the lines sketched in (b) above. Moreover, there

exists a method of approximation which is far more elegant and, at least

in some cases, simpler in its application than the direct method of (6) in

which the integral of (0) is minimized with respect to a finite set of

parameters. We proceed to develop this method.
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We suppose that B\ and B% are members of the one-parameter family
of closed surfaces u(x,y,z)

= A (u\ g A rg w2), with u(x,y,z)
= u\ on B\

and u(x,y,z) = ^2 on JS 2 . Further, we restrict the continuously differ-

entiable function u(x,y,z) to be such that through each point of R there

passes one and only one surface u(x,y,z) = A lying entirely within R,

with the values of the parameter A so ordered that the surface u = A \ is

everywhere interior to the region bounded by the surface u = A 2 when-

ever A i < A 2. (See Fig. 12-1 for a plane section of R. Discussion of

the existence of the required function u(x,y,z) when B\ and B 2 are given

u(x,y,z)=A

FIG. 12-1.

is reserved for exercise 5(d) at the end of this chapter.) We seek to mini-

mize (6) with respect to functions which exhibit the special form

4>
= G(u), with G(u l )

=
</>!, G(w 2)

=
4> 2 . 7)

From (7) it follows that

<t>x
= G'(u)u x , <t>y

= G'(u)uvy <t>x
= G'(u)uz ,

where the prime (') indicates differentiation with respect to the argu-

ment u. Thus, on substitution of (7), the integral of (G) (which wo seek

to minimize through proper choice of the function G) becomes

ul + u\ + ul)dx dy dz. (8)

We proceed to reduce (8) to a simple integral over the variable u.

We introduce the two continuously differentiate functions v(x,y,z) and

w(x,y,z) such that through every point of R there passes one and only one

surface v(x,y,z)
= constant and one and only one surface w(x,y,z) = con-

stant for some pair of ranges of values Vi ^ v ^ v 2 and w\ ^ w g w 2 .

Thus we have in (u,v,w) a coordinate system related to the cartesian

system by the transformation equations

u = u(x,y,z), v = v(x,y,z), w = w(x,y,z); (9)

the inverse transformation is obtained by solving the system (9) for x,y,z:

x = x(u,v,w), y = y(u,v,w), z = z(u,v,w). (10)
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The numbers v\,Vi,w\ 9Wt are so chosen that to every (u yv,w), with

u\ g u ^ u^ v\ ^ v ^ v 2j Wi ^ w 5jJ iu 2 ,
there corresponds a single point

of R. (An example of a suitable assignment of v and w is given in (d)

below, where the method under development is applied to a specific

problem.)

Using (10), we transform (8) to read

/ui

/

/
d 7fi

dwdvdu, (11)

according to the rule given in 2-8(/); the jacobian [d(x,y,z)/d(u,v,w)] and

(ul + ul + u}} are supposed expressed in terms of 1

(u,v,w). Since the

factor [G'(w)]
2

is independent of v and w, we may define

/I't

/*U'J

, J,,
(ul +ul +l

and so rewrite (11) as the simple integral

dw dv (12)

7 =
f"'[G'(u)]*H(u)du. (13)

Thus the problem of minimizing 7 with respect to functions <t> having
the form (7) is reduced to the problem of minimizing the simple integral

(13) with respect to functions G of a single variable. To accomplish this

we may apply the result (26) of 3-4 () first integral of the Euler-

Lagrange equation (25) of 3-3(6) in the event the integrand/ is explicitly

independent of the dependent variable G to the integrand / = G'*H of

(13). We thus obtain

G'H =
ci, or G(w) = d + c2 , (14)

where Ci and r 2 are constants. (In exercises 2 and 3, Chap. 3, it is shown

that the extremizing function given by (14) actually minimizes (13).) To

evaluate c\ and c 2 we employ the second and third relations of (7) and so

obtain from (14)

"'

du/H(u)
Ul

Thus, according to the first of (14) and the second of (15), we have

HG' 2 =
I

= -
'" ~ ^' 2

1 See end-chapter exercise 6(6).
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so that (6) becomes, with the aid of (13) and (8), the approximate capacity

C T^T
-

/ du/H(u)
JU\

where C is the actual capacity (the minimum of (6) with respect to </>)

of the condenser under consideration.

Under exercise 6(c) at the end of this chapter it is shown that the func-

tion H(u) given by (12) is independent of the choice of functions v and w
in (9) and (10). Thus the possibility of improving the approximation

given in (16) through a "better" choice of v(x,y,z) arid w(x,y,z) does not

exist.

The only possible way to decrease the difference (C C ) if it does

not already vanish is by means of a more suitable function u(x,y,z) in

terms of which the surfaces BI and B 2 are represented. In fact if the

family of surfaces u(x,y,z)
= constant happens to be identical with the

family of surfaces <t>o(x,y,z)
= constant (where < is the actual potential

in R), it is directly seen that the approximation (Hi) is perfect; that is,

C = Co. For with such a choice of u there is a one-to-one 1 functional

relationship between </>o and u\ thus the function G(u) is some function

F(<o) I
the minimum of (6) with respect to

<t>
= G(u) F(<t>o) is clearly

achieved for F = <o. From this fact it follows that the method of tins

subsection may be used to solve the following condenser problem: Given

any one-parameter representation of the equipotential surfaces (surfaces

on which the potential is constant), find the potential function itself.

The main limitations of the method of the preceding paragraphs lie,

first, in the possible difficulty of finding a sufficiently simple function

u(x,y,z) ; and, second, once the choice of u(x,y,z) is made, the possible

failure of the integral (12) for H(u) to be evaluable in explicit form. In

the specific example of (d) below, however, neither of these difficulties

prevails.

In 12-2 below we consider a second method for approximating the

capacity of a condenser a method which results in a lower bound for

the capacity. We are thus enabled to estimate the accuracy of any
approximation from above achieved by the methods of this section.

(d) The remainder of this section is devoted to applying the method of

(c) above to the approximation of the capacity of the condenser formed

by the similar ellipsoids of revolution described by the surfaces u = u\

and u = Uz (0 < Ui < w 2), where

u = VV + y
2 + <*

2*
2

( > 0). (17)

1 See end-chapter exercise 5(d) for a fuller discussion of this point.
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(If a < 1, we deal with prolate spheroids; if a > 1, we have oblate

spheroids.) In the special case a =
1, the surfaces u = HI and u = u z

are concentric spheres with their centers at the origin of coordinates and
u is the distance from the origin. In this case we should almost certainly
choose for the functions v,w (see (9) and (10) of (c) above) the spherical
coordinates usually denoted by 0, <f>. That is, (10) would read

x = u sin v cos w, y = u sin v sin w\ z = u cos v (a =
1). (18)

Since passing from a = 1 to a ^ 1 in (17) means replacing z by az, we
should expect to obtain a suitable choice of the functions v and w by
replacing z by az in (18)- -namely,

x = i/ sin y cos ?/', ?/
= u sin y sm w,

u
z = ~ cos (19)

We note, first, that (17) is satisfied by (19). Further, it is clear that

each point of It is associated, through (19), with one and only one triple
of values (w,r,ir), with

u\ ^ u g g y g ^ w < 2ir. (20)

(Proof of this fact is called for in exercise 9 at the end of this chapter.)
From (17) we compute directly

(21)

according to (19). From (19) we compute the jacobian

d(u,v,w)

sin
a (22)

With (21) and (22) the equation (12) of (c) above becomes, with the aid

of (20),

it* f' I*

2*
47r

H(u) = -
/ / (sin

2 v + a2 cos2
v) sin v dw dv = |? (2 + a2

)w
2
,

<* Jo Jo *ta

from which we compute

*

(23)

a 2
)
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Substituting (24) into (14) and (15) of (c) above, we obtain for the

approximate potential function

4,
= G(u} = _ Ll ? + L=-. (25)'

1*2 Ui \ U / U<L Ui
^ '

Substituting (24), with u u^ into (16) above, we obtain for the approxi-
mate capacity of the condenser under consideration

uj - Co ' (26)

where CQ is the precise capacity. We note, on comparison with the

results of end-chapter exercise 8, that both (25) and (20) give precise

results in the case a = 1 for the condenser consisting of concentric

spheres, that is, according to (17). We should therefore expect the

method to give its most reliable results in this problem when a is in the

neighborhood of unity; this fact is borne out in 12-2 below, where a lower

bound for the capacity of the ellipsoidal condenser is derived.

(e) The capacity of a single conducting surface is defined as the limit

of the capacity of the condenser, of which the given surface is the inner

conductor, as the outer conductor recedes to infinity in all directions.

In the case of the ellipsoid u = u\ of (d) above we obtain the approxi-
mation C' to its capacity C'Q by letting u 2 oo in (26) namely,

r" ij< > C" (97}~~
Q^ Ul U 0' \4' /

If we write the equation of the ellipsoid u = u\ in the familiar form

we have, according to (17), u\ = b and a = (6/a), so that (27) reads

C' =^! .--g- C' . (29)

In exercise 10 we compare (29) with the formula giving C'Q precisely for

the ellipsoid (28) in the case a > b.

12-2. Approximation of the Capacity from Below (Relaxed Boundary

Conditions)

(a) The minimum of the expression (6) of 12-1 (c) with respect to con-

tinuously differentiate functions for which <
=

<t>i on BI and </>
=

<fo
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on B 2 is by definition the capacity of the condenser whose inner (Bi)

and outer (Z? 2) conducting surfaces bound the region R. We proceed to

demonstrate that the capacity may be defined equivalently as the maxi-

mum of (6) with respect to functions which (i) satisfy Laplace's equation
and (ii) satisfy a "relaxed" boundary condition expressed in (34) below.

We suppose that </> is the actual potential in the region R bounded by
7?i, on which the constant potential i/3 </>i, and J5 2 ,

on which the constant

potential is < 2 . That is, we have

V 2
<
= in R, <t>

=
<t>k on B k (k =

1,2). (30)

Thus the actual capacity CQ of the condenser under attention is

1

We write

= * + Q, (32)

where the function
\f/ $(x,y,z) satisfies Laplace's equation namely,

VV = in R (33)

and the relaxed boundary condition

tf>

~
^) -jr-

dS = 0. (34)

(The function Q merely represents the difference between
<t> and \f/ as

defined.) The surface integral which appears in (34) is carried out over

the boundary B of R -that is, over the two surfaces BI and # 2 . The
derivative (d\l//dn) is computed with respect to the normal to B directed

outward from R.

(The boundary condition (34) is called "relaxed" in that it is less

stringent than the boundary conditions imposed upon the functions (f>

eligible for the minimization of ((>). That is, any function \l/ which satis-

fies the latter conditions namely, \l/ <f>\ on 7?i, \f/
=

< 2 on # 2 clearly

satisfies (34), because of (30); on the other hand we see below that there

exist functions ^ which do not satisfy these conditions but for which (34)

holds.)

We substitute (32) into (31):

fff 2 2 2\ j fff (r\i i n 2 a. n 2w
jjj

<*, + * + *,** jjj
* .

+ 2 III (i^Q* + 4>VQV + tJQJdx dy dz. (35)
J
A
J
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According to Green's theorem (30) of 2-14 we have

dy dz

rrr
=

0, (36)

because of (34), with (32), and (33). Since the second integral on the

right of (35) cannot be negative, it follows from (35) and (30) that

4^~W III
dy dz - (37)

Since the equality sign holds in (37) if
\l/
=

<t> and since \l/
=

<j> satisfies

both (33) and (34), because of (30), we are justified in defining the

capacity C as the maximum of the right-hand member of (37) with

respect to functions \f/ which satisfy both (33) and (34).

The difference between the two members of (37) is, according to (35)

and (36), proportional to the positive quantity

/ =
/// (Ql + Ql + Ql)dx dy dz, (38)
R

where Q is given by (32). The smaller the value of (38), therefore, the

better is the approximation to <7 which we achieve through the right-

hand member of (37). We proceed to show that, if we write
\f/ as a

linear combination

nUt [V
2

7<
=

(i
=

1,2, . . . ,N)] (39)

of AT given functions Ui(x,y,z) which individually satisfy Laplace's equa-

tion, the set of values of a\, a^ . . .
, (IN for which (38) is a minimum

is a set for which
\f/

satisfies the relaxed boundary condition (34).

With (32) and (39) we substitute

Q - * - a^ (4 )

For (38) to be a minimum with respect to ai, a 2 ,
. . .

,
aN we must have

(dl/da,k)
= for k =

1, 2, . . .
,
N. (Since / ^ 0, the minimum surely

exists inasmuch as / is a continuous function of the a*.) From (38) we
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have

S+*+*)***

as we find by performing the requisite differentiations in (40). With the

aid of Green's theorem (30) of 2-14, equation (41) becomes

because of the bracketed portion of (39) and (40). The required vanish-

ing of all the (dl/da k ) for the minimum of / thus gives the set of N linear

inhomogeneous equations

\

dn /
{

'

JJ
'

dn >>

for the best choice of the a
t . That this choice also renders (34) satisfied

L>Y (39) is shown by multiplying the A*th equation of (42) by a*, for

A; = 1, 2, . . .
,
N, and by adding the resulting JV equations to obtain

this is identical with (34), through (39).

Thus, in order to achieve a lower bound for the capacity T by means

of (37) we form the linear combination (39) whore l\ % T 2 , . . .
,
UN

are given functions known to satisfy Laplace's equation and where

di, a 2 ,
. . .

, a.v are obtained through solution of the system (42).

Moreover, we can expect, in general, to have an improved approxi-

mation to C in the right-hand member of (37) by adding more terms

to the linear combination (39). For since (42) ensures that the differ-

ence between the members of (37) is a minimum with respect to the class

of functions defined by (39), with Ui, U2 ,
. . .

,
UN given, the widening

of this class cannot increase the minimum achieved.
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In applying the foregoing method to a given condenser, we note that

each surface integral of (42) is the sum of two surface integrals, one

carried out over BI, with <t>
=

0i, and the other carried out over 5 2,

with = 02.

(6) We apply the method of (a) above to the condenser of 12-1 (d),

consisting of concentric coaxial similar ellipsoids of revolution described

by the equations u = u\ and u = u z (0 < Ui < u^) ,
with

u = ^/X2 + y* + a*z* (a > 0). (43)

In the case a. = 1 whereby the condenser consists of concentric spheri-

cal surfaces the precise potential is given by

- ai + a,,

where ai and a 2 are constants selected so as to fit the boundary conditions

(see end-chapter exercise 8). We may thus expect to achieve a good

approximation to the capacity C ,
at least in the neighborhood of a 1,

by the choice

(44),._,_ 2V& + y
2 + z 2

for the linear combination (39). With (44) the result (42) becomes a

single equation which when solved for ai and with the surface integral

over B split into its component parts reads, since = fa on BI and

<t>
= 02 on J52,

2

ai = 2s-52- - 4=J-
, (45)

// Ui(dUi/dn)dS + I! C

Bi Bs

where

Bk

To evaluate the integrals (46) we use as coordinates on the surface Bk
the variables v, w introduced in (19) of 12-1 (d); thus, for points of the

surface u = u^ we have
ni ,

x == Uk sin v cos w, y = Ui, sin sin w, z = cos v (fc
=

1,2),

(0 g ^ T, <> w < 2rr). (47)
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According to 2-11(6) the element of surface area on B* is given by

dS -

\/sin
2 v + o2 cos2 v sin v <

a (k = 1,2), (48)

as we compute with the aid of (47). To express the normal derivative

(dUi/dri) in terms of v and w we first note that the outward (from R)
normal direction is in the direction of decreasing u on B\ and in the direc-

tion of increasing u on B 2 , according to (43). Thus, in applying the

result (19) of 2-1 l(c) we write

dUi

(49)

u

^

-u| \/sin2 v + a2 cos 2 v (a
2 sin2 v + cos2

v)
1

as we find with the use of (43) and (44), then with the aid of (47). With
the results (48) and (49), and with (47) applied to (44), the integrals (46)

become
1 dw dv- r-ivM-it ['r sini

* '

Jo Jo (
2 sin* v
_
+ cos2

)

'

v + cos2
t>)

2

(* = 1,2),

(k
=

1,2).

Evaluation of Jk and i* is accomplished by elementary methods. In

both cases integration over w merely yields the factor 2ir; the substitu-

tion = cos v reduces both integrands to standard algebraic forms. We
obtain, finally,

J* = 4*-(-l)

cos" 1 a

t+i L* = -P(a),

+ (0 < a < 1),

(
=

1),

( > 1).

(50)

(51)

With (50) equation (45) becomes

01 =

Mi Ma

(52)
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Substituting (44) into the right-hand member of (37), we obtain

Ct -
**(+?- 43* Iff

l(Ul)l + (Ul)
* + (uwdxdy dz

>

or, on applying Green's theorem (30) of 2-14 plus the fact that V 2
I7i = 0,

(Li+Ll), (53)

according to the second definition of (46). With (50) and (52) the

inequality (53) our final result reads

n >Co - (54)

where F(a) is given by (51).

Combining (54) with the result (26) of 12-1 (d) for the condenser under

consideration, we obtain the double inequality

2 + mi*. \
-

Ui/ F(a)
(55)v '

For a = 1 the upper and lower bounds are equal, according to (51), to

the precise expression for the concentric spherical condenser.

0.5 1.0 1.5

FIG. 12-2.

Figure 12-2 exhibits the behavior of the numerical coefficients of

[uiUt/(u2 Ui)] in the upper and lower approximations which appear in

(55), for the range 0.5 g a ^ 2.0.

12-3. Remarks on Problems in Two Dimensions

(a) An important class of problems in electrostatics is characterized

by the fact that the potential function < is independent of one of the

cartesian coordinates which, for the sake of definiteness, we designate
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as 2. In geometric terms the conducting surfaces which bound the

electrostatic field are cylindrical with generators parallel to the z axis.

Thus every plane z = constant contains the same cross-sectional con-

figuration of these surfaces, so that we may confine our attention to a

single such plane say z = 0. Thus, in describing the conducting sur-

faces, we speak of them as curves their cross sections in the xy plane.

A right-circular cylinder of radius a whose axis is the z axis, for example,
is thus spoken of as the circle x 2 + y* = a2 in the xy plane. The region R
bounded by two cylindrical surfaces thus becomes the domain D in the

xy plane bounded by two curves the cross sections of the surfaces; etc.

The physical realization of a situation in which <t> is independent of z is

at best approximate; the mathematical results achieved are applicable

to cases in which the fields are bounded by cylindrical surfaces cut off

by parallel planes separated by distances which are great compared with

the cross-sectional dimensions of the field, and only at points between,
but distant from, these planes.

Two-dimensional problems in potential theory are most easily handled

by the methods of the theory of functions of a complex variable. Never-

theless, the techniques introduced in the two preceding sections of this

chapter are also of some use, particularly for the approximation of solu-

tions which are unattainable in precise form. In this section we indicate

the lines along which these techniques may be applied to two-dimensional

problems. Many of the details, as well as applications, are left for the

exercises at the end of this chapter.

(6) The capacity per unit length of a cylindrical condenser consisting of

the inner curve C\ and the outer curve C* which bound the domain D
may be defined as the minimum of

- +v If
(* (56)

with respect to continuously differentiable functions <t> for which = ^i

on Ci and <t>
= fa on Ca. In end-chapter exercise 1(6) it is proved that

the minimizing <j> satisfies the two-dimensional Laplace equation

4>~ + 4>vv
-

0, or W - 0. (57)

The techniques for approximating (from above) the minimum of (56)

and thus approximating the solution of (57) are essentially identical

with those discussed in 12-l(6,c,d) above; in general the details of appli-

cation to two-dimensional problems are somewhat simpler.

Analogously to 12-2(o) we may also define the capacity per unit length

of the condenser of the preceding paragraph as the maximum of (56) with
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respect to functions which satisfy (57) and the
"
relaxed" boundary

condition
n j , I /JA

0)
-^ ds = 0. (58)

The proof is called for in end-chapter exercise 13 (a).

(c) We may develop the minirmim definition of the capacity per unit

length of (6) above along the line of 12-1 (c). With the details left for

end-chapter exercise 14 (a) we arrive at the result

Co, (59)
4rr (

U

*du/h(u)
JU\

where c is the actual capacity per unit length of the condenser bounded

by the curves Ci and C2 which are members of the family of closed curves

u(xyy) a, with u = u\ on Ci and u w2 on C 2 . The function u(x,y)

is such that u(x,y) = a\ lies entirely within the domain bounded by
u(x>y)

= 2 whenever u\ ^ a\ < 0,% g u* The function h(u) is defined

by the integral

=
ywi

(60)

where t; is a continuously differentiable function of position in D which

varies inonotonically from Vi to v% as any curve u = constant is traversed

exactly once (v\ < t> 2).

12-4. The Existence of Minima of the Dirichlet Integral

In the foregoing sections of this chapter we have occasion to consider

the so-called Dirichlet integral

1 "
(<t>* + +t + ^dx dy dz

>

R

whose minima with respect to certain classes of functions < characterize

the solutions of problems in free-space electrostatics. It is assumed

throughout that the required minima actually exist. Similarly, much
of the work of the preceding chapters is intimately connected with the

tacitly assumed existence of certain minima of integrals very closely

related to (61), in one, two, and three dimensions. Although it would

carry us far beyond the scope of our study to go into the question of the

existence of the stated minima with any degree of thoroughness, certain

facts concerning this question should be recognized.

Clearly, the integral (61) possesses a lower bound: 7 can never be
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negative. It therefore seems plausible to suppose that there exists one

from among the functions eligible for the minimization which bestows

upon / a value less than (or equal to) any value which any other eligible

function gives to /. The plausibility of this supposition is strengthened

by the well-known theorem for continuous functions: In a closed region

a continuous function actually assumes its minimum value for some set

of values of the independent variables. A further argument supporting
the existence of a minimum of / with respect to a given class of functions

<t> rests upon physical considerations: "Since the solution of the corres-

ponding physical problem must exist, so also must the solution of the

minimum problem."
The foregoing line of argument, widely referred to as Dirichlet's princi-

ple, dominated mathematical thinking around the middle of the nine-

teenth century and was actually responsible for a large body of significant

discoveries. With his enormous critical faculty brought to bear upon the

question, however, Weierstrass found Dirichlet's principle unreliable and
in 1870 produced an example which conclusively demonstrated the princi-

ple to be false in the form in which it was understood at that date. As a

natural result of this discovery, reliance upon Dirichlet's principle was

abandoned, and many of its consequences in particular, many impor-
tant theorems on the existence of solutions of boundary-value problems
related to partial differential equations were accordingly viewed with

serious doubt.

The effect of Weierstrass's negative discovery had significant positive

aspects as well. With the collapse of one of their stanchest pillars mathe-

maticians labored hard, and in large measure successfully, to provide sub-

stitute foundations for the consequences of the discredited principle of

Dirichlet. But the discredit was only temporary; in 1899 Hilbert estab-

lished an unassailable basis for Dirichlet's principle under proper con-

ditions satisfied by the region R and by the functions < admitted to eligibility

for the minimization. We do not discuss here what these conditions are;
1

what is significant to the scope of our study is the fact that their non-

satisfaction is associated with problems of distinctly "pathological" cast

problems whose main interest lies in their contradiction of Dirichlet's

principle as it was understood prior to 1899.

EXERCISES

1. (a) In (2) of 12-1 (a) write < + t, where ^ is continuously differentiable,

and

in R y $ on B, (62)

1 For full discussion the reader is directed, for example, to Kellogg, Chap, 11, and
Courant (1).
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and so prove that W * JFo, where TT is the value of W when \ff (< 0o). Thus,
since <f> exhibits the same boundary values as does <o, we have the required proof

that the function which extremizes (2) and thus, according to (3), satisfies Laplace's

equation also renders (2) a minimum with respect to functions <t> which assume the

requisite values on B. HINT: Transform the integral which involves both <o and ^
'

according to Green's theorem (30) of 2-14(c). Show that this integral vanishes

because of (62).

(b) Use the method of part (a) to demonstrate the analogous two-dimensional

result stated at the opening of 12-3(6).

2. (a) Use Green's theorem (30) of 2-14 to show that a function $ which satisfies

Laplace's equation in R and

where B is the boundary surface of R, is necessarily a constant. If, further, ^

anywhere on B
t
it thus follows that ^ = identically in R.

(b) Use part (a) to prove that VV in R, with < prescribed everywhere on B,

is sufficient to determine <f> uniquely. HINT: Assume the two solutions <f> </>i and

# 02, so that, with ^ =
2 <i, we have VV = in R, f on B.

3. (a) Prove that the function given in (5) actually satisfies V 2 0. HINT:

Either use r =
(a;

2
4- 2/

2 + 2
)* with the cartesian form of Laplace's equation or, more

directly, use the polar form of the laplacian found in (29) of 9-2 (c).

(6) Use the definitions given at the opening of 12-1 (c) and 12-1 (e) to compute the

capacity of the sphere considered in 12-1(6). ANSWER: 6.

4. (a) Use Green's theorem (31) of 2-14 to prove that

rfS-0, (63)

if B' is the boundary surface of any region R' in which V2
< everywhere.

FIG. 12-3.

(6) Let V*0 * in 12; <t> is not identically constant in R. Use (63) to prove that

there is no subregion R' of R, which has a finite (non2ero) volume less than that of R,
in which </> is constant throughout. PROOF: Let the closed surface B', which lies

entirely in B, be the boundary of the largest connected subregion R' in which <#> assumes
the constant value

<j>{.
B' may coincide with part, but not all, of the boundary B of R

since <t> is by hypothesis not constant throughout R. It is thus possible to construct
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a sphere Q which lies entirely within R and whose center is at some point of B', with

radius so small as to exclude from Q every point of R exterior to R' at which <
4>[.

Let the portion of Q exterior to R' be denoted by R". Because $ is continuous, its

value in R" is either everywhere greater than
<t>[

<>r everywhere less than ^J; for the

sake of definiteness we suppose # > 4>[ in R". Thus, as we traverse any sufficiently

short straight line segment from any point of B' (within Q) into R", the function 4>

always increases. We may therefore choose the radius of Q so small that (d^/dn) >
at every point of its surface B* which is exterior to R'. Since (d<f>/dn) at every

point of B* within R' t
it thus follows that

*S>0, (64)

in contradiction to (63), since V 2 - in Q. (If < < <t>\
in R", the inequality in (64)

is reversed.)

(c) Use (63) to prove that <, not identically constant, can assume its maximum and
minimum values only on the boundary B of any region R in which VV = throughout.
PROOF: Suppose that <f> assumes its maximum at any point P of R not on B. Con-

struct, with P as center, a spherical surface B' in R having radius so small that

(d<f>/dn) ^ everywhere on B'. Because of part (6) we cannot have (d<f>/dn)

identically on B' for all sufficiently small radius. Thus (63) is contradicted. (The

argument against a minimum at P is similar.)

(d) Use part (c) to prove that, if V 2
< throughout R and <t> constant on the

complete boundary B of R, then $ ** constant throughout R. Also, use 2(6) to

prove this result.

6. Use exercise 4 to prove the following sequence of facts concerning the potential
in the region R bounded by the conducting surfaces of a condenser as described in

the opening paragraph of 12-1 (c). That is, R is the region exterior to BI, on which

4>
" fa, and interior to B2 ,

on which # fa; fa < fa, and VV = in R.

(a) If <t> <f>{ at any interior point Pi of R, then <t>i < <f>[ < fa. Through any
such point Pi there passes a closed surface B{ on which <t> has the constant value fa.

BI is everywhere interior to B 2,
and BI is everywhere interior to B'V HINT: On every

straight line segment joining BI to B? the continuous function </> must assume the

value
<t>[

at least once since fa < 4>[ < fa. Etc.

(6) For a given value of
<t>(

there is but a single closed surface ^ 4>( in

R (fa < 4>j < fa). HINT: Use exercise 4(6,d) to show, first, that there can be no
surface < =* constant in whose interior BI does not lie. From 4(d), also conclude

that the existence of two surfaces <f>
=

4>[, both of which enclose regions which contain

BI, necessitates a finite subregion of R throughout which < ^, which is ruled out

by 4(6) and fa < fa.

(c) From parts (a) and (b) conclude that there exists a one-parameter family of

equipotential (constant-^*) surfaces, closed in R, with the following property: The
surface <t> <t>{

lies everywhere interior to the surface ^ if
<t>( < ^. (These

surfaces cannot have a point in common since <t> is single-valued.)

(d) Let u -
F(<*>), where F'(<f>) > in R and F(fa) -

t*i, F(fa) - t*2. Show that

u satisfies the requirement laid down in 12-1 (c) for the function w(x,y,s) : Namely,
u Uk on B* (A; 1,2) ; through each point of R there passes one and only one surface

of the family u(x,y,z) = A lying entirely within R t such that u Ai is everywhere
interior to the region bounded by u A 2 whenever Ai < Aj.

Thus the existence of the required function u follows directly from the existence of
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the potential function ^; the latter we tacitly assume throughout (see 12-4). It

should be kept in mind, however, that it is not always a simple matter to determine

the function u in spite of the highly arbitrary character of the function F(<f>); prior to

solution of the problem in which the use of u is required, the potential <t> is not avail-

able to us!

6. (a) Given the differentiable function u u(x,y,z) with x, y, z expressed in terms

of the independent variables u, v, w through the differentiable relationships

x -
a?(u,v,u>), y * y(u,v,w), z - 2(u,t>,u>), (65)

derive the set of equations

1 uxxu + uvyu
= uxxv + uyyv + uzzv , (66)
= uxxw -h uvyw 4-

(b) Use (66) to obtain the result

"

8

|

!
- a(''*)

LB(u tv,w)

with the denominator assumed not to vanish. Thus, through (65), equation (67)

provides the explicit expression of (w
2

4- w 2
4- u*) in terms of (u,v tw), as called for in

(11) and (12).

(c) On the basis of (67) fill in the details of the following proof that the function

H(u) defined by (12) is independent of the particular choice of the functions v, w
consistent with the requirements enunciated in conjunction with equation (9) :

Let v* = v*(x,y,z) and w* w*(x1y 1z) be a second choice of the functions v and w.

We thus form, according to (12),

/ 2* /* 102* F d(ytz) ~|

2

_ / I L^(y*,^*) J

^wi* Jwi* d(u,v*,w*)

}

If v = v(x,ytz) and w w(x,y,z) are the original choice of the required functions,

express (68) as an integral over the variables v and w by means of the transformation

whose jacobian is [d(v*,w*)/d(v,w)]. With the aid of the relations (see 2-8(/))

*(y,) d(v*,w*) d(y,z) d(u,v*,w*) _ d(v*,w*)

d(v*,w*) d(v,w) B(v,w)'
Gl

'

d(u,v,w)

"
d(v,w)

'

and

d(u tv*,w*) _ d(x 9 y,z)
t

d(u,v*,w*) d(u,v,w) d(u,v,w)'

together with (67), thus show that H*(u) H(u) as given by (12).

(d) Prove the final relation of (69).
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7. (a) Show that the integral (8) may be written

/t*a r r rut / rr \

- / / / (G'(u)]*(ul + <4 + !)ra
Ejjr

-
I 10'()P

( / / |

^K (70>

AI ././ AX \jv /

where the surface A is a representative surface u ~ A in R (ui ^ A j). The

partial derivative (du/dn) represents the rate of change of u along the normal to the

surfaces u = constant. HINT: For the first form of (70) choose the volume element

dS dn and use the transformation du \(du/dri)\dn; for the second form use the fact

that the magnitude V ul + u\ + u\ of the gradient of u (see 2-12(a)) is the rate of

change of u along the normal to a surface u constant. The use of the absolute

value of (du/dn) makes immaterial the choice between inward or outward normal.

(b) Using (70), show that (12) becomes

//is
dS. (71)

(c) With (12) written in the form (71) the method and results of 12-1 (c) become

applicable to cases in which it is no simple matter to write an expression of the func-

tion u explicitly in terms of x, y, z. Thus, if it is most convenient to define u in

geometric terms, the integral (71) may lend itself to ready evaluation while (12) may
not.

For example, consider the case of the condenser formed by the concentric parallel

cubes of edge a\ and 02 (i < 02). We define the family of surfaces u constant

as the aggregate of cubes concentric with, and parallel to, the boundary cubes and

having edge lengths between cti and a2 . On any given member of this family, having

edge a, we assign the constant value u = ia.

Show that, with this geometric assignment of u, we have
| (du/dn) | 1, so that

evaluation of (71) gives H(u) = 6a2 =* 24w*. Hence, with the aid of (16), show that

the capacity Co of our cubical condenser satisfies the inequality

C
f

* _ 30,0, _ _,o^

(d) Use the above method to obtain an upper bound for the capacity C'Q of the single

conductor consisting of the cube of side 01, but employ for the surfaces u constant

the parallel surfaces of the cube. (A given "parallel surface" Bf
of the cubical

surface Bi is a closed surface exterior to BI such that the distance from any point of

B' to BI along an internal normal to B' is the same at all points of B'. Thus B f
con-

sists of six squares, twelve quarter-circle cylinders, and eight octants of a sphere;

these twenty-six parts are joined smoothly. It is clear that any line normal to one

of the parallel surfaces of a given cube is normal to all.) HINT: If we associate with a

given parallel surface a value of u equal to the perpendicular distance from one of its

plane portions to the center of the given cube, the constant normal distance to BI
is (u }ai) and \(du/dn)\ =

1, so that H(u), according to (71), is the area of the

parallel surface:

H(u) -
6aJ + 6rrai(w

ANSWER: C[ 0.7105ai. Compare with (72), with a*-* o.
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8. Given that the equipotential surfaces in a condenser consisting of two concentric

spheres are themselves spheres concentric with the conductors, derive the precise

expression for the potential according to the method outlined in the antepenultimate

paragraph of 12-1 (c).

9. Show that the transformation (19) of 12-1 (d) is such that each point of the

region R between the concentric ellipsoids of revolution u u\ and u uz is asso-

ciated with one and only one triple of values (w,t>,w>), with u\ ^ u ^ wa, ^ v > TT,

^ w < 2*.

10. The precise capacity Cj of the single conducting prolate spheroidal surface

given by (28), with 6 < a, is given by (see Abraham and Becker (referred to in 12-1 (a)),

P. 64)

Va - &'

log [(a +
(73)

Expand the reciprocal of C' as a power series in [1 (&/o)
2
], and compare the result

with the similar expansion of (1/C') as given by (29). Thus prove directly that

C' ^ CQ, and show that the accuracy of approximation of C'Q by C' is the better

the smaller the value of [1 (b/a)
2
].

11. (a) Show that the inequality (37) of 12-2 (a) may be rewritten in the form

* dS - * dS
9 (74)

with the aid of Green's theorem (30) of 2-14 and (34). HINT: Use the fact that

VV - in R.

(b) Use Green's theorem (31) of 2-14 to prove that

.

if VV " in the region R bounded by the condenser surfaces BI and Bj

(c) Since 4>
= <i on BI and =

</>2 on B% (#2 > <M, rewrite (74) as

^ dS, (76)

Bz

with the aid of (75).

(d) In case we let vfr
- aiUi (V*Ui - 0), use (42) and (75) to rewrite (76) in the

form

Co * tT

f
*jJ (77)

4ac(Li -f Li)

where

, L>- udS (A -1,2). (78)

12. (a) Use (77) and (78) of exercise 11 to obtain a lower bound for the capacity Co
of the cubical condenser described in exercise 7(c). HINT: Place the origin of coordi-

nates at the center of the condenser, with axes parallel to the cube edges, and make the

choice of Ui given by (44). By symmetry argument thus show that any integral of

(78) is equal to six times the integral carried out over one face of the cube. On the
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face x - iaiof Bi, (dUi/dn) -(d^/daOjona? - Ja2 of B2, (dUi/dn) - (dUi/dx).

Thus evaluate

rioa dycfe ^
./o (ioj + i/

2
4- )

'

dt/ ete 24

'

.

'

<* - 1,2).

ANSWER: Co ^ 7= -j=

l ^ 0.60 i-J
j compare with the upper-

6\/2 cot" 1 v 2 a 2
"* a i a2 ai

bound result (72) and for az <- with the upper bound for the single cube

obtained in exercise 7(d).

(6) Prove that it is not mere coincidence that the result (79)* is identical with the

value of /2 found in (50). HINT: Note (75),

13. (a) Prove that the capacity per unit length c of a cylindrical condenser, as

described in 12-3 (a), is given by the maximum of (56) with respect to functions

which satisfy both (57) and (58). HINT: Compare 12-2 (a).

(6) Develop the principle embodied in part (a) along the lines of 12-2 (a) and exercise

11 above to derive the result

Co
2

> (80)

where here

U - U(x,y), V*U - 0. (82)

(c) Use (80) to obtain a lower bound to the capacity per unit length c of a cylindri-

cal condenser whose trace in the xy plane consists of concentric parallel squares of

sides fli and a*, respectively (01 < 02). For the function U satisfying (82) use

log \/z2
4- y

2
)
where the origin of coordinates is the common center of the squares.

HINT: Do not try to evaluate L\ or Z/2 individually as given in (81); the required sum
(Li + 2), however, is readily evaluable. (Use polar coordinates for the integration.)

ANSWER:

Co - '

(83)

(d) Show that result (83) applies also to a cylindrical condenser whose trace in the

xy plane consists of the pair of concentric coaxial similar ellipses

x2
?/

a
a?

2
t/
2

1 + 4l -
1. -i + "ft

- x (2 > a! > 0). (84)
a\

2
aJ al aal

(e) Prove that the result (83) applies to any cylindrical condenser whose trace

in the xy plane is described, in plane polar coordinates, by the two equations r = a\g(9)

and r a 20(0), with 0,2 > a\ > 0. Show that the equality sign holds in (83) if

g(6) is a constant.

14. (a) Prove the inequality (59), where h(u) is given by (60). HINT: Compare
12-1 (c).
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(b) Show that (60) may be written also in the form

/c

where C is any curve u constant as described in 12-3(c). HINT: Compare exercise

7(a,6) above.

(c) Employ (59) together with (60) to obtain an upper bound for the capacity

per unit length c of the cylindrical condenser described by (84). ANSWER:

^ (
2
4- 1)

Co
log (o 2/ai)

Compare with the lower bound given by (83).

(d) Employ (59) together with (85) to obtain an upper bound for the capacity per
unit length c for the concentric-square cylindrical condenser described in exercise 13(c)

above. HINT: Compare the treatment given the cubical condenser in exercise 7(c).

ANSWER: c ^ 2/[ir log (as/ai)]. Compare with the lower bound given by (83).
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Dynamics of particles, 72-92
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Eigenvalue-eigenfunction problems, 99

quantum mechanics, 263
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eigenvalues as energy levels, 263, 278

significance of normalization, 276,

279
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Sturm-Liouville, 119-131

asymptotic distribution, 196-197
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three-dimensional vibrations, 197-198

vibrating bar, 221-224
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explicit solution, 252-255
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circular, 259-260

degeneracy, 237

orthogonality, 238-239
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approximation, 107-114, 117-118
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characterization, isoperimetric, 116
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Electrostatic intensity, 294
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ditions; Undetermined end points)

Energy, total, 75-76
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in reduced Hamiiton-Jacobi equa-
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energy)
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Euler-Lagrange equations, 20-23
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Euler-Lagrange equations, in dynamics
of particles, 75, 92

first integrals, 24-25, 34, 45, 52

higher derivatives, 46, 61, 64

isoperimetric problems, 50, 95, 134

several dependent variables, 32-33, 52,

60

two or more independent variables, 94,

95, 133, 134

(See also Transformation)
Euler's theorem on homogeneous func-

tions, 6

Extremizing function, 23

Extremum, 2, 23

of double integral, 93-95
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of triple integral, 132-133

Format's principle, 67-71

in quantum mechanics, 268-269

Flexural rigidity, of bar, 217

of plate, 228

Force components, generalized, 89-90

Fox, C., 319

Franklin, P., 3n., 319

Fundamental lemma, 16-17, 43-44

G

Generalized coordinates, 73

Generalized force components, 89-90

Generalized momenta, 76
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on sphere, 27-28, 62-63
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Germer, L. H., 264, 270

Goldschmidt discontinuous solution, 31

Goursat, E., 3n., 319

Gradient, 12

Green's theorem, 12-15

Group velocity, 290

Hamilton-Jacob! equation, 82

reduced, 83, 84
in quantum mechanics, 262, 269, 277

Hamiltonian, 76-77, 79, 82

Hamilton's principle, 74-75, 77

application to vibrations, of bar, 218-

221

of membrane, 145, 148-151, 159

of plate, 229-231

of string, 96-97, 105

extended, 88-90, 92

application to motion, of elastic

solid, 205-209
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force, 193

of plate under transverse force,

260

of string under transverse force,

116

Hartree model of the atom, 286-290

Hedrick, E. R., 319

Helium atom, 281

approximation of ground-state energy,

281-286

singly ionized, 275

Hermite differential equation, 131

Hilbert, D., viii, 171n., 311, 319

Homogeneous functions, Euler's theorem

on, 6

Hooke's law, 203-204

Hydrogen atom, 271-275

energy levels, 275

spherically symmetric wave functions,

274

Ince, E. L., 99n., 121n., 124n., 125n., 319

Indeterminacy, principle of, 277

Integration by parts, 5

Isoperimetric problems, 48-57, 65

two or more independent variables,

95, 133-134

(See also Eigenvalue-eigenfunction

problems)

Hamilton equations of motion, 78

transformed, 79-82

Hamilton integral, 74

Jackson, D., 127n., 319

Jacobi, C. G. J., vii

(See also Hamilton-Jacobi equation)

Jacobian, 9-10, 136, 140-141, 293
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K

Kellog, O. D., 3n., 296n., 311n., 319

Kent, G., viii

Kinetic energy, 73

of elastic deformation, 205

of vibrating bar, 218

of vibrating membrane, 143

of vibrating plate, 228

of vibrating string, 96

Kronecker delta, 101

Lagrange equations of motion, 75, 92

(See also Euler-Lagrange equations)

Lagrange multipliers, 6, 49, 63

(See also Isoperimetric problems)

Lagrangian, 74

Laguerre polynomials, 128-129, 274

Laplace's equation, 295, 309

Laplacian, 12

transformation of, 138-142

Least action, principle of, 85-88, 268-269

Legendre, A. M., vii

differential equation, 131

Lemma, basic, 16-17, 43-44

Line integral, 6, 7

Linear independence, 9

Love, A. E. H., 319

M

Maximum-minimum characterization of

eigenvalues (see Eigenvalue-eigen-
function problems)

Mechanics (see Dynamics of particles;

Quantum mechanics)

Membrane, 142

(See also Eigenvalue-eigenfunction

problems; Vibrations)

Membrane system, definition of, 167

"narrower" relationship, 168

Minimum characterization of eigenvalues

(see Eigenvalue-eigenfunction prob-

lems)

Moment, bending, 214-215, 250
of inertia (area), 214

Momenta, generalized, 76

Morse, P. M., 259u.

N

Newton, L, 19, 74, 75

Normal derivative, 7-8, 11-12

Normalization, 99

(See also Eigenvalue-eigenfunction

problems)

Optics, geometric (see Fermat's principle)

Orthogonality, 101

(See also Eigenvalue-eigenfunction

problems; Schmidt process of

orthogonalization)

Parametric representation, 34-36

Phase velocity, 266, 267, 269

of a particle, 269

Piecewise continuity, 4

Piecewise differentiability, 4

Planck, M., 271

Planck's constant, 262n., 271

Plate bending, by couples, 224-228

by transverse-foree distribution, 260

(See also Eigenvalue-eigenfunction

problems; Vibrations)

Poisson's ratio, 203-204

P61ya, G., 319

Potential, electrostatic, 294

minimum characterization, 295, 311-

312

Potential energy, 72, 89

of elastic deformation, 205, 212

bar bent by couples, 216-217

plate bent by couples, 227-228

vibrating bar, 218

vibrating plate, 228

of electrostatic field, 295

of helium atom, 281

of many-electron atom, 287

of one-electron atom, 272

of vibrating membrane, 143-145

elastic binding of edge, 148

of vibrating string, 96

Q

Quantum mechanics, 261-293

comparison with classical mechanics,
276-277
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Quantum mechanics, reduced Hamilton-

Jacob! equation in, 262, 269, 277

(See also Eigenvalue-eigenfunction

problems; Schrodinger )

R

Radiation, 198, 271

Rayleigh, Lord, J. W. S., 247n., 249n.,

319

Rayleigh-Ritz method, 241n.

(See Ritz method)

Ritz, W., 241

Ritz method, 241

in electrostatics, 296

in Hartree method, 286-290

for helium atom, 281-286

for vibrating membrane, 188-192

for vibrating plate, 240-244

clamped square, 244r-248

for vibrating string, 107-114

Rod (see Bar bending)

Rope, hanging, 56-57, 64, 66

8

Saint-Venant's principle, 21 In.

Scalar product, 12

Schiff, L. I., 319

Schmidt process of orthogonalization,

155-157

Schrodinger, E., 261-264, 268-270

mechanics-optics analogy, 268-269

(See also Wave functions)

Schrodinger equation, for several parti-

cles, 277-280

for single particle, 263, 270

first derivation, 262-263

second derivation, 268-270

Schwartz's inequality, 44

Schwinger, J., vii

Separation of variables, 98, 160-161

Snell's law, 68

Sokolnikoff, I. S., 201rt., 204n., 217n., 319

Strain, 201-203

Strain tensor, 202-203

Stress tensor, 200-201

Stress vector, 200

String, elastic (see Eigenvalue-eigenfunc-

problems; Vibrations)

Sturm-Liouville problem, 119-131

singular cases, 127-130

Bessel functions, 129-130

Hermite equation, 131

Laguerre polynomials, 128-129

Legendre equation, 131

(See also Eigenvalue-eigenfunction

. problems)
Surface forces, 199-200, 205

on cylindrical bar, 213

on rectangular plate, 225-226

Surface integral, 11

Szego, G., 319

Szego, P., viii *

Taylor's theorem for several variables,

10, 201-202

Thomson, G. P., 264, 270

Transformation, canonical, 79-82

of Euler-Lagrange equation, 126-127

two or three independent variables,

135-138

of iaplacian, 138-142

of linear differential equation, 121-127

of multiple integral, 10

to "normal, arc coordinates," 231-233

of Sturm-Liouville system, 121-127

U

Uncertainty principle, 277

Undetermined end points, 36-41, 51

Undetermined multipliers, 6

(See also Lagrange multipliers)

Velocity components, generalized, 74

Vibrations, of bar, 217-221

variable cross section, 252

of gas, 98

of membrane, 142-145

circular, 194

elastically held edge, 148-153

free edge, 153

general solution, 158-160

inhomogeneous boundary conditions

193
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Vibrations, of membrane, natural fre-

quencies, 146, 160

nodal lines, 196

rectangular, 161-164

under transverse force, 193

of plate, 228-236

circular, 259-260

general solution, 258

natural frequencies, 237, 248

rectangular, 240-249

under transverse force, 260

of string, 95-98

general solution, 105-107

natural frequencies, 100

under transverse force, 116117

of uniform density, 117

in three dimensions, 197-198

(See _also Eigenvalue-eigenfunction

problems)

W
Wave equation, 264

for a particle, 270

time-independent, 265

(See also Schrodinger)

Wave functions, 263

physical interpretation, 275-279

(See also Hydrogen atom)
Wave mechanics (see Quantum mechanics)

Wave phenomena in general, 264-268

Weierstrass, K., vii, 311

Weinstein, A., 247n.

Weinstock, E. B., viii

Whittaker, E. T., 319

Work, 90

of stretching, membrane, 143-144

string, 96

Young's modulus, 203
















